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Abstract: Tree crowns are commonly measured to understand tree growth and stand dynamics.
Crown ratio (CR—crown depth-to-total height ratio) is significantly affected by a number of tree-
and stand-level characteristics and other factors as well. Generalized mixed-effects CR models were
developed using a large dataset (measurements from 14,669 trees of Norway spruce (Picea abies (L.)
Karst.) and European beech (Fagus sylvatica (L.)) acquired from permanent research plots in various
parts of the Czech Republic. Among several tree- and stand-level variables evaluated, diameter at
breast height, height to crown base, dominant height, basal area of trees larger in diameter than a
focal tree, relative spacing index, and variables describing the effects of species mixture and canopy
height differentiation significantly contributed to CR variation. We included sample-plot-level
variations caused by randomness in the data and other stochastic factors into the CR models using
the mixed-effects modeling approach. The logistic function, which predicts the values between 0
and 1, was chosen to develop the generalized CR mixed-effects model. A large proportion of the
CR variation (R2

adj ≈ 0.63 (Norway spruce); 0.72 (European beech)) was described by generalized
mixed-effects model without significant residual trends. Testing the CR model against a part of the
model fitting dataset confirmed its high prediction precision. Our CR model can be useful for growth
simulation using inventory databases that lack crown measures. Other potential implications of our
CR models in forest management are mentioned in the article.

Keywords: dominant height; logistic function; species mixing effect; random effect; relative spacing
index; stand development stage

1. Introduction

The crown is characterized by crown length, crown width, crown density, leaf area, and crown
ratio (CR). The crown manufactures the photosynthetic materials and supplies to other parts of a tree,
and therefore these parts are closely related to crown sizes (crown depth, crown width, crown fullness).
Specifically, tree crowns play crucial roles in regulating solar energy, recycling nutrients, distributing
precipitation, and retaining moisture in the forest stands. The crown size is a good indicator of general
health and vigor of a tree [1–3]. For example, trees with large and dense crowns have vigorous
growth, while trees with small and sparse crowns have little or no growth. Measurements of the crown
dimensions are often used to evaluate health, growth, and production efficiency of trees and forest
stands [3–5].

The crown measures are often used for modeling distribution of the solar radiation, water and
nutrient within trees, and modeling growth of trees [3,6]. Research on the crown measures including
CR contributes to the knowledge on ecosystem productivity and biodiversity [7]. As a good indicator of
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tree health and vigor [1,3,8,9], CR is used to determine the thinning intensity and its potential response
of the residual trees within a stand [10]. The CR can be used as an indirect measure of the photosynthetic
ability of trees and their competitive interactions [10,11]. The CR is used to assess wood quality [12,13]
and wind firmness [14] of trees. The potential growth of a tree is determined by surface area or volume
of tree foliage. However, these attributes cannot be measured directly; instead, CR or crown depth
can be used as an appropriate substitute in the growth and yield models [15]. The crown measures
including CR are often included as predictor variables into a number of forest models, such as growth
models [16–24], survival analysis and mortality models [25,26], biomass models [27–29], and stem
taper and volume models [30–32]. The CR can be used to assess canopy density [33], potentiality
of wildlife habitat and recreation [34,35] and risk of forest fires [36], and to model light interception
through canopies [37,38].

Considering the necessity of the crown models for decision-making in forestry, a number of
studies that involved tree-based crown models have been carried out, including crown diameter
models [39–44], crown shape models [45], crown rise models [46], crown spread ratio models [47],
crown projection ratio models [48], and crown ratio models [8,49–53]. The CR models are much
more important than any other models of the crown measures for forest management [8,24].
Therefore, developing a precise species-specific CR model is necessary, which may be challenging,
but possible with the use of a comprehensive and extensive dataset and application of a robust
modeling method (mixed-effects modeling). Except for two existing CR modeling studies [20,53],
all other studies have used the ordinary least square regression method—also known as the traditional
regression method. This is not appropriate for modeling tree- or stand-level characteristics using the
measurements taken from the same sampling unit, because measurements from the same sampling
unit are most likely correlated to each other. In this situation, the mixed-effects modeling approach,
which allows to include both fixed and random effects into the model, may be the most appropriate [54].
The fixed parameters in the mixed-effects model account for the effects of main and covariate predictors
as in the ordinary least square regression, while the random component accounts for variability caused
by stochastic factors [41,53–57].

Most of the existing CR models have included the measures describing the effects of competition
(e.g., stand basal area, crown competition factor, and spacing index), the effects of size of trees
(e.g., diameter, height, height-to-diameter ratio, and stand age), and the effects of site characteristics
(e.g., altitude, slope, and aspect), but not the measures that describe the effects of intra- or inter-species
interactions and canopy height differentiation on the CR variation. The effects of species mixture on
tree and stand characteristics have been thoroughly analyzed in several studies [42,44,48,56,58–60].
These studies confirm that species-mixing effect on tree characteristics is highly significant; therefore,
this cannot be disregarded when measurements from mixed stands are used. Like the tree
height-to-diameter ratio [61,62] and crown projection ratio [48], the forms and sizes of crowns vary
from tree to tree, depending on their associated canopies and social positions [3]. However, none of
the existing CR models has used the predictors that describe the effects of species mixture and canopy
height differentiation on CR. Furthermore, except for the CR models by Hasenauer and Monserud [8],
which were developed using the traditional regression method without considering the effects of
species mixture and canopy height differentiation, no study has sought to develop a generalized
(composite) mixed-effects CR model for Norway spruce and European beech—the most important
species in Europe.

The objective of this study is to evaluate the hypothesis, through application of a mixed-effects
modeling approach, whether the effects of intra- or inter-species interaction and canopy height
differentiation on CR are significant. Moreover, the effects of spacing, site quality, stand development
stage, and social positions of trees on the relationship between diameter and CR were also investigated.
A large dataset originating from research sample plots in various parts of the Czech Republic was used.
It is concluded that the proposed CR models are useful for tree growth simulations using inventory
databases that lack CR data.
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2. Materials and Methods

2.1. Sampling and Measurements

We collected data from permanent research plots, hereafter termed as sample plots, which
are distributed across the 26 Natural Forest Areas of the Czech Republic (Figure 1). The studied
forests consist of the monospecific stands and mixed stands of Norway spruce and European beech.
Most of these sample plot data have been used in other studies [42,48,56,61,63,64] with different
objectives. Therefore, more information about sample plots and sampling designs can be obtained
from this literature. Area of the sample plots varies from 2500 to 4900 m2, and they have square and
rectangular shapes. The sample plots are representative of a wide range of altitudes (240–1370 m),
temperatures (4–9.5 ◦C of mean annual temperature), precipitation (500–1450 mm of mean annual
precipitation), and growing periods (45–180 days of growing season length) [48,56]. The canopy layers,
mortality, regeneration, dead wood stocking, stand density, and stand development stage were taken
into account while laying out the sample plots [65]. Our data therefore represent a wide range of
stand conditions, environmental variabilities, and management regimes. The majority of the stands,
especially those of beech, originated from spontaneous development, and about 20% spruce stands
were from plantation. About 80% of stands were left for natural regeneration, with stand ages varying
from 10 to 150 years, and management intervention involved sanitary cutting (e.g., extraction of bark
beetle- and disease-affected trees and low harvesting [48]). The rest of the stands were managed by
focusing on the cutting of trees by a shelter wood selection system, with creation of 5% canopy gaps.
Sample plots heavily damaged by air pollution, windbreak, bark beetles, and diseases [66,67] were
excluded from our study.
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Figure 1. Sample plot locations. Monospecific Norway spruce or its abundance over other species
(dark red dots), and monospecific European beech or its abundance over other species (black triangles).
Light green dots show forest cover, and gray lines separate 41 Natural Forest Areas.

The Forest Management Institute has developed protocols for sample plot inventory [68].
We followed such protocols and conducted the inventory through April 2007 and May 2016.
No repeated measurement was carried out, meaning that our dataset lacks the temporal variability.
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We measured the over bark diameter at breast height (DBH, 1.3 m above ground) using a caliper
(precision 1 mm) and total height by a Laser Vertex hypsometer (Haglöf, Långsele, Sweden) that has
10 cm precision. Height to crown base (HCB) was measured for all individuals with DBH ≥2.5 cm
and total height ≥1.5 m on each sample plot. We considered HCB as the lowest point of the crown on
the bole where continuous whorl with all living branches was formed. However, we did not consider
a whorl as a continuous if there were one or more dead whorls above it [48,56]. We recorded 1–26
species per sample plot.

2.2. Data Analysis

2.2.1. Tree and Stand Measures

Site quality, stand development stage, and stand density or competition may have significant
effects on the crown of trees [8,40–44,49,69]. Considering this, we evaluated several tree and stand
measures for their potential contributions to the CR variation. The site index, which best describes
site quality, is included as one of the predictors into various forest models [70,71]. However, due to
lack of this information, we did not include site index into our CR model. The dominant height
(HDOM), which is assumed to describe the combined effect of site quality and stand development
stage, was included into our CR model. The field crew did not identify dominant trees, but we
identified them from measured sample height trees by applying the methods suggested by Sharma
et al. [42,72]. We then computed the HDOM and dominant diameter (DDOM) for each sample plot
according to the definition of HDOM, i.e., 100 largest trees per hectare [73]. We also computed other
important stand measures, such as stem number per hectare (N, ha−1), DBH sum of all individuals
(DBHSUM, cm), stand basal area (BA, m2 ha−1), arithmetic mean DBH (AMD, cm), and quadratic
mean DBH (QMD, cm). We also calculated the relative spacing index (RSI), which is defined by
RSI =

√
10, 000/N/HDOM [11,20,74,75]. We assumed RSI as an effective stand density measure for

determining the thinning specification, because it includes stocking and combined effect of site quality
and stand development stage through N and HDOM, respectively [11,44,76].

We also computed the measures describing competitive interactions among the individual
trees, such as basal area of trees larger in diameter than a subject tree (BAL) and ratio of DBH to
QMD (dq). All tree- and stand-level competition measures were computed using the measurements
regardless of species. There can be a significant effect of species mixture on tree growth and stand
dynamics [44,48,56,58–60]. We also included a variable (basal area proportion of the species of interest:
BAPRO) that describes species mixing effect on the CR variation.

We excluded trees with missing measurements of total height or HCB and other tree variables.
The final dataset is summarized in Table 1. We considered those stands as monospecific ones,
where individuals other than species of interest with DBH <4 cm existed. The inventory crew did
not differentiate trees by canopy height class (CC), i.e., suppressed, intermediate, and dominant in
inventory. We applied the same approach, which was applied by Sharma et al. [48,61] for canopy
height classification, as follows:

1. canopy height class I, CC1: height greater than 66% of the tallest tree;
2. canopy height class II, CC2: height between 33% and 66% of the tallest tree; and
3. canopy height class III, CC3: height less than 33% of the tallest tree.

Measurements of height of all living trees, irrespective of the species of interest on each sample
plot allowed us to apply this classification approach. This classification has also resulted in a significant
variability in the slenderness coefficient (height-diameter ratio) and crown projection ratio of trees
between canopy height classes [48,61]. Graphs of CR against DBH and HCB by canopy height class are
presented in Figure 2. This figure depicts that CR for any DBH or HCB of a given canopy height class is
substantially different, so we included a variable describing the effect of canopy height differentiation
into our CR models.
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Table 1. Summary statistics of data.

Variables
Mean ± Std. (Range)

Norway Spruce European Beech

Number of sample plots 90 (18 monospecific + 72
mixed species)

88 (18 monospecific + 70
mixed species)

Number of sample trees 6736 7933
Number of trees per sample plot 149 ± 115 (3–430) 142 ± 124 (3–515)
Number of trees per hectare (N ha−1) 1005 ± 676 (92–2568) 827 ± 745 (41–2568)
Basal area (BA, m2 ha−1) 47.2 ± 19.4 (7.2–91.4) 43.3 ± 14 (0.7–89.1)
BA proportion of a species (BAPRO) 0.72 ± 0.31 (0.0005–1) 0.72 ± 0.24 (0.0004–1)
BA of trees larger in diameter than a
subject tree (BAL, m2 ha−1) 36.7 ± 21.2 (0–88.8) 33.9 ± 16.7 (0–86.3)

Quadratic mean DBH (QMD, cm) 28.9 ± 9.6 (11.9–60.4) 32.9 ± 11.8 (15.4–87.4)
DBH-to-QMD ratio (dq) 1.2 ± 0.5 (0.1–6.8) 1.1 ± 0.64 (0.12–5.7)
Arithmetic mean DBH (cm) 24.8 ± 10.5 (9.4–53.9) 28.6 ± 12.8 (9.4–84.4)
DBH sum (DBHSUM, cm) 4845 ± 1860 (813–9333) 4172 ± 1911 (675–9333)
Dominant diameter (DDOM, cm) 49.9 ± 13.3 (18.4–77.1) 56.7 ± 11.2 (24.7–84.3)
Dominant height (HDOM, m) 27.1 ± 8.2 (8–42) 30.6 ± 6.3 (13.6–42.8)
Mean height (m) 16.2 ± 6.7 (4.6–37.4) 19.2 ± 7.9 (6.6–42.8)
Relative spacing index (RSI) 0.15 ± 0.07 (0.05–0.44) 0.15 ± 0.06 (0.06–0.41)
Total height (m) 16.9 ± 9.9 (1.5–48.7) 19.4 ± 10.3 (1.5–50.6)
Diameter at breast height (DBH, cm) 26.7 ± 18.5 (2.5–119) 28.3 ± 20.1 (2.9–118.7)
Height-to-DBH ratio (HDR, m cm−1) 0.6 ± 0.3 (0.03–6.6) 0.8 ± 0.3 (0.1–6.1)
Height to crown base (HCB, m) 6.26 ± 5.7 (0.01–37) 8.5 ± 6.4 (0.1–35)
Crown diameter (CW, m) 3.7 ± 1.6 (0.5–13.9) 6.1 ± 3.2 (0.8–24.1)
Crown depth (CL, m) 10.6 ± 6.7 (0.2–35.3) 10.9 ± 6.4 (0.5–45.2)
Crown ratio (CR) 0.65 ± 0.19 (0.05–0.99) 0.58 ± 0.18 (0.05–0.99)
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Figure 2. Crown ratio versus diameter at breast height (DBH) (first panel), mean crown ratio versus
DBH (second panel), mean ratio was calculated by DBH class with 10 cm interval for each canopy
class per sample plot; crown ration versus height to live crown base (HCB) for three different canopy
height classes (third panel); CC = canopy height class 1: height greater than 66% of the tallest tree,
2: height between 33% and 66% of the tallest tree, and 3: height less than 33% of the tallest tree.
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2.2.2. Model Development

Theoretically, values of CR should fall between 0 and 1, and considering this, we used only those
functions [49,53], which predict CR between 0 and 1, to fit the data using DBH as a single predictor
and compared fitting performances. The best fitted function was then used to include additional
tree- and stand-level variables that describe tree size effect, combined effect of site quality and stand
development stage, competition effect, species mixture effect, effect of canopy height differentiation,
and component describing random effects on the CR variation. Among the 10 functions considered in
preliminary analyses, a logistic function of the following form (Equation (1), henceforth termed as a
base model) best fitted to the data:

CRij =
1

1 + exp
(
−b1DBHb2

ij

) + εij (1)

where CRij and DBHij are crown ratio and diameter at breast height (cm) of the jth tree on the ith
sample plot, respectively, b1 and b2 are parameters to be estimated, and εij is an error term.

We evaluated several tree- and stand-level variables (Table 1) for their potential contributions
to the fitting improvement of the CR models. Evaluation was based on examination of graphs and
correlation statistics [42,56,77]. The interaction effects between predictors and their transformations
were also evaluated. Among several predictors evaluated, significantly highly contributing ones
identified are HCB, HDOM, BAL, RSI, and BAPRO. The two-stage variable selection method [48,55,78]
was applied to identify these predictors. This method entailed that a base model (Equation (1)) was
fitted by sample plot, and scattered-matrix graphs of the estimated parameter values plotted against
each of the predictors (Table 1) were examined. Since graphs of b1 of a base model, plotted against
HDOM, BAL, BAPRO, RSI, and HCB, showed strong correlation, we defined b1 as a function of these
variables and incorporated into the CR model. The variance influence factor, which is commonly
used to assess the multi-collinearity among predictors [79], was used to check the dependency among
those five selected predictors. Introducing many variables into the CR models may increase the fitting
improvement, but this was not done, because this would cause over-parameterization, leading to the
biased parameter and variance estimates [79]. The effects on the CR variation caused by canopy height
differentiation were also included through application of the dummy variable modeling approach.
Since b1 of a base model (Equation (1)) was found more correlated to covariate predictors, this
parameter was defined as a linear function of all five covariate predictors and three dummy variables
describing canopy height classes.

The mixed-effects CR model was formulated through random effects inclusion (Equation (2)).
This was necessary, because the global model (model without random effects) assumes no CR
invariability exists within- and between-sample plots, which is not true [41,54,55,80]. Formulation
details of any nonlinear mixed-effects model are found in the standard textbooks [54], so we present
our final mixed-effects CR model here (Equation (2)):

CRij =
1

1 + exp
[
−(b1 + ui1)DBH(b2+ui2)

ij

] + εij (2)

with b1 = α1z1 + α2z2 + α3z3 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

where zk is canopy height class CCk (k = 1, 2, 3) (when a CR of a tree belongs to the kth canopy class
then zk = 1, otherwise 0); x1 = HDOMi; x2 = BALi; x3 = RSIi; x4 = BAPROi; x5 = HCBij; variables HDOMi,
BALi, RSIi, BAPROi, and HCBij are dominant height (m), basal area of trees larger than the jth subject
tree (m2 ha−1), relative spacing index; basal area proportion of the species of interest, height to crown
base of the jth tree (m) on the ith sample plot, respectively; αi (i = 1, ..., 3) and βi (i = 1, . . . , 5) are
parameters to be estimated; εij is an error term. In this equation, error vector and random effect vector
were defined by εi ∼ N(0, R) and ui ∼ N(0, D), respectively. This means that error vector εi was
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assumed to have a normal distribution with zero mean and within-plot variance-covariance matrix R,
which is given by Equation (3):

Ri = σ2G0.5
i ΓiG0.5

i (3)

A random effect vector ui was assumed to have normal distribution with zero mean and
within-plot variance-covariance matrix D, which is given by Equation (4).

D =

[
σ2

ui1 σui1ui2
σui2ui1 σ2

ui2

]
(4)

In Equation (3), σ2 is an error dispersion [81], and this is equivalent to the residual variance and
common to all sample plots. The matrix Gi accounts for within-sample plot variance heteroscedasticity
and its elements are provided by a variance function. The matrix Γi accounts for within-plot
error autocorrelations, but we assumed this matrix as an identity matrix, because our data lacked
repeated measurements.

We detected the heteroscedasticity in our preliminary analyses even after the random effects
were included into the CR model. We then evaluated three variance functions [41,54] for their
heteroscedasticity reducing performances. According to the Akaike information criterion, a power
function (Equation (5)) was found the most effective for heteroscedasticity reduction.

var
(
εij
)
= σ2 DBH2φ

ij (5)

where φ is a variance parameter to be estimated, and σ2 is the same as in Equation (3).

2.3. Estimation of Model Parameters and Evaluation

The nonlinear mixed-effects models were estimated with the restricted maximum likelihood in
SAS macro NLINMIX [82] by applying the expansion-around-zero method [83], and all base models
were estimated with PROC NLIN in SAS [82]. The estimated model variants were evaluated using root
mean square error (RMSE), adjusted coefficient of determination (R2

adj) [79], and Akaike information
criterion (AIC) [84,85]. We also examined graphs of the residuals plotted against each of the predictors,
and CR curves produced with estimated models. We used a 1% significance level in all analyses.
Even though validating models with an external dataset provides credibility of predictions, we were
unable to do this due to the unavailability of this dataset. We did not split the dataset to make the
cross validation either, as this does not provide additional information on the fit statistics obtained
from the model fitted using the entire dataset [86–88]. We used a part of the same fitting dataset
to calibrate (localize) the mixed-effects CR models by applying the empirical best linear unbiased
prediction (EBLUP) method [54].

2.4. The Localizing Mixed-Effects Model and Subject-Specific CR Prediction

The prediction of CR could be made with or without calibrating the mixed-effects CR models.
A prediction using estimated random effects requires a prior measurement of a response variable
(CR) for a sub-sample of Norway spruce or European beech trees on each sample plot. The literature
indicates that a sub-sample of four or five randomly selected trees per sample plot can be adequate
for unbiased prediction [41,43,44,53,56,80,89]. We evaluated the predictive performance of our model
through its calibration using a sub-sample of four randomly selected trees in a part of the model fitting
dataset. For this, we selected only those sample plots, where at least five trees with measured HCB
and total height of the species of interest were available. We estimated the random effects for each
sample plot using the following EBLUP equation, which we implemented in PROC IML of SAS [82].

ui = DZT
i

(
ZiDZT

i + Ri

)−1
εi (6)
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where ui is a random effect vector for ui1 and ui2 in Equation (2), values of Ri and D were obtained
from Equations (3) and (4), respectively, and vector εi containing residual errors was obtained from the
mean model (model without random effects). The elements of a designed matrix Zi were obtained
from partial derivatives of Equation (2) with respect to fixed parameters (b1, b2) as follows:

zij (b1) =
DBHb2

ij

1 + exp
(
−b1DBHb2

ij

) (7)

zij (b2) =
b1DBHb2

ij LnDBHij

1 + exp
(
−b1DBHb2

ij

) (8)

The RMSE and R2 computed from the prediction errors, and simulated sample-plot-specific CR curves
were used for evaluation of the prediction performance of the localized mixed-effects CR models.

3. Results

The parameter estimates of each predictor including dummy variables and variance components
of the CR models were significant (p < 0.001). The mixed-effects model described a large part of the
CR variation (i.e., R2

adj = 0.6334 (Norway spruce); 0.7203 (European beech)) (Table 2). The estimated
values and signs of the model parameters are biologically plausible and interpretable. The unexplained
variance in the mixed-effects models relative to its ordinary least square counterpart was significantly
reduced, which varied from 11% to 27%, with a little more reduction for European beech. A larger
variance (σ2

ui1) is associated with b1 than that with b2 (Table 2), indicating that b1 of the CR model
varies more than b2 across the sample plots. Since our objective of developing CR models is for
sample-plot-specific CR prediction, we prefer presenting the results of the mixed-effects models
only (Table 2).

Table 2. Estimated values of parameters, variance components, and fit statistics of the generalized
mixed-effects CR model (Equation (2)). R2

adj: adjusted coefficient determination; RMSE: root mean
square errors; AIC: Akaike’s information criterion; α1, α2, α3, β1, . . . , β5, b2: fixed parameters; ui1,
ui2: random effects; σ2

ui1: variance of ui1; σ2
ui2: variance of ui2; σ2: residual variance according to

Equation (3); parenthesis encloses standard errors.

Model Components
Parameter Estimates

Norway Spruce European Beech

Fixed
α1 0.186249 (0.0372) 0.343277 (0.0233)
α2 −0.10861 (0.0362) 0.073573 (0.0233)
α3 −0.2362 (0.0379) −0.05535 (0.0245)
β1 0.025698 (0.000945) 0.026731 (0.000564)
β2 0.002476 (0.000246) −0.00229 (0.000218)
β3 1.106038 (0.0972) 0.912028 (0.0576)
β4 0.048479 (0.0149) −0.19403 (0.0156)
β5 −0.09135 (0.00115) −0.07912 (0.000764)
b2 0.194021 (0.009281) 0.201351 (0.015073)

Variance
σ2

ui1 1.9746 1.8083
σui1ui2 −0.19082 −0.08725
σ2

ui2 0.01296 0.00957
σ2 0.00998 0.00986

Fit statistics
R2

adj 0.6334 0.7203
RMSE 0.0999 0.0993

AIC −28612 −36931

The fitting performance of the CR model for two species seemed significantly different (Table 2).
Compared to the CR model for European beech, the model for Norway spruce poorly fitted to the data.
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The signs of estimated values of the model parameters indicated that the effects of predictors were
different; for example, CR for Norway spruce was positively affected by competition (described by
BAL) and species mixture (described by BAPRO) but negatively for European beech. Our CR models
behaved significantly differently for individual trees in different canopy height classes, as parameter
estimates of dummy variables were highly significant (p < 0.001). Our models exhibited an increased
CR with increasing competitive interactions described by BAL for Norway spruce. However, BAL had
an opposite effect on the CR of European beech. The positive sign of the parameter estimates of RSI
suggested that CR increased as RSI increased, which is expected. For a given competitive situation, site
quality, and stand development stage, the CR of Norway spruce increased as the number of species in
a stand decreased (increasing BAPRO) and vice versa. However, the CR of European beech decreased
as this decreased and vice versa.

No heteroscedasticity was observed in the residuals (Figures 3 and 4) after the introduction of a
variance function (Equation (5), with φ = 0.9045 (Norway spruce), 0.8719 (European beech)) into the
CR models. The Gaussian distribution patterns of the residuals did not show substantial skewness.
No systematic trend was observed when residuals were plotted against each predictor by canopy
height class, suggesting that the CR model was able to describe the CR variabilities caused by canopy
height differentiation adequately well.
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Figure 3. Standardized residuals plotted against various predictors in the CR model. Residuals versus
diameter at breast height (DBH) and height to live crown base (HCB) (first panel), Residuals versus
dominant height (HDOM) and basal area of larger trees in diameter than a subject tree (BAL) (second
panel), Residuals versus relative spacing index (RSI) and basal area proportion of a species (BAPRO)
(third panel). CC = canopy height class 1: height greater than 66% of the tallest tree, 2: height between
33% and 66% of the tallest tree, and 3: height less than 33% of the tallest tree.
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Figure 4. Standardized residuals plotted against various predictors in the CR model. Residuals versus
diameter at breast height (DBH) and height to live crown base (HCB) (first panel), Residuals versus
dominant height (HDOM) and basal area of larger trees in diameter than a subject tree (BAL) (second
panel), Residuals versus relative spacing index (RSI) and basal area proportion of a species (BAPRO)
(third panel). CC = canopy height class 1: height greater than 66% of the tallest tree, 2: height between
33% and 66% of the tallest tree, and 3: height less than 33% of the tallest tree.

The localized CR model explained a large proportion of the CR variation in a dataset used
for model validation (R2 = 0.7509, RMSE = 0.0905 (Norway spruce); R2 = 0.7913, RMSE = 0.0817
(European beech)) without significant error trends (Figure 5). The errors were narrowly concentrated
around the zero line for about 99% trees, indicating that models have high prediction precisions.
However, some large errors remain unexplained due to influence of outlier observations.

The sample-plot-specific CR curves, which were simulated with the localized mixed-effects CR
models for each of the three canopy height classes, were also examined (Figure 6). The figure shows
that our models behave significantly differently for each canopy height class, indicating that canopy
height classes have a significantly different effect on the CR. It was noticed that sample-plot-specific
curves clearly corroborated the sample-plot-specific CR mean calculated by the DBH class.
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Figure 5. Prediction errors of the calibrated mixed-effects model using a part of the fitting dataset.
The random effects were estimated using crown ratio measurements from a sub-sample of four
randomly selected trees of the species of interest per sample plot and localized (calibrated) mixed-effects
CR model. (CC = canopy height class 1: height greater than 66% of the tallest tree, 2: height between
33% and 66% of the tallest tree, and 3: height less than 33% of the tallest tree.
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Figure 6. Sample-plot-specific crown ratio curves plotted against diameter at breast height (DBH) for
each canopy height class (CC). First panel represents for CC1 (height greater than 66% of the tallest
tree), second panel for CC2 (height between 33% and 66% of the tallest tree), and third panel for CC3
(height less than 33% of the tallest tree). Curves were produced using parameter and variance estimates.
Sample-plot means in the data were used for all predictors in the model except height to crown base
(HCB), which ranged from approximately lowest to highest values by 5 m interval. Random effects
were estimated with crown measurements of a sub-sample of four randomly selected trees of the
species of interest per sample plot in a part of the model fitting dataset.



Forests 2018, 9, 555 12 of 19

4. Discussion

The justification of selecting the logistic function is that it allows for the prediction of CR
between 0 and 1, and this also allows for inclusion of a linear combination of tree- and stand-level
predictors. Our CR models exhibit significantly different behaviors for trees in different canopy
height classes, because parameter estimates of dummy variables are highly significant (p < 0.001).
This may be due to the pronounced effects of vertical stand structures and social positions of the
trees. Mixed-effects modeling produced the promising results, such as reduction of the unexplained
variances by 11%–27% relative to that of the CR model fitted with the ordinary least square regression.
The mixed-effects modeling helps one to analyze the data with significantly correlated observations
effectively, and prediction precision of the resulting model may be significantly higher than that
of the ordinary least square model [41,44,54,80], since use of the mixed-effects model involves an
estimation of the sample-plot-specific random effects and prediction of CR after adjustment of the
estimated random effects to the mean value of CR. The estimated values of the random effects in the
mixed-effect CR model may be different for different sample plots and tree species or even for the
same species that are grown in different site conditions [44,53,56]. For higher prediction precision,
the estimated random effects need to be added to the mean value of CR (mean CR model) before
making the sample-plot-specific CR predictions. This may result in different CR curves for different
sample plots (Figure 6), which would be similar to the sample-plot mean CR calculated by the DBH
class and plotted against it. The prediction precisions of the calibrated mixed-effects CR model depend
on the stand structure and the number of sample trees used for a model calibration [56]. For a sample
plot with homogenous stand structures, one or two sample trees produce a higher precision [90].
However, additional sample trees may be needed for the stands with heterogeneous structures to
obtain a similar precision [55,89]. An optimum size of sample of trees required for localizing the
mixed-effects model is discussed in various literature [41,43,53,55,56,80,91], and they conclude that the
larger the size of the sub-sample trees to be used for calibration is, the higher the prediction precision
is. Though the reduction of the prediction errors becomes insignificant after four or five sample trees,
measurement costs increase [53,80]. All mixed-effects modeling studies in forestry suggest that four
or five randomly selected trees per sample plot may compromise between prediction accuracy and
measurement cost.

Different values and signs of estimated parameters of the predictors (Table 2) indicate that they
have significantly different effects on CR. The HDOM, which describes the effect of not only site
quality but also the effect of stand development stage, significantly contributes to the CR model
(p < 0.0001). The complex topographic features (Figure 1) and widely varying stand ages may cause
significant variations in site quality and the stand development stage, so HDOM significantly affects
CR. Some crown modeling researchers [41–44] have assumed that HDOM can be used as a proxy for
site index to describe site quality; however, this may not be true, as the same HDOM may exist in
younger stands with better site quality and older stands with poorer site quality [48]. The HDOM
may therefore better reflect stand development stage rather than site quality. The definition of HDOM
used in our analysis may not be different from other definitions analyzed [92,93]. These studies
show insignificant differences on the applications of various HDOM definitions for estimating site
productivity of the loblolly pines. Our approach of selecting HDOM is suitable. The combined effects
of site productivity and stand development stages can be precisely described [48]. A positive sign of
estimated parameter value of HDOM suggests that CR for a given stand condition increases as site
quality and stand development stage increase (increased HDOM), which may be biologically plausible.

As in other studies [8,48,56,94], we also found BAL to be a promising density measure in this
study. For a given site quality, our model exhibit an increased CR of Norway spruce with increasing
competition described by BAL (Table 2). However, BAL shows the opposite effect on the CR of
European beech. An increased crowding of individuals may result in taller height and shorter crown
depth with self-pruned lower branches, which may lead to smaller CR [8,24,49,53]. The competition
can be evaluated using various tree-centered measures, and most of them are based on the information
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of aboveground competition. However, accounting for belowground competitive interaction among
inter-tree roots is also important [95,96]. Thus, a tree-centered competition measure, such as BAL,
cannot holistically describe all competition complexities. The spatially explicit competition measures
may describe tree growth and stand dynamics more precisely than a spatially inexplicit measure such
as BAL. However, because of the computational complexity, which may reduce the scope of a model
application, we did not include a spatially explicit competition measure in our CR model.

The relative spacing index (RSI), which is related to stand density, significantly contributes to the
CR models (p < 0.0001). The positive sign of the parameter estimates of RSI (Table 2) means that CR
increases as RSI increases, which is expected. The spacing may influence the shape and size of the
tree crown, which in turn may be related to crown depth, HCB, and height and diameter growth in
trees [11,17,44,74]. The dense crowding may increase competitive interaction among the trees, which
in turn increases HCB through crown recession caused by the death of lower branches. This results
in a lower CR due to a narrower and smaller crown depth. Since the information of HDOM and
stand stocking (N ha−1) is included in the RSI, this index can be applied for the evaluation of thinning
specification, which is based on the information of both site quality class and stand development
stage [11,76]. Diameter and height growths are associated with the effects of stand density and crown
sizes. Height growth is almost stable within a broad range of stand densities, while diameter growth
and crown expansion are more sensitive to stand density [97].

As shown by other crown modeling studies [42,44,48,60,97], species mixing effect on the CR
model is highly significant (p < 0.0001) in our study also. For a given competitive situation, site quality
and stand development stage, the CR of Norway spruce increases as the number of associate tree
species (increasing BAPRO) in a stand decreases and vice versa. However, the CR of European beech
decreases as number of associated species decreases and vice versa. It is expected that, in the latter
situation, the lower number of tree species would result in a higher BAPRO. This causes more intense
competition among the trees, resulting in a higher crown recession and smaller CR. The species mixture
creates a neighborhood condition in a stand, where larger tree crowns are expected, because crown
structures in the mixture are more suited for making available growth resources to the trees, which
have a higher resource use efficiency compared to trees in the monospecific stands [58–60,98]. A better
understanding of the effects of inter- and intra-species interactions on tree characteristics including
crown dimensions and stand dynamics is crucial for informed decision-making.

The model fitting and prediction behaviors seem different for two species (Table 2, Figure 6).
Even though the CR model for Norway spruce poorly fitted to the data, its predicting performance
seems better compared to the model for European beech. However, due to unavailability of the
external validation dataset, we could not evaluate the real prediction behavior of our CR models.
The Norway spruce CR data largely vary and this is due to measurements from suppressed trees in
the mountains and large trees in other regions. This may cause a poorer fitting performance for this
species. The negative slopes on a few sample-plot-specific CR curves (Figure 6) do not indicate the
model’s weakness, but its adequate flexibility, because the means of CR calculated by the DBH class
and plotted against this for some plots show negative slopes as well (Figure 2). Thus, our CR model
may be flexible enough to describe CR variation in all possible conditions. Like other indices, such as
tree slenderness coefficient [61,62] and crown projection ratio [3,48], CR may also be used as a tree and
stand stability index [14], and the CR model may therefore serve as one of the important tools for tree
and stand stability assessment. Our CR model may also be used in assessing tree health and vigor,
and thinning effects, because all of these factors significantly affect CR.

The sample plots used in this study cover a wide range of altitudes, soil types (acidic
series, nutrient-rich series, wet series, gleyic series, extreme series, alluvial and delluvial series),
and vegetation types, such as from hornbeam-beech-oak to dwarf pine-spruce forest types [99].
The descriptions of climatic and physiographic variabilities, influences of the air pollution
on the mountain forests, and growth conditions covered by our data are also found in the
literature [42,48,56,61,63,64,66,67,100]. The CR models developed using a dataset representing the
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full range of site and climatic variabilities is robust enough for precise predictions of CR in any site
condition across the Czech Republic. The site conditions required for growth and development of
European beech and Norway spruce forests across the Czech Republic are very similar to those in
the neighboring countries. This may be the reason that individual tree growth simulators, such as
SILVA developed with German forest data [19] and SIBYLA developed from Czech and Slovak’s forest
data [101], have mainly been intended for applications across central European countries. This confirms
that our CR models are applicable to other central European countries. Furthermore, when all potential
variabilities caused by stochastic factors are included into the models through the integration of the
random effects through mixed-effects modeling, as carried out in this study, this allows for inclusion
of true forest dynamics. Therefore, our mixed-effects CR models are expected to precisely predict the
individual tree characteristics of species of interest across central Europe. However, due to the effects
of global warming and changing climate, the competitive ability of European beech has been also
gradually changing, and this has caused beech forests to appear upward on the mountains and the
northern latitudes in Europe [102–104]. Thus, an overall assessment of site factors and stand conditions,
such as stand density and stand structures in terms of the horizontal and vertical homogeneities, should
be carried out before applying our models in other countries. Further studies involving the verification
and validation of our CR models with repeatedly measured dendrometric and climatic data will
increase the reliability of the prediction models.

5. Conclusions

The CR is largely affected by a number of tree and stand attributes modeled in this study, including
canopy height differentiation. The mixed-effects CR model showed a promising fitting performance
for both species, with better fitting for European beech. The model behaved significantly differently
for trees associated with different canopy height classes, and this has justified an inclusion of canopy
height classes into the CR models. Testing of the CR model against a part of the model fitting dataset
confirmed its high prediction precision. However, this needs to be confirmed by a test against an
external independent dataset. Application of our CR model requires measurement of only a few tree-
and stand-level variables and information about three canopy height classes. Prior CR information
from at least four randomly selected trees per sample plot is adequate for calibrating our mixed-effects
CR models, which precisely predict the missing measurements of CR with respect to the rest of the
trees on the plots.

The crown dynamics at different stages of trees can be known if CR information is available.
CR information is useful for silvicultural tending and forest management. CR is used for various
purposes, and some of its implications are pointed out in the introduction. CR models can be used as an
important input in growth simulators. CR models can be used as components in comprehensive forest
risk models that include the potential risks associated with anthropogenic, climatic, and environmental
factors, and can be used for the overall assessment of stand stability. The CR can be used as an effective
measure in growth models to describe competitive interactions among trees, because the cumulative
level of competition over time is reflected in CR. The CR model can be useful in determining the timing
of thinning and its potential response; for example, an ideally thinning operation should be carried
out immediately after the mean CR falls below a certain value, such as 0.5 for southern pines [105].
Changing tree and stand characteristics during growth projection requires the updating of crown
depth information, which can be determined from CR models. The CR can be used as an index of the
capacity of a tree to use the available growth resources, since CR reflects the potentiality of released
trees for utilizing an increased growing space and resources. The CR can be considered as an important
measure for identifying target trees for managing natural forests. Additional implications of the CR
model include the assessment of tree vigor and health, tree stability, crown production efficiency,
canopy density, crown profile, and recreational potentiality. Furthermore, the CR models presented
in this article can provide CR information that can be used for growth simulations based on forest
inventory databases that lack CR data.
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Králíček, I. Effect of tree layer and microsite on the variability of natural regeneration in autochthonous
beech forests. Pol. J. Ecol. 2015, 63, 233–246. [CrossRef]

68. Forest Management Institute (FMI). Inventarizace lesů, Metodika Venkovního Sběru Dat (Forest Inventory, Field
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