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Abstract: The aim of this study is the detailed calculation of microwave propagation inside raw
timber in cylindrical configurations. Two different approaches have been used. The first one uses
an exact formulation and analytical approximations in order to explore the electromagnetic field
distribution inside dry wood. The introduction of conductivity in the exact model makes it so complex
that the equations are unsuitable for analytical manipulation. In order to further explore the effect of
moisture in cylindrical wood structures, a full scale numerical simulation using commercial software
has been performed. The results show that for microwave frequencies in the 3 GHz range and for
typical wood parameters, a cylindrical log behaves as a kind of Fresnel lens. This work has important
applications in microwave treatment and sensing of wood.

Keywords: microwave propagation in wood; non-destructive sensing of wood; physical wood
treatments; analytical analysis; numerical analysis

1. Introduction

Microwave treatment and sensing of wood is increasingly important. A review of different
microwave wood testing techniques is given in [1] and these include propagation modelling,
measurement techniques, hardware implementation, and determination of wood properties. According
to [2,3], microwave heating, for example, offers several advantages over other drying methods and
chemical procedures because its technique is eco-friendlier and causes less damage in the timber
sample compared to employing toxic chemicals. Besides, microwave heating method is faster and
gentler in comparison to live steam. As a contactless and nondestructive testing technique, microwave
scanning is able to estimate several important wood parameters including density, moisture content,
and grain angle [4–13]. Following Bucur [14], other non-destructive techniques use X-rays, gamma
rays, thermal imaging, ultrasound, nuclear magnetic resonance, and neutron imaging. Microwave
based nondestructive techniques have been applied to a variety of applications, including in situ
microwave tomography, moisture content determination, anisotropy measurement, online imaging,
internal inspection of logs, mechanical grading, and defect detection. Microwaves and ultrasound have
similar resolution, but microwaves are not limited by the contact nature of ultrasound transducers.

As far as we know, most models of microwave propagation inside wood are based on rectangular
configurations, although some studies in more general geometries are published [15,16]. In [17], the
effect of annual growth rings on nondestructive measurements is explicitly studied. This limits the
application of microwave techniques in areas such as measurement of living trees in situ.

Important efforts have been made to develop generalized models for water content prediction in
wood using its dielectric properties, but detailed models of electromagnetic propagation inside wood
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are more modest. Due to the complexity, most models do not consider the effects of the geometry or
the dielectric variation and oscillations caused by the ring structure of timber.

This work studies microwave propagation and electric field distribution at 3 GHz inside
cylindrical wood structures, following the procedures described in [18–20]. From our previous
work [21] with Bragg fibers, it is expected that important focusing effects of microwaves inside
wood due to its ring structure may be observed. These focusing phenomena could be very important
for the interpretation of testing data and for heating applications, where some zones could be burned
while the others would be almost cold. Besides, the quick production of very hot water vapor and
volatiles in small areas of the irradiated wood could produce explosions, deformations, and cracks.
As microwave heating and treatment of wood is an economical alternative to other methods, it is very
important to know the distribution of radiation inside the pieces and the perturbations introduced by
the complex structure of this natural material.

Two complementary approaches have been used. First, an exact model based on a complete
formulation of the Maxwell equations in cylindrical coordinates has been developed. This model is
only analytically tractable in the limit of zero conductivity. This implies that the imaginary part of
the wood permittivity is negligible, which is only correct for dry wood. However, some interesting
similarities are shared by the dry and moist wood models. This semianalytical model includes the
effect of grain angle by means of a correction of the effective permittivity inside wood, avoiding the
full use of helicoidal coordinates which produce equations too complex for this case. The resulting
equations are then solved by means of an implicit Runge–Kutta (RK), which provides the unconditional
stability needed to calculate the values of the corrected permittivity.

The second model uses a full scale numerical simulation of a cylindrical, ring shaped, wood
sample. Moreover, the analysis of the influence of the number of rings and the geometry of the rings, by
defining unequal rings geometry, in the electric field distribution has been done. The simulations were
performed by means of commercial software, CST Microwave Studio® (2017 version, Framingham,
MA, USA) [22], which uses finite-integral technique (FIT) algorithms for the computation of the
electromagnetic field. Other numerical simulation approaches to the study of microwave propagation
in wood can be seen in [23].

Both models agree in the limit of zero conductivity and predict important effects due to the ring
structure of cylindrical wood. The results show an important focusing of the radial distribution of the
electric field which depends on the number and thickness of the growth rings. Also, stationary wave
patterns are observed due to the finite length of wood logs. The important point of this work is to
show the effect of the concentric ring structure of wood on the microwave propagation inside timber.
This effect is similar to a Bragg fiber, producing interesting focusing phenomena as will be shown.

The rest of the paper is organized as follows: mathematical formulation involving both
semianalytical and numerical models is explained in Section 2, then results are presented and discussed
in detail in Section 3. Finally, relevant conclusions are presented in Section 4.

2. Mathematical Formulation

2.1. Semianalytical Model

Raw cylindrical timber can be considered a stack of concentrically dielectric layers, so a model
with arbitrary periodic variation of dielectric permittivity is the most accurate. Considerable symbolic
manipulation of the Maxwell equations in cylindrical coordinates is necessary for arbitrary permittivity
functions which can depend only on the radius of the cylinder. The equations for the exact model are
derived from our previous works [24,25]. They are reproduced here for completeness.

The equations were obtained as follows. First, we write the complete set of Maxwell equations in
cylindrical coordinates
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Performing some algebraic manipulations, the full set of Maxwell equations can be reduced to a
pair of coupled ordinary differential equations. The following ansatz is inserted into the cylindrical
Maxwell Equations (1)–(8), where r is the radius, z is the length of the wood log, and phi is the angle
measured from the radius. E is the electric field strength, H is the magnetic field, D is the electric
displacement field, B is the magnetic flux density, omega is the angular frequency, t is the time, and l is
the angular moment number.

Er,φ,z = E0[r,φ,z]er,φ,z(r)e(ilφ) × e(iβz) × e−(iωt) (9)

Hr,φ,z = H0[r,φ,z]hr,φ,z(r)e(ilφ) × e(iβz) × e−(iωt) (10)

This produces a set of separable equations, assuming ρ = 0 (charge density) and J = 0 (current
density), which implies that conductivity is not considered. Equations whose terms are in the form βE
or βH are selected. These are Equations (1), (2), (4), (6) and (7). Now, the Equations (4), (6) and (7) can
be algebraically solved with respect to the radial components er(r), eφ(r), hr(r), and hφ(r),

er(r) = −
(

H0zlµ0hz(r)ω− iE0zβr
ez(r)

r

)
×
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Substituting this solution into Equations (1) and (2), another pair of ordinary differential
equations is obtained. In order to analyze these equations, it is convenient to decoupled them.
Using ez(r) = ezR(r) + iezI(r); hz(r) = hzR(r) + ihzI(r) and taking both real and imaginary parts in the
resulting equations, the following expressions are finally obtained

e′′zR(r) + A11e′zR(r) + A12e′zI(r) + A13h′zR(r) + A14h′zI(r) + A15ezR(r)+
A16ezI(r) + A17hzR(r) + A18hzI(r) + A19 = 0

(15)

e′′zI(r) + A21e′zR(r) + A22e′zI(r) + A23h′zR(r) + A24h′zI(r) + A25ezR(r) + A26ezI(r)+
A27hzR(r) + A28hzI(r) + A29 = 0

(16)
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h′′zR(r) + A31e′zR(r) + A32e′zI(r) + A33h′zR(r) + A34h′zI(r) + A35ezR(r) + A36ezI(r)+
A37hzR(r) + A38hzI(r) + A39 = 0

(17)

h′′zI(r) + A41e′zR(r) + A42e′zI(r) + A43h′zR(r) + A44h′zI(r) + A45ezR(r) + A46ezI(r)+
A47hzR(r) + A48hzI(r) + A49 = 0

(18)

where Aij (i = 1, 2, 3 and j = 1, ..., 9) coefficients try to simplify the writing of the final equations,
because the complete formulae are rather long. These coefficients multiply the radial components,
both real and imaginary, of the axial electric and magnetic field inside the cylindrical wood sample.

The value of coefficients Aij defined in the Equation (15) are detailed in the following equations
(from Equations (19)–(22))

A11 =
(
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(
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)−1

(21)

and where
A12 = A13 = A14 = A16 = A17 = A19 = 0 (22)

Aij (i = 2 and j = 1, ..., 9) coefficients employed in the Equation (9) are defined in the Equations
(23)–(26)
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)
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ε0ε2

r(r)µ0rω2 − β2rε2
r(r)

)−1
(23)
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r(r)µ0E0zrω2 − εr(r)rE0zβ2
)−1

(25)

and where,
A21 = A23 = A24 = A25 = A28 = A29 = 0 (26)

In the following equations from Equations (27)–(30) the values of the Aij (where i = 3 and
j = 1, ..., 9) used in the Equation (17) are detailed.

A33 = −
(

ε0ε′r(r)µ0rω2 − ε0εr(r)µ0ω2 + β2
)(

ε0εr(r)µ0rω2 − β2r
)−1

(27)
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(
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)−1
(28)
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)

r−2 (29)

and,
A31 = A32 = A34 = A35 = A38 = A39 = 0 (30)

In the Equations (31)–(34) the value of the coefficients Aij (where i = 4 and j = 1, ..., 9) which have
been defined in the Equation (18), are detailed.

A44 = −
(

ε0ε′r(r)µ0rω2 − ε0εr(r)µ0ω2 + β2
)(

ε0εr(r)µ0rω2 − β2r
)−1

(31)

A45 =
(
ε0ε′r(r)E0zlβω

)(
ε0εr(r)µ0H0zrω2 − H0zβ2r

)−1
(32)

A48 =
(

ε0εr(r)µ0r2ω2 − β2r2 − l2
)

r−2 (33)
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and where,
A41 = A42 = A43 = A46 = A47 = A49 = 0 (34)

where x’ denotes dx/dr, β =
2πεre f f

1/2

λ and εre f f is the effective permittivity parameter.
We can observe that this system of equations is not completely coupled. Equations (15) and (18)

form a pair of mutually coupled equations in ezR(r) and hzI(r). The same can be said for Equations (16)
and (17). Each pair of mutually coupled equations have a similar mathematical structure. Then, it
is possible to reduce the problem of microwave propagation inside cylindrical wood samples with
arbitrary radial relative permittivities to a pair of ordinary differential equations. We shall choose
Equations (15) and (18) for convenience. The results were calculated and simplified by means of the
Maxima program [26].

In order to solve the final equations, an implicit high order Runge–Kutta algorithm was used.
Implicit RK algorithms are more stable than their explicit counterparts [27] and this fact eliminates
some problems related with the periodic nature of the dielectric structure of wood and the extreme
sensibility of the solutions to the value of the effective permittivity. Although the core equations
of this problem are the same as the equations for a Bragg fiber in our previous work [24], there are
important conceptual and computational differences between both problems. First of all, the relative
permittivities of adjacent layers in the wood model are larger than in a Bragg fiber and conductivity is
not present in optical fibers. More important even is the consideration of the grain angle in the wood
model which introduces new complexities and new propagation modes. This grain angle would be
similar to a Bragg fiber with torsion, which was not considered in our previous work. Also, the ratio
between the wavelength and the dimensions of the rings is different, producing subtle effects that have
forced us to develop a new numerical approach to solve the final equations. While in our previous
calculations, collocation methods were successfully used, in this case an implicit, unconditionally
stable, RK algorithm has been developed in order to avoid large numerical instabilities produced by
the mode splitting introduced by the grain angle dependence on the relative permittivity.

2.2. Numerical Simulation

Due to mathematical constraints, conductivity cannot be easily introduced in the exact model,
because the Maxwell equations cannot be decoupled. Therefore, a detailed numerical simulation of an
idealized cylindrical sample of wood has been performed in order to study the effect of moisture on
microwave propagation. The commercial software CST Microwave Studio® [22], which implements a
finite-integral technique (FIT) approach, was used.

The sample was formed by concentrically layers of two different permittivities corresponding to
typical epsilon values of poplar [27] using the dielectric Cartesian tensor facility of CST (Computer
Simulation Technology). The exact values are shown in Figure 1. Summer and spring rings are
independently considered. Experimental dielectric and conductivity data for both dry and wet wood
were obtained from [28–31]. The thickness of growth rings inside poplar has been taken from pictures
of several samples from the Madrid area and a rounded mean value has been used for the simulations.
Thus, this study must be considered as a general description of microwave propagation inside an
actual ring structured wood but not a detailed analysis of a particular wood sample.

The selected frequency for our study has been 3 GHz for numerical convenience in the case of the
semianalytical calculations. The permittivity values can be considered almost unaltered from the more
common 2.45 GHz according to [27]. However, according to the electric field distribution shown in
Figures 2 and 3 for dry and wet poplar sample, the effect of the microwave frequency is noticeable
in spite of the constant value of the permittivity at those frequencies. An important consequence of
these results is the requirement of several frequencies to achieve a more homogenous electric field
distribution inside wood.
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A limitation of our study is that real wood has different growth ring thicknesses, heterogeneous
zones with defects, moisture gradients, gaps, etc., which could be introduced in future studies.
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3. Results and Discussion

In both models, analytical and numerical, axial excitation and propagation of microwaves are
studied. The timber is excited by an incident plane wave along the z-axis, the electric field is
perpendicular to the cylinder axis, and so the magnetic field, as shown in Figure 1. The relative
permittivity function used for the semianalytical analysis is shown in Figure 4. The semianalytical
model shows a slow modulation of the amplitude of the electric field due to the periodic nature of the
dielectric layers of wood, as can be seen in Figures 5 and 6. The behavior of this permittivity function
is modelled on [28]. For simplicity and easier convergence of the RK algorithm, uniform growth ring
thickness and a lower variation between different wood dielectric values in the radial direction was
used. This is clearly a limitation of the semianalytical model and one of the main reasons for using
also a full numerical simulation tool. Thus, the results are not exactly the same as the ones calculated
using experimental poplar data.

For the previous reasons, the semianalytical method is restricted to only 5 rings, while the full
numerical simulations range from 5 growth rings to 20. The thickness of growth rings are taken
form [27]. The semianalytical results can be seen as a validation technique for this study. The length of
the sample is 1 m in both methods. The semianalytical and numerical simulations have been done at
3 GHz because the wavelength at that frequency is comparable to the diameter of the wood sample.
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Moreover, that frequency is similar to the value which is employed in commercial microwave drying
ovens [32,33].
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Figure 5. Particular solution with analytical analysis of the electric field inside a cylindrical wood sample
when the corrective factor for the effective relative permittivity is 0.70 and the grain angle is α = 45◦.

The periodic structure produces the modification of the values of the relative permittivity, which,
in turn, modifies the electromagnetic field modes inside the wood cylinder. In order to apply
microwave propagation to the detailed study of internal ring structure of wood, higher frequencies
up to tens of GHz (microwaves in the mm range) are necessary. However, at such short wavelengths,
the effect of limited skin depth and increased attenuation should be studied carefully. Besides, the
computational demands are far higher, so this will be considered in future works. If such accuracy
could be practically achieved, a non-invasive determination of tree ages would be possible, for example.

The solutions are valid only for certain values of the effective relative permittivity (permittivity
eigenvalues) due to the existence of discrete propagation modes inside the cylindrical material.
These eigenvalues are calculated by means of an iterative procedure which runs the RK algorithm
searching for the correct behavior of the solutions. In this case, the azimuthal number of the selected
propagation mode is l = 1. Therefore, every mode is characterized by a definite value of the effective
relative permittivity, which can be expressed as a correction factor multiplying the mean effective
relative permittivity.
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The exact model allows the variation of the grain angle, α. The grain angle is defined as the angle
between the timber axis and the wood logs. It is the longitudinal arrangement of wood timbers or the
pattern resulting from this. From an analytical perspective, if the grain angle had been inserted directly
in the cylindrical Maxwell’s equations, they would not be separable. In fact, helicoidal coordinates
should be used, but the model was too complex for the present study. Instead of a full helicoidal
model, we have made the hypothesis that the effect of the grain angle can be considered using only its
variation inside the dielectric permittivity profile.

The numerical simulation of the grain angle would imply a helicoidally arrangement of different
wood elements, so that parametric functions should be used inside the Cartesian dielectric tensor of
the CST software. In this regard, the analytical model is more general, although conductivity effects
are hard to introduce, if additional hypotheses are not made. Due to the limitations of both approaches,
we have opted for a combined study, comparing the results for a neutral grain angle and dry wood.
Then, the effect of moisture is studied using numerical analysis and the grain angle variation uses the
analytical model.

In Figures 5 and 6, we can compare the results for α = 45◦ and 30◦, respectively. It must be noted
that the correction factor for the effective relative permittivity changes with the value of the grain
angle, so that the corrections are 0.70 for α = 45◦ and 0.66 α = 45◦. The ability to calculate the grain
angle is important, because grain angle is related with the mechanical strength of wood. The effective
value of the relative permittivity due to the grain angle correction is calculated by means of an iterative
bisection algorithm which finds the correct asymptotic behavior of the oscillating fields inside wood
after a number of rings. These calculations are time consuming and numerically unstable, even using
the implicit Runge–Kutta algorithm for the propagation step. Due to this, only two decimal figures
and five rings are considered in Figures 5 and 6, while the numerical model—which discards the grain
angle influence—can be calculated for a larger number of rings.

The CST simulations have been done without considering the grain angle. The numerical values
for the simulations were: length = 1 m, number of cylindrical layers = from 5 to 20, radius = from 35 to
145 mm. Growth ring thickness are different depending on the season. One type has been set to 10 mm
and the other to 5 mm. The values of the dielectric constant of each layer have been taken from [27]
and they are shown in Figure 1.

The numerical FIT simulation allows the study of a layer of growth rings. In general, the results
in Figures 7–12 prove the critical effect of the number of rings on the electric field distribution inside
of poplar wood. Besides, this effect is not trivial according to the radial electric field variation seen
in Figures 13–18. The electric field maxima varies with the number of the growth rings both, in the
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radial and longitudinal directions. A direct consequence of these results for heating applications is that
the thermal distribution inside wood would vary critically from one sample to another with different
thicknesses. For the calculations, two extreme cases of the permittivity variation between growth rings
(50% and 100%), according to the literature [28], have been studied. Comparing Figure 7, Figure 9,
and Figure 11 (50% dielectric variation) with Figures 8, 10 and 12 (100% dielectric variation) it can be
concluded that the effect of this variable is very important. For example, in Figures 7 and 8 it can be
observed that the most remarkable changes in the electric field distribution, are produced between
the 5-ring samples and the 15-ring samples, in both, the radial and the axial direction. This implies
that, even if two poplar samples have the same dimensions, their electric and thermal behavior can be
completed different.

In Figures 9–12 the influence of moisture on the distribution of the electric field inside poplar
wood is explored. According to these results, there are two main conclusions of this: the electric field
distribution is completely altered by the presence of moisture and the number of rings changes this
behavior in a non-predictable way. For example, in the five rings case, moisture produces a noticeable
central focusing effect making the wood sample similar to a metallic waveguide. On the contrary, the
10-ring case shows a completely opposite behavior, from a central distribution in the dry case to a
much attenuated radial distribution. The axial distribution is also noticeably altered. The implications
for heating applications are clear.

A detailed study of the radial electric field distribution is shown in Figures 13–18. In this set of
figures, the combined and complex interaction among the analyzed variables are more clearly seen.
The maximum of the electric field is displaced from the center to a different position depending on the
number of the growth rings. Also, the shape of the electric field distribution is greatly affected.
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Figure 12. Electric field distribution inside wet poplar wood with different values of the number of
growth rings with 100% permittivity variation at 3 GHz. Dielectric constant values were used with 28%
moisture content according to [27].
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Figure 15. Radial profile of the electric field for a wet poplar sample with a 50% dielectric constant
variation between growth rings. Dielectric constant values were used with 0% moisture content
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Figure 16. Radial profile of the electric field for a wet poplar sample with a 100% dielectric constant
variation between growth rings. Dielectric constant values were used with 0% moisture content
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Figure 17. Radial profile of the electric field for a wet poplar sample with a 50% dielectric constant
variation between growth rings. Dielectric constant values were used with 28% moisture content
according to [27].
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4. Conclusions

Semianalytical and numerical models of microwave propagation in wood have been performed.
The electromagnetic field distribution inside cylindrical wood is a complex phenomenon due to its
quasiperiodic ring structure. Both the number of growth rings and moisture content modify the
microwave behavior in complex and unexpected ways. The effects of grain angle and moisture have
also been considered, using two complementary approaches, semianalytical, and numerical. Grain
angle affects the value of the effective permittivity of wood and influences the radial distribution
of the electric field inside wood, changing the radial position of the electric field maximum slowly.
More critically, moisture completely alters both the radial and axial behavior of microwave propagation
inside poplar wood. Depending on the numbers of the growth rings, a cylindrical sample of poplar
wood performs like a metallic waveguide. The implications of these results for many applications of
microwaves for wood treatment and testing are clear. For example, optimization of heating wood in
microwave ovens would be a much more complex process than intuitively expected. Moreover, for
nondestructive in situ testing purposes, the interpretation of data could be greatly affected by these
heterogeneous focusing phenomena.

Our study is limited by several factors. Semianalytical calculations are very complex and
numerically demanding in the end, so they do not present many advantages over the numerical
ones, except for theoretical insight. The semianalytical method cannot address the effect of moisture,
but can study the grain angle. On the contrary, numerical simulations have no problem with water
content, but implementing helicoidally variations of the permittivity is complex. It is expected that
these results can be qualitatively and tentatively extrapolated to many species of wood, but in this
work, the calculated and simulated values correspond to poplar samples.
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