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Abstract: Leaf stable carbon isotope (δ13C) composition provides comprehensive insight into plant
carbon cycles and water use efficiency and has also been widely used to evaluate the response
of plants to environmental change. In the present study, leaf δ13C was analyzed in samples
of Caragana microphylla Lam., C. liouana Zhao, and C. korshinskii Kom. from 38 populations.
These species provide great environmental benefits and economic value and are distributed east
to west continuously across northern China. We studied the relationship of δ13C to altitude,
mean annual precipitation (MAP), mean annual temperature (MAT), mean annual relative humidity
(RH), leaf nitrogen (N), and phosphorus (P) concentrations to examine the patterns and controls of leaf
δ13C variation in each species. Results indicated that, across the three species, leaf δ13C significantly
decreased with MAP, RH, and leaf N and P concentrations, while it increased with altitude and
MAT. However, patterns and environmental controls of leaf δ13C varied proportionally with species.
C. korshinskii was mainly controlled by MAP and leaf N concentration, C. liouana was controlled by
both MAT and MAP, and C. microphylla was mainly controlled by MAT. Further analysis indicated
significant differences in leaf δ13C between species, which tended to increase from C. microphylla to
C. korshinskii. Overall, these results suggest that the three Caragana species may respond differently
to future climate change due to different controlling factors on leaf δ13C variation, as well as
differentiation in water use efficiency, which likely contributes to the geographical distribution
of these species.

Keywords: Caragana; carbon isotope composition; mean annual precipitation; mean annual temperature;
relative humidity; water use efficiency

1. Introduction

Leaf carbon isotope composition (δ13C) provides comprehensive insight into how plants interact
with and respond to their biotic and abiotic environments, and also enhances our understanding of
ecosystem carbon cycles [1,2]. As such, being able to assess the spatial variability of leaf δ13C across
environmental gradients and identifying the patterns and controls of leaf δ13C would improve our
understanding of how individual plants and ecosystems may respond and adapt to future global
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changes, including climate warming, atmospheric CO2 enrichment, shifts in precipitation, and N
deposition [2–5]. Studies on this topic have recently received increasing attention [6–10].

Leaf δ13C is largely related to the ratio of CO2 partial pressure inside the leaf and ambient air
(ci/ca) [11,12], which is driven by stomatal conductance and photosynthetic processes [11,12]. It has
been shown in several studies that there is a strong positive correlation between δ13C and plant water
use efficiency (WUE) via ci/ca [11–13], which suggests that leaf δ13C can be measured as a proxy
for plant WUE [14–21]. WUE reflects the balance between carbon fixation and the amount of water
consumed by plants. Therefore, WUE is one of the most indicative traits of survival capacity during
drought [11,12,14]. Previous studies have shown that the WUE and the ability to tolerate low soil
availability or compete for such resources differ between plant species [9,10]. For example, plants with
higher δ13C or WUE tend to experience greater survival during drought conditions than those with
lower δ13C or WUE [10,16,19].

Any factor that affects stomatal aperture or carboxylation ultimately influences the amount
of δ13C in tissue. In particular, climatic factors including precipitation and temperature have been
regularly reported to show strong negative correlations with leaf δ13C [15,19,22–24]. Other studies
report that plant δ13C correlates with altitude [10,14,18,25]. However, the response of plant δ13C to
altitude remains controversial and unresolved [22,25–28], with studies having found that leaf δ13C
increases [28], decreases, or remains constant [27] with increasing altitude. That leaf δ13C varies
nonlinearly with altitude has also been reported [25].

Nitrogen (N) and phosphorus (P) are essential elements for plants to function. For example,
enzymes such as RuBP carboxylase contain large quantities of N [29]. An increase in photosynthesis might
induce less discrimination against δ13C and therefore lead to higher δ13C. Consequently, a considerable
number of studies have found a positive correlation between leaf N concentration and δ13C [30–34].
However, negative correlations and no correlation have also been reported [35–38]. P indirectly affects
plant photosynthesis and subsequently leaf δ13C because P is one of the key components in enzymes
associated with the Calvin cycle and the synthesis of protein, RNA, and DNA [34–38]. However,
research relating leaf P to δ13C is limited and the findings are inconsistent. Studies have found that
the correlation between P and δ13C can be positive [39], negative [40,41], or completely unrelated [42].
Further, studies have also indicated that the patterns of leaf δ13C across environmental gradients differ
with plant genus [9], species [8,25], and plant functional group [14,19,28,43,44]. Therefore, these conflicting
results suggest that patterns of leaf δ13C are variable with respect to leaf nutrients, and climatic and
geographic variables, and that further research is needed to understand the interactions between plant
δ13C and environmental factors for a single genus or species.

In arid and semi-arid regions, the availability of water, nutrients, and temperature are crucial for
determining plant performance, abundance, and distribution [1,2]. Particularly, regions in northern
China that are characterized by drastic changes in precipitation, temperature, and soil nutrient
availability from east to west offer an ideal ‘natural experiment’ to explore spatial patterns and
environmental drivers of leaf δ13C in local plant species. In these regions, the genus Caragana
exemplifies a combination of important environmental benefactors and valued economic resources
for its role in sand fixation and as fodder [45–50]. Caragana microphylla Lam., C. liouana Zhao,
and C. korshinskii Kom.are three of the most common species in the desert region of the Inner
Mongolian Plateau of northern China. Interestingly, these three species have been identified as being
derived from the same ancient species, undergoing divergent speciation during the Qinghai-Tibetan
Plateau uplift and the Asian interior aridification [45]. To date, these three species have dominantly
occupied distinct desert regions on the Inner Mongolian Plateau and form obvious spatially distinct
distributions from east to west [45,46]. Previously, we have found that these three species diverge
substantially in growth and physiological parameters in response to drought stress during a controlled
experiment. C. korshinskii appeared to be the most drought-tolerant species with a superior growth rate
and water use efficiency compared to the other two species [51,52]. As such, evaluating the patterns
and environmental controls of δ13C in these three species will not only help predict how these species
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respond to future climate change, but will also provide evidence for the physiological mechanisms
underlying the distribution pattern of these three closely related Caragana species.

In this study, we collected leaf samples of three Caragana species along an east to west transect in
northern China and measured leaf δ13C. Our objectives were to (1) quantify the variation in leaf δ13C
of the three species along the environmental gradients and determine the patterns and environmental
controls of leaf δ13C; and (2) test whether there were differences in leaf δ13C between the three species
and whether these differences corresponded with their geographical distributions.

2. Materials and Methods

2.1. Study Area

This study was conducted along an east to west transect in arid and semi-arid regions of northern
China, starting in Bayannaoer City and ending in the Khorchin District in the Nei Mongol Autonomous
Region (Figure 1). The longitude of the transect covered approximately 16◦, ranging from 104◦57′ E
to 122◦28′ E, and the latitude ranged from 37◦20′ N to 43◦63′ N. Altitude varied from 227 to 1789 m
above sea level. The climate was characterized as predominantly arid and semi-arid continental.
Mean annual precipitation (MAP) ranged from 87.2 to 434.4 mm and mean annual air temperature
(MAT) ranged from 1.4 to 8.4 ◦C (in supplementary file, Table S1).

Figure 1. Locations of the sampling populations of three different Caragana species (C. microphylla Lam.,
C. liouana Zhao and C. korshinskii Kom.) in arid and semi-arid regions of northern China.

2.2. Sampling and Measurements

In August 2015, leaf samples were collected from 38 populations (12 for C. korshinskii, 13 for
C. liouana, and 13 for C. microphylla) along the east to west transect in northern China (Figure 1).
At each sampling site, fully expanded sun-exposed leaves were collected from four different individual
plants 5 m apart from each other and pooled into one sample, which means that three replicates were
collected for each population. All samples were collected from robust mature plants that grew in
unshaded habitats. Plant samples collected at each site were placed in paper envelopes, rinsed with
deionized water to remove dust particles, and dried at 65 ◦C for 48 h to a constant weight in the oven
upon returning to the laboratory. After grinding with a ball mill, they were stored in plastic bags until
further analysis. Leaf δ13C values were determined from 5–6 mg of homogeneously ground material
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from each replicate using an isotope ratio mass spectrometer (Finnigan MAT-253, Thermo Electron,
Gormley, ON, Canada). The stable carbon isotope ratio (δ13C, ‰) of each sample was calculated as
δ13C (‰) = (Rsample/Rstandard − 1) × 1000, where Rsample and Rstandard represent the 13C/12C ratio
in the leaf sample and standard, respectively. Nitrogen (N) concentrations in leaf samples were
simultaneously determined. Leaf phosphorus concentrations were measured colorimetrically using
molybdenum blue spectrophotometry (6505 UV spectrophotometer, Jenway, Stone, UK).

2.3. Meteorological Data

The latitude, longitude, and altitude of each sampling location was recorded using a GPS
(Global Positioning System) (eTrex Venture, Garmin, Olathe, KS, USA). MAP, MAT, and mean
annual relative humidity (RH) of each sampling site were provided by the IWMI (International Water
Management Institute) online climate summary service portal (http://wcatlas.iwmi.org/Default.asp),
based on geographical coordinates (latitude and longitude). Detailed geographical and environmental
information is presented in Table S1.

2.4. Data Analysis

Statistical analyses were carried out using the SPSS 16.0 package (IBM, Chicago, IL, USA).
Due to the difference in sample size between the three species, we performed a standardized
z-score normalization for the climate and leaf trait data before it was analyzed with the Pearson
correlation analysis, regression analysis, and one-way analysis of variance (ANOVA). The normal
distribution of measured variables was tested and the data with a normal distribution was analyzed
using ANOVA and Tukey’s post hoc test, while the non-normal distribution data was analyzed
using the non-parametric Mann-Whitney test to determine the difference in leaf δ13C between
species. The regression analysis was applied to investigate the relationship between leaf δ13C and
variables including climatic factors, altitude, and leaf N and P concentrations. Multiple regressions,
using a stepwise selection procedure based on Akaike information criteria (AIC), were applied to
define the contribution of altitude, MAP, MAT, RH, and N and P concentrations to the variation in leaf
δ13C among the three Caragana species. A p-value of <0.05 was considered statistically significant.

3. Results

3.1. Variation across the Sites in Climate and Leaf Nutrient Composition of Three Caragana Species

Climatic variables varied significantly among populations and among species (Table 1, Table S1).
C. korshinskii showed a significantly higher mean population MAP than C. liouana or C. microphylla.
The mean population MAT of C. microphylla appeared to be significantly lower than for C. korshinskii and
C. liouana, but RH was significantly higher. In addition, mean population leaf N and P concentrations
of C. korshinskii exhibited significantly higher values than those of C. liouana and C. microphylla (Table 1).

Table 1. Mean values of geographical and environmental variables and leaf nutrient concentrations
across sites for each Caragana species. Mean values followed by different letters indicate significant
differences between means in each row (p < 0.05).

Variables
C. korshinskii C. liouana C. microphylla

Mean ± SD Mean ± SD Mean ± SD

Altitude (m) 1368.8 ± 173.1 a 1293.2 ± 142.9 a 971.9 ± 612.7 b
MAP (mm) 232.9 ± 81.6 b 330.2 ± 69.1 a 372.9 ± 40.0 a
MAT (◦C) 7.2 ± 1.5 b 7.2 ± 0.9 b 4.6 ± 2.2 a

RH (%) 55.5 ± 0.6 b 56.0 ± 0.9 b 59.3 ± 3.3 a
Leaf N (mg·g−1) 32.62 ± 4.59 b 38.32 ± 1.89 a 39.76 ± 2.6 a
Leaf P (mg·g−1) 1.38 ± 0.23 b 1.70 ± 0.17 a 1.71 ± 0.24 a

MAP: mean annual precipitation; MAT: mean annual temperature; RH: mean annual relative humidity;
SD: standard deviation.

http://wcatlas.iwmi.org/Default.asp
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3.2. Variation in Leaf δ13C within and Among Species

Leaf δ13C showed substantial variability among populations for each of the three species,
with C. korshinskii ranging from −26.57 to −24.77‰, C. liouana from −27.53 to −25.45‰,
and C. microphylla from −28.65 to −26.85‰ (Figure 2, p < 0.001). Differences in δ13C between
species were also significant, with the highest mean δ13C (−25.79 ± 0.61‰) found in C. korshinskii,
C. liouana having an intermediate mean (−26.66± 0.65‰), and the lowest mean found in C. microphylla
(−27.66 ± 0.56‰) (Figure 3).

Figure 2. Population variation in leaf δ13C for each of the three Caragana species (a), C. korshinskii,
CK1-CK12; (b) C. liouana, CL1-CL13; (c) C. microphylla, CM1-CM13.

Figure 3. Difference in leaf carbon isotope composition (δ13C) between three Caragana species collected
along environmental gradients in northern China. Different letters indicate significant differences
between means (p < 0.05).
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3.3. Correlating Leaf δ13C with Climatic Variables

For all leaf samples, leaf δ13C was negatively correlated with climatic variables, i.e., MAP and RH
(Figures 4 and 5), but positively related to MAT (Figure 6). However, the specific patterns of leaf δ13C
varied with species. A significant negative correlation between MAP and leaf δ13C was only observed
in C. korshinskii and C. liouana (Figure 4b,c), while MAT and RH negatively correlated with δ13C only
in C. microphylla (Figures 5d and 6d). When examining the relationship between RH and leaf δ13C in
all three species, the relationship was only significant for C. microphylla (Figure 5d).

Figure 4. Relationship between leaf δ13C and mean annual precipitation (MAP) for all species (a),
C. korshinskii (b), C. liouana (c), and C. microphylla (d). Linear fits, correlation coefficients, and p-values
are shown.

Figure 5. Relationship between leaf δ13C and relative humidity (RH) for all species (a), C. korshinskii (b),
C. liouana (c), and C. microphylla (d). Linear fits, correlation coefficients, and p-values are shown.
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Figure 6. Relationship between leaf δ13C and mean annual temperature (MAT) for all species (a),
C. korshinskii (b), C. liouana (c), and C. microphylla (d). Linear fits, correlation coefficients, and p-values
are shown.

3.4. Correlating Leaf δ13C with Altitude

For all leaf samples, leaf δ13C was positively correlated with altitude (Figure 7). However,
the altitudinal patterns of leaf δ13C varied with species and the relationship was only significant in
C. microphylla (Figure 7d). Altitude was negatively correlated with RH (p < 0.001) for all species,
and was significantly negatively correlated with both MAT and RH for C. microphylla (p < 0.001)
(Table 2).

Figure 7. Correlation between leaf δ13C and altitude for all species (a), C. korshinskii (b), C. liouana (c),
and C. microphylla (d). Linear fits, correlation coefficients, and p-values are shown.
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Table 2. Correlating altitude with mean annual precipitation (MAP), mean annual temperature (MAT),
relative humidity (RH), and leaf N and P concentrations for C. korshinskii, C. liouana, and C. microphylla.
The symbol *** indicates statistical significance at p < 0.001.

Species MAP MAT RH N P

All species −0.274 −0.193 −0.780 *** −0.099 −0.267
C. korshinskii 0.239 0.048 0.291 0.344 0.388

C. liouana −0.510 −0.090 0.400 −0.017 0.294
C. microphylla 0.020 −0.890 *** −0.947 *** 0.400 −0.344

3.5. Correlating Leaf δ13C with Leaf Nutrient Concentrations

In all leaf samples, both leaf N and P concentrations were significantly negatively correlated with
leaf δ13C (Table 3). However, nutrient patterns did not differ among species as the leaf δ13C showed
no significant relationship between leaf N and P concentrations for each species (Table 3).

Table 3. Regression equations for leaf δ13C values against leaf N and P concentrations for C. korshinskii,
C. liouana, and C. microphylla.

Nutrient Variables Species
Statistic

Slope r2 p-Value

Leaf N

All species −0.11 0.26 0.0010
C. korshinskii −0.10 0.03 0.6026

C. liouana −0.25 0.03 0.6061
C. microphylla 0.46 0.23 0.0975

Leaf P

All species −0.44 0.20 0.0051
C. korshinskii −0.24 0.12 0.2760

C. liouana 0.14 0.02 0.6625
C. microphylla −0.03 0.002 0.8936

3.6. Relationship between Leaf δ13C and Climatic Variables, Altitude, and Leaf Nutrients

Multiple regressions indicated that MAP and RH both contributed to the variation of leaf δ13C
across all populations, while MAP and RH were dominant in influencing the variation of leaf δ13C
for C. korshinskii, MAP and MAT contributed to variation in leaf δ13C of C. liouana, and MAT mainly
controlled leaf δ13C variation of C. microphylla (Table 4).

Table 4. Results from multiple stepwise regressions testing relationships between leaf δ13C and mean
annual precipitation (MAP), mean annual temperature (MAT), relative humidity (RH), and leaf N
concentration for C. korshinskii, C. liouana, and C. microphylla. The most parsimonious model was
found by selecting variables using a stepwise selection procedure based on Akaike information criteria
(AIC). F- and p-values are shown for each species, along with standardized coefficients and r2 for
the regressions.

Species a
(Constant) bx1 (MAP) Standardized

Coefficients cx2 (MAT) Standardized
Coefficients dx3 (RH) Standardized

Coefficients ex4 (N) Standardized
Coefficients F p

Regression r2

All species −16.37 −0.01 −0.63
p < 0.001 −0.14 −0.41

p < 0.001 49.78 <0.001 0.74

C. korshinskii −26.22 −0.01 −1.15
p < 0.001 0.08 0.56

p = 0.013 21.08 <0.001 0.82

C. liouana −21.00 −0.01 −0.91
p = 0.003 −0.39 −0.55

p = 0.045 7.29 0.011 0.59

C. microphylla −26.84 −0.18 −0.72
p = 0.005 12.03 0.005 0.52

The regression models are y = a + bx1 + cx2 + dx3 + ex4. x1, x2, x3, and x4 are MAP, MAT, RH, and leaf N
concentration, respectively.
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4. Discussion

4.1. Variation in Leaf δ13C of Three Caragana Species along the Transect

It has been reported that foliar δ13C varies in C3 plants from −20‰ to −35‰ (mean −26‰) [53],
and that foliar δ13C in C3 desert plants ranges from −21‰ to −29‰ [54,55]. Consistent with these
studies, we found here that leaf δ13C of the three Caragana species varied widely along the arid and
semi-arid transect, ranging from −28.65‰ to −24.77‰ (mean −26.73‰). In addition, populations of
each species differed significantly in leaf δ13C, which is consistent with many other studies [6–10,25].
Generally, leaf δ13C is related to the ratio of CO2 partial pressure inside the leaf and ambient air (ci/ca)
and has been found to be strongly affected by many factors, such as precipitation [16], temperature [19],
irradiance [56], and leaf intrinsic traits such as leaf N and P concentrations [33–35,40–42]. In our
study, there were substantial differences in these factors across sampling sites for each species (Table 1,
Table S1), which might account for the large variation in leaf δ13C among populations of each species.

Leaf δ13C for all Caragana species was negatively correlated with MAP (Figure 4a), which is
consistent with findings from many previous studies [9,18,19,26]. This occurs because water limitation
caused by low precipitation can lead to stomatal closure and lowered discrimination against the heavy
isotope of CO2 (13C), thus leading to an increase in δ13C [57]. However, among the three species,
C. korshinskii and C. liouana showed significant negative correlations with MAP while no significant
correlation was found for C. microphylla (Figure 4b–d). One study has shown that leaf δ13C decreases
with MAP, but only below a certain value. Above this value, δ13C shows no significant change [58].
However, the MAP ranges in regions where C. microphylla was observed in our study (from 325 to
434 mm) were much lower than the above-reported threshold point [58]. We thus speculate from
this narrow precipitation range that water availability was not the key factor influencing WUE and
plant growth for C. microphylla. This conclusion was further supported by the stepwise regression,
which indicated that MAP was the main determinant for the variation of leaf δ13C for C. korshinskii
and C. liouana, but not for C. microphylla (Table 4).

Temperature is another important climatic factor influencing plant photosynthesis, and thus leaf
δ13C [14]. Previous studies have found either negative, positive, or inconclusive relationships between
leaf δ13C and temperature [19,59,60]. In our present study, we found that leaf δ13C increased with
MAT along the arid and semi-arid transect across all populations. In these regions, we found that
MAT showed a significant negative correlation with MAP (r = −0.52; p = 0.0056). The increase in
temperature, decrease in precipitation, and their interaction effect profoundly influenced leaf δ13C,
resulting in reduced ci, and thus increasing leaf δ13C [61]. Considering each species separately, only the
leaf δ13C of C. microphylla showed a significant negative correlation with MAT (Figure 6). This result
was inconsistent with findings from one previous study [19]. One explanation for such a negative
correlation might be that the increased leaf thickness found in cold environments increases internal
mesophyll resistance and reduces ci/ca, thus increasing δ13C values [14]. Also, half of the sites had
MATs below 5 ◦C and low temperatures increase the probability of cold-induced droughts that cause
stomatal closure and increase δ13C [62]. C. korshinskii and C. liouana mainly occurred in regions
with a narrow range (4 to 8 ◦C) of MAT, so their photosynthetic rates were probably less affected by
temperature [19]. Furthermore, results from the stepwise regression confirmed that MAT was the main
contributor to the variation of leaf δ13C in C. microphylla, but not for C. korshinskii or C. liouana (Table 4).

Leaf N and P concentrations have been previously reported to correlate positively with leaf δ13C
because of their vital role in plant photosynthesis [29–34]. Nevertheless, our results indicated that leaf
δ13C showed a negative relationship with N and P concentrations for all species, which has also been
observed in several previous studies [28,40,41,63–65]. Moreover, the negative correlation between
leaf δ13C and leaf N concentration is reported to be independent of functional group, vegetation type,
and altitude, suggesting that this is a general trend for plants [66,67]. Other studies have interpreted
the negative correlation between leaf δ13C and leaf N concentration as an autocorrelation due to low
water availability in semi-arid environments [63,67]. The negative correlation between leaf δ13C and P
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was likely linked to the movement of P from soil to root surfaces, which partially depends on the mass
flow of the soil solution that is caused by plant transpiration [67–69]. However, we found that leaf δ13C
showed no significant relationship with leaf N and P across sampling sites for either species (Table 3),
which might imply that the variation in leaf δ13C values was more likely caused by stomatal limitations
within each species, rather than N- and P-related changes in photosynthetic efficiency [67–70].

Altitudinal patterns of leaf δ13C are complicated because many interrelated abiotic factors vary with
altitude, including temperature, precipitation, relative humidity, and atmospheric CO2 pressure, as well
as with leaf intrinsic traits, like leaf N and P concentrations [8,12,14,71]. In agreement with many previous
results [14,42,71], the leaf δ13C of the combined data and that of C. microphylla were positively correlated
with altitude, but the leaf δ13C of C. korshinskii and C. liouana were unrelated to altitude (Figure 7),
possibly because the growth range of C. microphylla covers a wide altitudinal gradient (227–1789 m asl)
compared to the other two species (1039–1456 m asl for C. korshinskii; 893–1456 m asl for C. liouana).
The leaf δ13C of all populations was positively correlated to elevation, which may have been because
altitude was strongly negatively correlated with RH (r =−0.780, p < 0.001; Table 2). RH in turn showed
a significant negative correlation with leaf δ13C (Figure 5). The positive correlation found between the
leaf δ13C of C. microphylla and altitude was owed to altitude being significantly and negatively correlated
with both MAT and RH (Table 2). Additionally, altitude showed no significant relationship with MAP,
MAT, RH, and leaf N and P concentrations for C. korshinskii and C. liouana, likely accounting for the
insignificant correlation between leaf δ13C and altitude (Table 2). Similar results were also found in
a previous study [27].

4.2. Difference in WUE between the Three Caragana Species: Implications for Their Geographical Distribution

Alternative distributions, a situation in which one species replaces another in an ecosystem
geographically, is a common phenomenon in closely related plant species [45,72,73]. Still, a primary
focus in ecology remains fixed on understanding the underlying mechanisms governing species’
geographic distributions [74]. It is now generally accepted that the distribution patterns of plant species
reflect an evolutionary response to long-term environmental change, which can be partially shaped by
environmental gradients and partially by characteristics of a plant species [72–75]. Therefore, here we
firstly determined the key environmental factors that control variation in the leaf δ13C of all species by
relating leaf δ13C of all samples to MAP, MAT, RH, altitude, and leaf N and P, which are reported to be
crucial factors influencing plant distribution [1,4,5,10,12,14,70]. The results indicated that, although leaf
δ13C decreased significantly with MAP, RH, and leaf N and P concentrations and increased with MAT
and altitude across all species, the multiple regressions suggest that MAP and RH are the primary
determinant factors controlling the variation of leaf δ13C (Table 4). These results support previous
conclusions that water availability, which is closely related to MAP and RH, appears to be a selective
force playing an important role in shaping the distribution of C. korshinskii, C. liouana, and C. microphylla
from east to west in northern China [53].

Secondly, to assess the impact of a species physiology on its spatial distribution, it is essential to
compare tolerance in conditions of limited water availability between species. As previously reported,
leaf δ13C is related to WUE and plants with higher δ13C or WUE tend to have a higher drought
tolerance during periods of low water availability [10,16,19,23]. The present results indicated that the
mean leaf δ13C was highest in C. korshinskii, intermediate in C. liouana, and lowest in C. microphylla,
with the differences being significant (Figure 3), which is consistent with results from previous
studies [51,52]. Although the growth range of C. microphylla occurs across a relatively wider altitudinal
and temperature gradient, the pluviometric range is limited and tends to be higher than the growth
ranges of the other two species, which probably results in lower values of δ13C for C. microphylla than
in the other two species. The growth range of C. korshinskii appears to be characterized by lower
precipitation than the area where C. liouana grows (Table 1, Table S1), which results in the highest
values of leaf δ13C among the three species. In a previous study examining the ecophysiological
responses of these three species to water stress [51], we also found that C. korshinskii exhibits lower
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sensitivity of the photosynthetic rate and growth, a lower specific leaf area, higher biomass allocation
to roots, and higher levels of water use efficiency to drought compared with the other two species.
Taken together, these results support differentiation in drought tolerance among the three species
because of long-term adaptation to distinct water availability conditions. C. microphylla, C. liouana,
and C. korshinskii showed an increasing sequential drought tolerance, consistent with their distinct
geographical distributions from east to west in northern China.

5. Conclusions

Across species, leaf δ13C significantly decreased with MAP, RH, and leaf N and P concentrations
and increased with altitude and MAT. However, patterns and environmental controls of leaf δ13C
varied with species; where C. korshinskii was mainly controlled by MAP and leaf N concentration,
C. liouana was controlled by both MAT and MAP, and C. microphylla was mainly controlled by MAT.
These findings are essential in improving predictions of how each species will respond to future
climate change accompanied by increasing temperature and more frequent drought events in dry
areas. Regardless of species, MAT and RH are important determinant factors influencing variation in
leaf δ13C along the study transect. We further found that C. microphylla, C. liouana, and C. korshinskii,
showed an increasing sequential drought tolerance, as reflected by their integrated WUE (leaf δ13C)
and consistent with their distinct geographical distributions from east to west in northern China.

Supplementary Materials: The following is available online at www.mdpi.com/1999-4907/9/6/297/s1, Table S1:
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