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Abstract: Lidar-based models rely on an optimal relationship between the field and the lidar data
for accurate predictions of forest attributes. This relationship may be altered by the variability in the
stand growth conditions or by the temporal discrepancy between the field inventory and the lidar
survey. In this study, we used lidar data to predict the timber merchantable volume (MV) of five sites
located along a bioclimatic gradient of temperature and elevation. The temporal discrepancies were
up to three years. We adjusted a random canopy height coefficient (accounting for the variability
amongst sites), and a growth function (accounting for the growth during the temporal discrepancy),
to the predictive model. The MV could be predicted with a pseudo-R2 of 0.86 and a residual standard
deviation of 24.3 m3 ha−1. The average biases between the field-measured and the predicted MVs
were small. The variability of MV predictions was related to the bioclimatic gradient. Fixed-effect
models that included a bioclimatic variable provided similar prediction accuracies. This study
suggests that the variability amongst sites, the occurrence of a bioclimatic gradient and temporal
discrepancies are essential in building a generalized lidar-based model for timber volume.

Keywords: lidar; generalized model; timber merchantable volume; balsam fir; temporal discrepancy;
bioclimatic gradient; canopy height adjustment; growth adjustment function

1. Introduction

Forest stands often develop a diversity of canopy structures across space and time. The diversity
may result from the natural dynamics in stands through time (e.g., growth, mortality, succession,
stand composition), the variability of biophysical factors (e.g., soil, climate, elevation) or human
activities [1,2]. Boucher et al. [1] for example, stated that disturbance regimes and climate have an
effect on canopy structures. Laflèche et al. [3] showed that site characteristics, species composition,
and climate influence site productivity.

Canopy structures can be described through forest attributes measured during field inventories
(e.g., canopy cover, height, diameter, stand volume) or through remote sensing tools such as the light
detection and ranging (lidar) [4]. Lidar is an active sensor which uses pulses of laser light to measure
the distance to a target and record the strength of light backscattering from this target. It generates a
point cloud which is a three-dimensional representation of the volumetric interaction between pulse
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photons and the target. It has been extensively used in forestry to describe the vertical structure of
stands [5–7]. Metrics can be calculated from the point clouds to statistically describe them (e.g., height
metrics, canopy cover metrics). They are often used as explanatory variables to model forest attributes
such as basal area, timber merchantable volume, biomass, etc. [8–11].

Spatially extensive acquisitions of lidar datasets are now possible, making this tool attractive for
large-scale inventories [12,13]. Such inventories often require several lidar surveys. Combining the
resulting datasets is challenging, especially when there is variability amongst the sites distributed
across a given survey area, or when time has elapsed between the field inventory and the lidar survey
(temporal discrepancy). In this situation, it is difficult to transfer a site-specific model to another
location and therein obtain the same prediction accuracy.

Recent research has ways to accurately predict forest attributes from lidar over large-scale areas.
Hansen et al. [2] for example, included biophysical variables (climate, topography, and soil) in their
model when predicting lidar canopy height and canopy cover for five ecoregions located along a
4000 km transect. Næsset and Gobakken [14] and Nilsson et al. [15] calibrated site-specific models
to predict forest attributes from lidar and combined the models’ outputs to make predictions at a
large-scale. Their approach allowed for accurate predictions locally but required several models for
working at the large-scale level. and opted for a general mixed-effect model to predict timber volume,
biomass or dominant height of multiple sites. Both authors obtained an overall goodness comparable
to the site-specific (local) models. This approach offered the advantage of building a single predictive
model which could be adapted to the specific conditions found in the different sites.

Several questions remain when predicting forest attributes of different sites in an operational
context, including the following: (1) Does the combination of multiple lidar datasets in a generalized
predictive model increase the bias at each site? (2) Does accounting for the variability in sites limit
the model biases at each site? (3) How should forest attributes be predicted outside the range of the
studied sites? and (4) Do temporal discrepancies between field and lidar acquisitions have an effect
on the model prediction accuracy? This study, therefore, aims at analyzing the effects of variability
amongst sites and temporal discrepancies on the prediction accuracy of timber merchantable volume
of sites located along a bioclimatic gradient.

2. Materials and Methods

2.1. Study Sites

Various bioclimatic domains exist throughout the province of Quebec, Eastern Canada [16].
Five study sites populated by balsam fir (Abies balsamea (L.) Mill) were selected along a bioclimatic
gradient of temperature, precipitation, elevation and growing degree days (calculated with a 5 ◦C
reference temperature), Figure 1. The Mauricie_south and Mauricie_north sites are located in the
Mauricie region in central Quebec (47.0◦ N, 73.0◦ W). The Mauricie_south covers an area of 4364 km2.
It is part of the sugar maple (Acer saccharum Marshall)/yellow birch (Betula alleghaniensis Britt.) domain.
The Mauricie_north site covers an area of 4630 km2. It is part of the balsam fir/yellow birch domain
which is a transition zone between the temperate and the boreal forests. The Montmorency site is
located in central Quebec (47.3◦ N, 71.1◦ W). It covers an area of 66 km2. It is part of the balsam fir/white
birch (Betula papyrifera Marshall) domain. Two other sites are located in the Saguenay-Lac-St-Jean
(SLSJ) region in northern Quebec (49.7◦ N, 71.5◦ W). The SLSJ_south covers an area of 5937 km2.
It is part of the balsam fir/white birch and the black spruce (Picea mariana (Mill.) Britton, Sterns &
Poggenburg)/moss (Bryophyta) domains. The SLSJ_north site covers an area of 6093 km2. It is part of
the black spruce/moss domain where balsam fir stands are preferentially located on the slope of hills.
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Figure 1. Location of the study sites.

The field and the lidar data were obtained from the Quebec provincial forest ministry - Ministère
des Forêts, de la Faune et des Parcs (MFFP) and the Montmorency Research Forest [17–19]. The field
data were acquired following a uniform inventory protocol while the lidar data were generated
through surveys with variable acquisition parameters.

2.2. Field Plot Data

The field data were collected in circular plots (radius = 11.28 m, area = 400 m2). The plot center
positions were georeferenced using a precision GPS + Glonass receiver. Field plots were selected
following these criteria: (1) balsam fir was the dominant species (>50%); and (2) the dominant height
was above 7 m. The resulting sample was comprised of 295 plots, with 40 plots inventoried at the
Mauricie_south site (in 2012), 55 at the Mauricie_north (in 2012), 93 at the Montmorency forest (between
2009–2013), 74 at the SLSJ_south (in 2016), and 33 at the SLSJ_north (in 2016). Trees with a diameter at
breast height (dbh) above 9 cm (merchantable trees) were measured using a diameter tape. Tree height
was calculated using a height–diameter based-equation following Bégin and Raulier [20]:

Hij = 1.3 +
[

DBH2
ij /

(
β1j+β2j × DBHij

)2
]
+εij, with β1,2j = β0+βk × zk+δj (1)

where Hij is the total height of the ith tree of the jth plot, DBHij the diameter at breast height, β0−βk the
model parameters, zk the k explanatory variables, and εij the error term and δj the plot random coefficients.

The height-diameter ratio (H–D ratio) of each plot was calculated by dividing the average
plot height (weighted against the basal area) by the average plot dbh (weighted against the basal
area). This ratio accounts for the tree morphology resulting from growth conditions [21]. The field
merchantable volume (MV) defined as the volume under bark for stems greater than 9 cm diameter
excluding the stump and tip, was calculated following Fortin et al. [22]. The climatic data (temperature,
precipitation, growing degree days (gdds)) were derived from the MFFP forest inventory database
using the BioSIM software [19]. Table 1 provides a summary of the field data for the study sites.

Table 1. Summary of the field data a.

Field Characteristics
Study Sites

Mauricie_South Mauricie_North Montmorency SLSJ_South SLSJ_North

Year of field inventory 2012 2012 2009–2013 2016 2016
Number of sample plots 40 63 100 78 40

Dominant height (m) 17.5 ± 2.0 19.0 ± 2.4 15.2 ± 4.3 17.5 ± 2.5 18.2 ± 2.6
Balsam fir height–diameter ratio 0.99 ± 0.1 0.98 ± 0.1 0.94 ± 0.1 0.96 ± 0.1 0.88 ± 0.1

Merchantable tree density
(trees ha−1) 1448 ± 511 1176 ± 429 1486 ± 534 1360 ± 536 976 ± 243

Merchantable volume (m3 ha−1) 139.1 ± 48.0 170.9 ± 60.5 139.2 ± 89.9 137.1 ± 55.1 129.1 ± 44.5

Species composition
Balsam fir (85%),

Birch (8%),
Spruce (5%)

Balsam fir (81%),
Birch (6%),

Poplar (6%)

Balsam fir (82%),
Spruce (10%),

Birch (6%),

Balsam fir (78%),
Spruce (20%),

Birch (2%)

Balsam fir (72%),
Spruce (17%),

Birch (9%)
Mean annual temperature (◦C) 2.3 ± 0.5 2.1 ± 0.4 −0.1 ± 0.5 0.4 ± 0.7 −1.2 ± 0.2

Annual precipitation (mm) 1015.3 ± 29.3 1041.9 ± 56.8 1430.1 ± 40.0 852.4 ± 32.6 916.4 ± 7.4
Elevation (m) 375.5 ± 73.7 367.3 ± 79.7 760.2 ± 95.0 385.6 ± 116.8 637.3 ± 51.2

Growing degree days (◦C) 1407.5 ± 94.0 1385.3 ± 77.9 939.4 ± 73.0 1222.2 ± 94.9 1022.2 ± 41.1

a average and standard deviation of the field characteristics.
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2.3. Lidar Data and Variable Generation

The lidar surveys were conducted in leaf-on conditions in 2014 at the Mauricie_south and
Mauricie_north sites, 2011 at the Montmorency site, 2013 at the SLSJ_south site, and 2013–2014
at the SLSJ_north site. They were supplied by various survey providers. Ground-classified returns
were interpolated to construct a digital terrain model (dtm) using LAStools software (version 150526
unlicensed, rapidlasso GmbH, Gilching, Germany) [23]. The height of returns was normalized by
measuring the elevation difference relative to the underlying terrain model. A 2 m threshold was
applied to remove non-canopy returns [9,14]. Point clouds were clipped to the extent of each field plot
boundary. Metrics describing them were calculated using the USFS’s FUSION software (version 3.42,
US Forest Service, Salt Lake City, UT, USA) [24]. They were classified into three standard groups of
variables: canopy height CH variables (percentiles of heights, averages), canopy density CD variables
(percentage of first returns above or below a 2 m, 5 m or 7 m threshold), canopy structural heterogeneity
CSH variables (standard deviation of height, variance of height, coefficient of variation). The average
elevation of each plot was also calculated from the lidar raw data. The elevation and the climatic data
were included in a fourth group of variables, identified as BIO variables. Table 2 provides a summary
of the lidar data for the study sites.

Table 2. Summary of the lidar data a.

Lidar Characteristics
Study Sites

Mauricie_South Mauricie_North Montmorency SLSJ_South SLSJ_North

Year of survey 2014 2014 2011 2013 2013–2014
TD (years) 2 2 (−2–2) 3 (2–3)

Lidar sensor ALS70-HP ALTM Gemini ALTM 3100 ALTM Gemini ALTM Gemini
prf (KHz) 385 125 100 100 100

agfa 1375 650 1000 950 1200
msa 20 18 20 20 18

d (point m−2) 7.5 ± 2.8 7.9 ± 2.3 6.3 ± 1.6 2.6 ± 1.3 2.7 ± 1.4
havgf (m) 9.6 ± 1.4 10.6 ± 1.8 7.8 ± 2.9 8.0 ± 1.5 7.6 ± 1.4

p2f (%) 91.2 ± 3.9 93.1 ± 6.3 86.0 ± 12.2 89.1 ± 11.2 69.6 ± 10.3
hstdf (m) 2.9 ± 0.7 3.2 ± 0.7 2.4 ± 0.9 2.7 ± 0.7 3.3 ± 0.6

a Average and standard deviation of the lidar characteristics; TD: temporal discrepancy with field data; prf: pulse
repetition frequency; agfa: above ground flight altitude; msa: maximum scanning angle off-nadir; d: return density
above 2 m; havgf = average height of first returns above 2 m; p2f = percentage of first returns above 2 m; hstdf =
standard deviation of the height of first returns above 2 m.

2.4. Data Analysis

2.4.1. Merchantable Volume Modeling

Several generalized MV models were tested. The simplest model (Model 1) ignored the effects of
site, growth, and the bioclimatic gradient, while the most complex model (Model 6) included all of
these. All possible combinations of candidate metrics (one variable per standard group) were tested
in a 3-metric model (Model 1) adapted from Yoga et al. [25]. We selected this model as it has been
specifically developed for balsam fir stands and was successfully tested at the Montmorency site:

Model 1 : MVjm = exp(β0)× (CH jm + ∆0)
β1 × CDβ2

jm × CSHjm
β3+εjm (2)

where MVjm is the merchantable volume of the jth field plot of study site m, CHjm the canopy height,
∆0 the canopy height intercept (mean height adjustment where MVjm = 0), CDjm the canopy density,
CSHjm the canopy structural heterogeneity, β0−β3 the model parameters, and εjm the error term.
Each 3-metric subset was tested separately for each study site. The model’s mean square error (MSE)
was then calculated. The candidate subset with the smallest MSE across all study sites was selected as
the best subset and then used to elaborate the more complex models.
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Temporal discrepancies existed amongst the field inventories and the corresponding lidar surveys
(Table 2). Equation (3) describes a growth adjustment function (G), based on Pothier and Savard [26]
yield tables, that can be used to account for the discrepancies:

G = 1 + TD
(
γ1 +

γ2
H

)
(3)

where TD is the temporal discrepancy between the field and the lidar data acquisitions (in years), H a
height variable, and γ1−γ2 the model parameters. A time-corrected model MV model (Model 2) was
then built by adding Equation (3) to Equation (2):

Model 2 : MVjm = exp(β0)× (CH jm + ∆0)
β1 ∗ CDβ2

jm × CSHβ3
jm ×

[
1 + TDjm

(
γ1 +

γ2
CHjm

)]
+ εjm (4)

The effect of site variability was accounted by using a random coefficient regression [27,28]. Site
random coefficients were either added to all the model parameters (b1−3jm, Model 3) or to the canopy
height parameter only (∆m, Model 4):

Model 3 : MVjm = exp(β0)×
(
CHjm+ ∆0

)(β1+ b1jm) × CD
(β2+ b2jm)

jm × CSHjm
(β3+ b3jm) ×

[
1 + TDjm

(
γ1 +

γ2
CHjm

)]
+εjm (5)

Model 4 : MVjm = exp(β0)× (CH jm+ ∆0 + ∆m)β1 ∗ CDβ2
jm × CSHjm

β3 ×
[
1 + TDjm

(
γ1 +

γ2
CHjm

)]
+ εjm (6)

Bioclimatic variables were added iteratively to Model 4 to account for the bioclimatic gradient
(Model 5):

Model 5 : MVjm = exp(β0)× (CH jm + ∆0 + ∆m + β4 BIOjm)β1 × CDβ2
jm × CSHβ3

jm ∗
[
1 + TDjm

(
γ1 +

γ2
CHjm

)]
+ εjm (7)

Finally, the site random coefficient of Model 5 was ignored to specifically analyze the accuracy of
the resulting bioclimatic fixed-effect model (Model 6):

Model 6 : MVjm = exp(β0) ∗ (CH jm + ∆0 + β4 BIOjm)β1 × CDβ2
jm × CSHβ3

jm ×
[
1 + TDjm

(
γ1 +

γ2
CHjm

)]
+εjm (8)

All the models were fitted by maximum likelihood. The statistical analyses were carried out using
the “nlme” package [29] of the R software [30]. The residual heteroscedasticity was taken into account
by adding a variance function to the models following Yoga et al. [25]. In that study, the variance
function was comprised of variables describing the average height and the spatial distribution of
returns. In our present study, the lidar data were acquired with different settings. We, therefore,
opted to omit the return spacing variable of Yoga et al. [25] when accounting for the heteroscedasticity.
The random error term εjm, therefore, had the following form:

var(εjm) = σ2
∣∣∣havgfjm

∣∣∣β5
(9)

where σ2 is the residual variance, havgfjm the variance the average height of first returns above 2 m
and β5 the variance parameter.

2.4.2. Model Validation

The best models were selected based on the Akaike Information Criterion AIC (lowest),
the residual standard deviation RSD (lowest), the coefficient of determination (pseudo-R2, highest),
the level of significance (p-value) and the standard deviation of the random coefficients (rstd, lowest).
The leave-one-out cross-validation (LOOCV) was used to assess the models’ accuracy [31]. A new
dataset was created by removing one field observation from any site. The MV model was fitted to
the new dataset (training data) and used to predict the MV of the removed observation (test data).
The procedure was repeated until predicted values were obtained for all the field observations.
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3. Results

3.1. Optimal Subset of Explanatory Variables

The subset of lidar-derived variables, which generated the smallest MSE, included the average
height of first returns above 2 m (havgf), the percentage of first returns above 2 m (p2f) and the
standard deviation of the height of first returns above 2 m (hstdf). Figure 2 presents the correlation
between the field MV and each of the explanatory variables per study site. They were of 0.87, 0.41 and
0.41 respectively.

Figure 2. Scatter plots of the field merchantable volume (MV) against the explanatory variables.
Field plots of each study site are represented by a dot. havgf = average height of first returns above
2 m; p2f = percentage of first returns above 2 m; hstdf = standard deviation of the height of first returns
above 2 m.

3.2. General MV Models

Table 3 presents a model comparison amongst the MV models. Model 1 was built with the
best subset of lidar-derived variables only. It was significantly improved by including the growth
adjustment function (Model 2: p-value < 0.0001). The AIC decreased from 2861.8 to 2774.9 and the
RSD from 33.3 to 27.2 m3 ha−1 while the pseudo-R2 increased from 0.75 to 0.83. Table 4 presents the
average biases between the field and the predicted merchantable volumes before (Model 1) and after
(Model 2) the addition of the growth adjustment function. The absolute biases decreased for all sites
except the SLSJ_south.
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Table 3. Anova comparisons amongst candidate merchantable volume (MV) models.

Model Equation AIC Pseudo-R2 RSD1
(m3 ha−1)

RSD2
(m3 ha−1) p-Value

1 exp (1.743)× (havgf − 2.813)0.897 ×
p2f 0.332 × hstdf 0.152 2861.8 0.75 33.3 2.7 —

2
exp (−1.202)× (havgf − 0.030)1.538 ×
p2f 0.582×hstdf 0.198 × (1+T× (0.054+ 0.060

havgf ))
2774.9 0.83 27.2 3.8 <0.0001 a

3

exp (−1.164 + b0)×
(havgf − 1.675)(1.193+b1) × p2f (0.785+b2 ) ×
hstdf (00.248+b3) × (1 + T × (−0.010 − 0.440

havgf ))

2746.9 0.86 24.6 2.8 <0.0001 b

4
exp (−0.992)× (havgf − 2.378 + ∆m)1.129 ×
p2f 0.780×hstdf 0.253 × (1 + T × (0.001 +

0.521
havgf ))

2722.7 0.86 24.3 2.8 0.9913 c

5a
exp (−0.681)× (havgf + 0.890 + ∆m −

0.003 × gdd)1.109 × p2f 0.748×hstdf 0.265 × (1 +
T × (0.008 + 0.245

havgf ))
2699.5 0.86 24.5 2.8 <0.0001 d

5b
exp (−1.050)× (havgf − 4.011 + ∆m +

0.003 × elevation)1.127 × p2f 0.806 × hstdf0.296 ×
(1 + T × (0.012 + 0.313

havgf ))
2687.9 0.86 24.4 1.9 <0.0001 d

6a
exp (−1.204)× (havgf + 1.487 −
0.003 × gdd)1.216 × p2f 0.790 × hstdf0.280 (1 +
T × (−0.008 + 0.511

havgf ))
2697.4 0.86 24.5 2.3 <0.0001 d

6b
exp (−1.545)× (havgf − 3.214 +
0.003 × elevation)1.246 × p2f 0.835 ×
hstdf 0.306 (1 + T × (0.008 + 0.491

havgf ))
2688.9 0.86 24.2 2.1 <0.0001 d

a Anova comparison to Model 1; b Anova comparison to Model 2; c Anova comparison to Model 3; d level of
significance of the bioclimatic variable; RSD1: residual standard deviation before accounting for heteroscedasticity;
RSD2: residual standard deviation after accounting for heteroscedasticity. gdd = growing degree day.

Table 4. Average biases of the merchantable volume (MV) models per study site.

Study Sites
Average MV Bias (m3 ha−1)

Model 1 Model 2 Model 4 Model 6a Model 6b

Mauricie_south −29.5 −9.4 −0.9 0.2 −2.3
Mauricie_north −23.0 −6.4 −2.0 −1.0 −1.0
Montmorency 15.0 13.6 1.4 1.0 1.2

SLSJ_south 7.5 −10.7 −0.1 −2.4 −1.1
SLSJ_north 15.0 7.6 −0.4 3.4 2.7

Model 2 was further improved by accounting for the variability amongst sites (Models 3 and 4:
pseudo-R2 = 0.86). Similar improvements were obtained between Model 3 (built with multiple random
coefficients) and Model 4 (built with the canopy height random coefficient). Model 4, however, had
the smallest AIC (2722.7 versus 2746.9). The RSD was 24.3 m3 ha−1 initially and 25.0 m3 ha−1 after
cross-validation (see also Table 4 for site biases). However, the model residuals were heteroscedastic.
The RSD was estimated as 2.8 m3 ha−1 multiplied by the variance function when accounting for
the heteroscedasticity.



Forests 2018, 9, 166 8 of 13

The fixed coefficients of Model 4 are presented in Table 5 and the random coefficients, in Table 6.
The random coefficients were negative for the Mauricie_south, Mauricie_north and SLSJ_south sites
(−0.48 m, −0.37 m, −0.36 m) and positive for the Montmorency and SLSJ north sites (0.70 m and
0.51 m). Their standard deviation was of 0.56 m. It decreased further with the MV models built with
the 95th percentile of height (rstd = 0.47). However, these models were less accurate (pseudo-R2 = 0.82).
The rstd decreased substantially when a bioclimatic variable was added to Model 4 (Table 6: Models 5a
and 5b, random coefficients ~0 m). The models included the gdd and the elevation variable respectively.
The AICs were smaller (Table 3: 2699.5 and 2687.9).

Table 5. Fixed coefficients of candidate merchantable volume models.

Coefficients Variables
Model 4 Model 6b

Value p-Value Value p-Value

β0 Model intercept −0.992 <0.0001 −1.545 <0.0001
β1 havgf 1.129 <0.0001 1.246 <0.0001
∆0 Canopy height intercept −2.378 <0.0001 −3.214 <0.0001
β2 p2f 0.780 <0.0001 0.835 0.0903
β3 hstfd 0.253 <0.0001 0.306 0.1607
γ1 Growth adjustment function 0.001 <0.0001 0.008 <0.0001
γ2 Growth adjustment function 0.521 0.0074 0.491 0.0978
β4 Elevation - 0.003 <0.0001
β5 Variance function 1.004 <0.0001 1.122 <0.0001

havgf = average height of first returns above 2 m; p2f = percentage of first returns above 2 m; hstd = standard
deviation of the height of first returns above 2 m.

Table 6. Canopy height random coefficients of candidate merchantable volume models.

Study Sites
Canopy Height Random Coefficients

Model 4 Model 5a Model 5b

Mauricie_south −0.48 −0.29 × 10−9 −9.65 × 10−10

Mauricie_north −0.37 3.45 × 10−9 2.74 × 10−10

Montmorency 0.70 1.82 × 10−9 −2.11 × 10−10

SLSJ_south −0.36 −24.92 × 10−9 −10.17 × 10−10

SLSJ_north 0.51 19.95 × 10−9 19.19 × 10−10

rstd 0.56 16.08 × 10−9 12.01 × 10−10

rstd: standard deviation of the random coefficients.

Model 4 random coefficients were plotted against the H–D ratio and the bioclimatic variables
(Figure 3). The Mauricie_south, Mauricie_north, and SLSJ_south, which had low elevations but
high gdds and H–D ratios, also had a lower random coefficient. Conversely, the Montmorency
and SLSJ_north sites, which had high elevations but low gdds and H–D ratios also, had a higher
random coefficient.

The fixed-effect models (Models 6a and 6b) produced similar accuracies as Model 4
(pseudo-R2 = 0.86). Model 6b which included the elevation variable had the lowest AIC value (2688.9).
The average biases remained small (Table 4). The RSD was of 24.2 initially and of 24.8 m3 ha−1 after
cross-validation. It was estimated to 2.1 m3 ha−1 multiplied by the variance function when accounting
for the heteroscedasticity.
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Figure 3. Scatter plots of Model 4 canopy height (CH) random coefficients plotted against the
height–diameter ratio (H–D ratio), the elevation, and the growing degree day variables presented by
study site.

4. Discussion

Our study aimed at building a generalized lidar-based model to predict the timber merchantable
volume of various study sites located along a gradient of bioclimatic factors. The field and the lidar
data were acquired at different dates. We opted for a nonlinear random coefficient model to predict
the MV as several studies have shown that mixed-effect models can accurately predict forest attributes
both at small and large-scale levels [32–34]. The model needed to be adjusted given the variability
amongst study sites and the temporal discrepancies.

A crucial step in building the MV models was the search of optimal explanatory variables.
The combination of havgf, p2f and hstdf provided the best subset of variables. The addition of
a growth adjustment function improved the model significantly (p-value < 0.0001). This function
accounted for the MV growth that occurred during the temporal discrepancy. It also enabled us to
accurately combine the different lidar datasets. It included a height variable (havgf) as the effect of
time on merchantable volume varies with the stand development stage. This result confirms the need
to adjust predictive models when temporal discrepancies occur [35].

Models 4 and 6b were the best candidate models. Model 4 contained a site random coefficient (∆m)
accounting for the variability amongst sites. The model performed as efficiently as Model 3, which
contained several coefficient adjustments (p-value = 0.9913). This result showed that a local adjustment
of canopy height was therefore enough to account for the variability amongst sites. This can be
explained by the fact that the correlation between the MV and havgf was high compared to the other
explanatory variables (Figure 2). It was of 0.87 versus 0.41 for p2f and hstdf. Modifying havgf only
would, therefore, have a comparable effect to modifying all the model parameters.
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Model 4 random coefficients varied with the characteristics of the study sites: they were positive
at the Mauricie_south, Mauricie_north and SLSJ_south sites and negative at the Montmorency and the
SLSJ_north sites. The Mauricie_south, Mauricie_north and SLSJ_south sites also had higher H–D ratios
(H–D = 0.99, 0.98, 0.96; Table 1) compared to the Montmorency and the SLSJ_north sites (H–D = 0.94 and
0.88). Thinner stems are characterized by higher H–D ratios and have lower merchantable volumes.
For a given height, trees were therefore possibly thinner at the Mauricie_south, Mauricie_north
and SLSJ_south sites compared to the Montmorency and the SLSJ_north sites. For a given average
height, canopy density and canopy structural heterogeneity, havgf needed to be decreased at the
Mauricie_south, Mauricie_north and SLSJ_south sites and increased at the Montmorency, SLSJ_north
sites when predicting the MV with the same equation.

Table 1 shows a gradient of bioclimatic factors amongst study sites: higher temperatures and
gdds were observed at the Mauricie_south, Mauricie_north and SLSJ_south sites compared to the
Montmorency and SLSJ_north sites. The random coefficient values (Models 5a and 5b) decreased
substantially when a bioclimatic variable was added to the canopy height parameter. This result
suggests a correlation between the site variability and the bioclimatic gradient in this case study.
The fixed-effect Model 6b which included the elevation variable had a similar prediction accuracy to
Model 4 but a lower AIC value. The relationship between the environmental conditions of a study area
and the canopy structure variability has also been assessed in other studies [2,36]. Gdd is an indicator
of accumulated heat and can be correlated with tree growth [37]. Warmer temperatures and longer
growing seasons have a positive effect on tree height growth [38] as well as lower elevations [39].
Trees will, therefore, have a higher H–D ratio and a lower merchantable volume for a given height.
Conversely, lower gdds or higher elevations have a negative effect on tree height growth. Trees will
have a lower H–D ratio and a higher merchantable volume for a given height. The H–D ratio was
smallest at the SLSJ_north site and Montmorency sites.

The canopy variability may be due to other factors such as tree mortality, fire disturbance, site
species composition, lidar sensor settings, return density, etc. Sites were composed of similar species,
predominantly balsam fir and spruce (Table 1). We tested Models 4 and 6b on a sample of field
plots where the proportion of balsam fir was > 60% (256 plots). We obtained similar MV predictions
(pseudo-R2 = 0.87 and 0.86; RSD = 24.4 m3 ha−1 and 24.5 m3 ha−1 respectively). We, therefore,
considered that the species composition had little effect on the MV predictions in this case study.

Several studies have also demonstrated that the lidar settings can have an effect on the precision of
derived forest attributes [40–42]. The lidar data were acquired separately and with variable acquisition
settings in this case study (Table 2). We could not analyze the settings’ effects on the MV models as
we did not have enough datasets to draw conclusions. However, their effects would likely be minor
compared to the bioclimatic gradient, which had a direct effect on the MV. Further research should be
done on this issue.

Our study has several practical uses in an operational context. It suggests flexible models to
predict the merchantable volume in study sites where spatial and temporal variabilities are observed.
The proposed models are adaptable enough to combine lidar datasets acquired at different time periods.
They can accurately predict the merchantable volume both at local (site-specific) and large-scale levels
(multiple sites). Using a random coefficient model, such as Model 4, is more advantageous than
building several local lidar-based models when predicting forest attributes at a large-scale level.
When the variability amongst sites is related to a bioclimatic gradient, a simpler fixed-effect model,
such as Model 6b, could then be used with a similar prediction accuracy. The fixed-effect models offer
the advantage to be generalizable to other sites of known gdd/elevation, even when field inventory
has not been done. As lidar data will be available for the entire province of Quebec by 2021, new lidar
study sites could be tested to confirm the relationship between the bioclimatic gradient and the MV
variation. The data could also be combined with satellite data to predict the MV at large scale [43,44].
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5. Conclusions

Canopy structure variations can be caused by natural forest dynamics occurring over time or
by variations of bioclimatic factors (including temperature and elevation). We tested a lidar-based
model to predict the merchantable volume (MV) of balsam fir sites located along a bioclimatic gradient
of temperature and elevation. Temporal discrepancies up to three years also existed between the
field inventory and the lidar data acquisitions. A random coefficient model was adjusted to include a
random canopy height coefficient (accounting for site variability) and a growth function (accounting
for growth during the temporal discrepancy). The pseudo-R2 was of 0.86 and the RSD of 24.3 m3

ha−1. The model performed as efficiently as a model with adjustments on all the parameters (p-value
= 0.9913). The site variability was found to be related to the bioclimatic gradient. Fixed-effect
models built with bioclimatic variables produced similar prediction accuracies (pseudo-R2 = 0.86,
RSD ≤ 24.5 m3 ha−1). The effects of site variability, bioclimatic gradients, and temporal discrepancies
were found to be essential to generalized lidar-based modelings.
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