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Abstract: Camellia oleifera Abel., is an important woody plant, and its fruit contains high-quality edible
oil. Production of C. oleifera has significantly expanded over the last 20 years in China. Due to the lack
of appropriate information on nutrient management, its production has encountered low yield and
low oil quality problems. As nitrogen (N) is an essential nutrient and the most abundant in C. oleifera
tissues, the present study investigated effects of different ratios of nitrate (NO3

−) and ammonium
(NH4

+) on the growth of a cultivar Xianglin 27 at the seedling stage. Uniform seedlings were grown
in a soil-based substrate in containers and fertigated with solutions composed of six ratios of NO3

−

and NH4
+, respectively for five months. Results showed that C. oleifera prefers both NO3

− and NH4
+

at a ratio of 1:1. Seedlings receiving this solution had the highest total N in leaves and total dry
weight; elevated chrolophyll, soluble saccharide and protein contents as well as higher activities of
peroxidase (POD), superoxide dismutase (SOD), nitrate reductase (NR), glutamine synthetase (GS),
and glutamate synthase (GOGAT). Our study shows for the first time that N supply for producing
C. oleifera should be an equal ratio of NO3

− and NH4
+.

Keywords: Nitrate and ammonium ratios; Camellia oleifera; nitrogen forms; tea oil trees

1. Introduction

Camellia oleifera Abel., a member of the Theaceae, is an oil tree species that has been exclusively
cultivated in China due to its economic value [1]. Its fruit contains high-quality oil, commonly known
as tea oil or camellia oil, which has 82%–84% unsaturated fatty acids, 68%–77% monounsaturated
fatty acids, 67.7%–76.7% oleic acid, and 7%–14% polyunsaturated acid. The composition is similar
to that of olive oil [2], hence it is called eastern olive oil [3]. Tea oil has also been widely used for
cosmetic and medicinal purposes [4]. Furthermore, C. oleifera is tolerant to drought [5], and it can be
produced in a wide range of mountainous areas in subtropical regions. With the increasing demand
for self-sufficiency in cooking oil [3], the production of C. oleifera has significantly increased over the
last 20 years. The current cultivated area for C. oleifera is more than three million ha in China [6,7].
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The increasing production scope of tea oil trees, however, has encountered several problems
including the lack of appropriate nutrient management programs, low crop yield, and variable oil
quality [1,8]. Plant growth is highly dependent on mineral nutrient supply [9]. Among the essential
nutrients, nitrogen (N) is one of the most important macroelements that significantly affects plant
growth, development, and product quality [10]. Analysis of distribution of nutrients in different organs
of C. oleifera showed the most abundant element is N ranging from 3.2 to 12 g kg−1 compared to the
next most abundant, potassium, ranging from 3 to 6 g kg−1 [8]. Thus, N is critically important for the
growth of C. oleifera. Commercially, N is primarily applied in the form of nitrate (NO3

−), ammonium
(NH4

+) or urea (CO(NH2)2). Applied urea will be converted to NH4
+ in soils then absorbed by plants,

meaning that urea, although it is an organic N source, is considered the same as NH4
+ during the

absorption process [11]. A large body of evidence suggests that both rates and forms of N fertilizers
can affect plant growth and development [11–15]. In general, NO3

− is considered to be the main N
source for most crops [16], whereas plants adapted to acidic soils prefer NH4

+-N and those adapted to
high pH soils prefer NO3

−-N [9].
Current fertilizer programs for C. oleifera production have focused on the formulation of N, P2O5,

and K2O ratios and application rates [17,18]. Little attention has been given to the forms of N or the
ratio of N forms on C. oleifera growth. As C. oleifera has adapted to red-acidic soils with pH around
5 [19], we hypothesized that C. oleifera would prefer NH4

+ over NO3
− for its growth. The objective of

this study was to test this hypothesis using uniform seedlings of C. oleifera as a model. Seedlings were
fertilized with solutions comprised of six ratios of NO3

− and NH4
+ for five months. Plant growth

parameters and physiological characteristics were evaluated. Contrary to our hypothesis, C. oleifera
prefers both NO3

− and NH4
+ as N sources at a ratio of 1:1.

2. Materials and Methods

2.1. Experiment Site

The experiment was conducted at the experimental station of the National Engineering Research
Center for Oil-tea Camellia, Changsha city, Hunan province, China (113◦01′ E and 28◦06′ N).
The location has a subtropical monsoon climate with mild temperatures and distinct seasons.
The annual lowest, highest, and average temperatures are −12 ◦C, 40.6 ◦C, and 17.3 ◦C, respectively.
Annual average rainfall is approximately 1422 mm, the frost-free period is 275 days, and the annual
average relative humidity is 80%.

2.2. Plant Materials and Experimental Treatments

Uniform seedlings of Camellia oleifera ‘Xianglin 27′ were grown from seeds in early March 2015 and
transplanted to containers filled with a soil-based substrate (medium). The substrate was composed
of yellow earth soil with sand, silt, and clay in a ratio of 2:3:1, perlite, and peat in a 3:1:1 ratio based
on volume and had a pH of 5.8. The containers had a volume of 0.6 L with a height of 12 cm and
diameter of 8 cm. Seedlings were grown in a greenhouse with a maximum photosynthetic radiation of
1000 µmol m−2 s−1, temperature ranging from 20 to 25 ◦C, and relative humidity of 50%–80%.

To determine effects of different ratios of NO3
− and NH4

+ on C. oleifera growth, six solutions
were prepared weekly and used for fertigation (i.e., both fertilization and irrigation occurred at the
same time) of seedlings. All solutions consisted of 261.39 mg·L−1 K2SO4, 136.09 mg·L−1 KH2PO4,
221.98 mg·L−1 CaCl2, 120.37 mg·L−1 MgSO4, 1.38 mg·L−1 MnSO4, 2.86 mg·L−1 H3BO3, 0.12 mg·L−1

ZnSO4, 0.05 mg·L−1 CuSO4, 0.017 mg·L−1 Na2MoO4, 10.94 mg·L−1 FeSO4, and 7 µmol C2H4N4

(cyanoguanidine, a nitrification inhibitor) but varied in NO3
− and NH4

+ ratios as indicated in Table 1.
N concentration in each solution was 8 mM except the control treatment (T0) devoid of N.



Forests 2018, 9, 784 3 of 9

Table 1. Six ratios of NO3
− and NH4

+ used for studying effects of nitrogen forms on Camellia oleifera
‘Xianglin 27’ seedling growth.

Treatment NO3
−:NH4

+ Ratio Total N Concentration (mM) NaNO3 (mM) (NH4)2SO4 (mM)

T0 0:0 0.0 0.0 0.0
T1 1:0 8.0 8.0 0.0
T2 7:3 8.0 5.6 1.2
T3 1:1 8.0 4.0 2.0
T4 3:7 8.0 2.4 2.8
T5 0:1 8.0 0.0 4.0

After three months of growth, disease and pest free seedlings were selected and arranged in a
randomized complete block design with three replications, and each replication had 10 seedlings per
treatment. Seedlings were fertigated with six nutrient solutions, respectively. The fertigation started in
mid-June 2015, at a rate of 150 mL per container weekly. If additional irrigation was needed, seedlings
were irrigated with tap water. Besides fertigation, plants were well managed by pulling any weeds
by hand.

2.3. Seedling Growth Measurements

Canopy heights of seedlings and stem diameters at the ground level were recorded using rule
and Vernier caliper before fertigation and at the end of fertigation (November 2015). Canopy and stem
increases were calculated based on their differences between before and after fertigation. Before the
conclusion of the experiment, leaf samples were collected for analysis of physiological parameters
indicated below. Seedlings were then harvested by cutting shoots from the substrate surface, and roots
were recovered by inverting the containers in water, gently agitating the root system and washing the
roots free from the substrate. Roots and shoots were placed in paper bags, initially dried at 105 ◦C for
30 min, and then dried to a constant mass at 80 ◦C. Root and shoot dry weights were recorded.

2.4. Analysis of Physiological Parameters

Total N contents in leaves of seedlings were determined using the Kjeldahl method [20].
For analysis of chlorophyll content, enzymatic activity, and content of soluble saccharides and
proteins, leaf samples collected from each replication were immediately weighed and frozen in
liquid N. Chlorophyll a and b (Chl a and Chl b) were analyzed using the acetone-ethanol-mixture
method [21], soluble saccharides were assayed by anthrone colorimetry [22,23], soluble proteins were
tested using the Coomassie brilliant-blue G-250 staining method [24], peroxidase (POD) activity was
examined using the guaiacol method [25], superoxide dismutase (SOD) activity was analyzed by
the nitroblue-tetrazolium photoreduction method [26], nitrate reductase activity was determined by
spectrophotometry [27], and activities of N assimilation enzymes including nitrate reductase (NR),
glutamine synthetase (GS), and glutamate synthase (GOGAT) were assayed using spectrophotometry
methods [22,28]. All the analyses had three replicates.

2.5. Data Analysis

Plant growth data, dry weights, and physiological parameters mentioned above were subjected
to analysis of variance using SPSS 13.0 for Windows (SPSS, Chicago, IL, USA). When significant
differences occurred among treatments per parameter, means were separated using Fisher’s Protected
Least Significant Differences (LSD) at p < 0.05 level.

3. Results

Seedlings fertigated with different ratios of NO3
− and NH4

+ exhibited signficant differences in
plant canopy heights, stem diameters as well as dry weights and physiological parameters.
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3.1. Plant Growth and Dry Weights

Plant growth results including increase in canopy heights and stem diameters as well as shoot and
root dry weights, are presented in Table 2. Nutrient solutions with both NO3

− and NH4
+ enhanced

seedling growth. The greatest increase in canopy heights was observed in seedlings fertigated with
an equal ratio of NO3

− to NH4
+, which significantly differed from those supplied with T1, T2, and

T5 solutions. The equal ratio of NO3
− to NH4

+ also resulted in the greatest increase in stem diameter
as well as shoot, root, and total dry weight except for root dry weight of seedlings fertigated with T4
solution which was statistically similar to the seedlings fertigated with T3 solution.

Table 2. The growth and biomass accumulation of Camellia oleifera ‘Xianglin 27’ seedlings fertigated
with six nutrient solutions varying in NO3

− to NH4
+ ratios.

Treatment Canopy Height
Increase (cm)

Stem Diameter
Increase (mm)

Shoot Dry
Weight (g)

Root Dry
Weight (g)

Total Dry
Weight (g)

T0 (0:0) 5.20 ± 0.52 c 1.43 ± 0.04 c 0.83 ± 0.01 e 0.68 ± 0.03 d 1.52 ± 0.03 e
T1 (1:0) 7.83 ± 1.07 b 1.67 ± 0.12 b 1.11 ± 0.06 d 0.82 ± 0.05 c 1.93 ± 0.11 d
T2 (7:3) 9.03 ± 0.23 ab 1.86 ± 0.06 ab 1.25 ± 0.06 c 0.90 ± 0.06 b 2.16 ± 0.10 c
T3 (1:1) 10.53 ± 0.55 a 2.00 ± 0.18 a 1.49 ± 0.05 a 1.05 ± 0.05 a 2.54 ± 0.10 a
T4 (3:7) 8.97 ± 1.72 ab 1.71 ± 0.08 b 1.35 ± 0.04 b 0.99 ± 0.01 a 2.34 ± 0.05 b
T5 (0:1) 7.10 ± 1.22 b 1.58 ± 0.17 bc 1.17 ± 0.07 cd 0.83 ± 0.02 c 2.00 ± 0.09 cd

Different letters within a column represent significant difference at p < 0.05 level tested by Fisher’s Protected Least
Significant Differences (LSD).

3.2. Leaf Total Nitrogen Content

Total N contents of leaves increased from 8.6 g kg−1 in seedlings fertigated with a solution devoid
of N (T0) to 13.5 g kg−1 in seedlings supplied with an equal ratio of NO3

− to NH4
+ (T3) and then

decreased when seedlings were treated with NO3
− and NH4

+ at a ratio of 3:7 (Figure 1). There were
no significant differences in total N content among seedlings fertigated with T0, T1 or T5 solutions.
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Figure 1. Total nitrogen content in leaves of Camellia oleifera ‘Xianglin 27’ seedlings fertigated with six
nutrient solutions varying in NO3

− to NH4
+ ratios.

3.3. Chlorophyll Content

Chlorophyll (Chl) a contents were about three-fold higher than chl b in C. oleifera ‘Xianglin 27’
leaves regardless of treatments. However, chl a and b as well as total chl content were significantly
affected by fertigation (Table 3). Seedlings fertigated with an equal ratio of NO3

− and NH4
+ had chl a,

b, and total chl contents comparable to those fertigated with a solution with a 3:7 ratio of NO3
−:NH4

+
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(T4). Leaves of seedlings supplied with an equal ratio (T3) of NO3
− and NH4

+ had significantly higher
chl a and total chl than T0, T1, T2, and T5 and higher chl b than T0, T2, and T5.

Table 3. Leaf chlorophyll content based on fresh weight of Camellia oleifera ‘XL27’ seedlings fertigated
with six nutrient solutions varying in NO3

− to NH4
+ ratios.

Treatment Chl a (mg·g−1 FW) Chl b (mg·g−1 FW) Total chl (mg·g−1 FW)

T0 (0:0) 0.95 ± 0.11 b * 0.31 ± 0.03 d 1.26 ± 0.14 b
T1 (1:0) 0.99 ± 0.09 b 0.35 ± 0.02 abc 1.34 ± 0.09 b
T2 (7:3) 0.97 ± 0.03 b 0.33 ± 0.02 bcd 1.30 ± 0.05 b
T3 (1:1) 1.41 ± 0.17 a 0.36 ± 0.01 a 1.76 ± 0.17 a
T4 (3:7) 1.08 ± 0.04 ab 0.36 ± 0.01 a 1.44 ± 0.05 ab
T5 (0:1) 0.97 ± 0.03 b 0.32 ± 0.01 cd 1.29 ± 0.04 b

* The values represent mean chlorophyll (chl). Different letters within a column represent significant differences at a
level of p < 0.05 tested using Fisher’s LSD.

3.4. Peroxidase (POD) and Superoxide Dismutase (SOD) Activities

Seedlings fertigated with an equal ratio of NO3
− and NH4

+ exhibited the highest activities of both
SOD and POD (Table 4). But the SOD activity in T3-treated leaves was not statistically different from
the other treatments except for that of T0 that was much lower than that of T3 treatment. The POD
activities in leaves of seedlings receiving T2 and T3 solutions were similar, but POD activity in leaves
of seedlings supplied with T3 was significantly greater than the other treatments.

Table 4. Peroxidase (POD) and Superoxide Dismutase (SOD) activities in leaves of Camellia oleifera
‘Xianglin 27’ seedlings fertigated with six nutrient solutions varying in NO3

− to NH4
+ ratios.

Treatment SOD (U·g−1 FW) POD (U·g−1 FW·min−1)

T0 (0:0) 314.64 ± 14.37 b 754.29 ± 248.79 b
T1 (1:0) 334.09 ± 12.02 ab 950.04 ± 252.69 b
T2 (7:3) 356.66 ± 6.54 ab 1195.94 ± 385.13 ab
T3 (1:1) 367.01 ± 15.63 a 1579.03 ± 341.98 a
T4 (3:7) 359.07 ± 0.80 ab 982.99 ± 108.93 b
T5 (0:1) 334.50 ± 28.31 ab 814.91 ± 224.00 b

Different letters within a column represent significant differences at a level of p < 0.05 tested using Fisher’s LSD.

3.5. Nitrate Reductase (NR), Glutamine Synthetase (GS), and Glutamate Synthase (GOGAT) Activities

The application of T3 nutrient solution resulted in the highest activity of NR although it was not
significantly different from T1 and T2 treatments; it did differ significantly from T4 and T5 (Table 5).
The highest activity of GS was detected in leaves of seedlings fertigated with T2 (NO3

− to NH4
+ at a

ratio of 7:3), followed by those treated with T3 and T4 solutions. Activities of GS in seedlings fertigated
with the remaining solutions were much lower than the mentioned solutions. In general, increasing the
ratio of NH4

+ caused increased activities of GOGAT in seedling leaves. Seedlings fertigated without
NH4

+ had significantly lower activities of GOGAT than those fertigated with NH4
+.

Table 5. Nitrate Reductase (NR), Glutamine Synthetase (GS), and Glutamate Synthase (GOGAT)
activities in leaves of Camellia oleifera ‘Xianglin 27’ seedlings fertigated with six nutrient solutions
varying in NO3

− to NH4
+ ratios.

Treatment NR (µg NO3
− g−1 FW h−1) GS (µmol·g−1 FW h−1) GOGAT (µmol·g−1 FW h−1)

T0 (0:0) 29.43 ± 1.75 c 32.97 ± 0.75 d 13.80 ± 0.64 d
T1 (1:0) 36.12 ± 4.49 ab 44.77 ± 2.88 c 17.60 ± 1.24 c
T2 (7:3) 39.06 ± 1.67 ab 61.84 ± 2.98 a 21.26 ± 2.23 b
T3 (1:1) 42.51 ± 4.95 a 57.65 ± 2.28 b 25.48 ± 1.10 a
T4 (3:7) 32.98 ± 4.82 bc 54.43 ± 0.68 b 26.65 ± 1.11 a
T5 (0:1) 29.05 ± 2.53 c 48.02 ± 1.31 c 25.50 ± 0.75 a

Different letters within a column represent significant differences at a level of p < 0.05 tested using Fisher’s LSD.
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3.6. Contents of Soluble Saccharides and Soluble Proteins

Soluble saccharide and protein contents generally increased with the increased ratios of NH4
+,

and then decreased when NH4
+ supply was above 50% (Table 6). The highest soluble saccharides

occurred in leaves of seedlings fertigated with an equal ratio of NO3
− and NH4

+. The highest soluble
proteins occurred in leaves of seedlings fertigated with either T3 or T4 nutrient solutions, which were
significantly different from those of the other treatments.

Table 6. Soluble saccharide and protein contents in leaves of Camellia oleifera ‘Xianglin 27’ seedlings
fertigated with six nutrient solutions varying in NO3

− to NH4
+ ratios.

Treatment Saccharides (% FW) Soluble Proteins (mg·g−1 FW)

T0 (0:0) 3.92 ± 0.33 c 7.34 ± 0.81 d
T1 (1:0) 4.62 ± 0.30 b 9.99 ± 0.65 c
T2 (7:3) 4.96 ± 0.43 b 11.57 ± 0.90 b
T3 (1:1) 5.68 ± 0.32 a 14.27 ± 0.32 a
T4 (3:7) 5.05 ± 0.26 b 13.72 ± 0.83 a
T5 (0:1) 4.65 ± 0.24 b 11.18 ± 0.54 bc

Different letters within a column represent significant differences at a level of p < 0.05 tested using Fisher’s LSD.

4. Discussion

Camellia oleifera is one of four major woody oil plants in the world. Its production has significantly
increased over the last 20 years in China and is expected to expand from 3.67 million ha to 4.67 million
ha by 2020 [29]. The increased production requires science-based information on nutrient management.
N is an essential nutrient for plant growth, and large quantities of N fertilizers are applied to ensure
high crop productivity [30]. Commercial N fertilizers are comprised of NO3

−, NH4
+ or CO(NH2)2.

N form or the ratios of NO3
− and NH4

+ can significantly affect plant growth and development [31].
How different ratios of NO3

− and NH4
+ could affect C. oleifera growth has not been investigated thus

far. The present work studied the effects of different ratios of NO3
− and NH4

+ on seedling growth of a
C. oleifera cultivar Xianglin 27. Results showed that canopy height and stem diameter increased, and
shoot and root dry weights were the highest for the seedlings fertigated with the solution containing
an equal ratio of NO3

− and NH4
+. The increased plant biomass was accompanied with enhanced

uptake of N, higher chlorophyll content, increased activity of SOD, POD, NR, GS, and GOGAT as well
as the highest concentration of saccharides and soluble proteins in leaf tissue studied.

Our results differ from the conventional thought that plants adapted to acidic soils prefer NH4
+-N.

This is based on the fact that NH4
+ has a positive charge, and when roots take up NH4

+, an identically
charged molecule, in this case H+, is released from roots to maintain a balanced pH inside the plant
cells. The release of H+ keeps the rhizosphere pH at acidic levels, thus maintaining a suitable pH
environment for root growth. Another reason is that NH4

+ is generally a major form of N in acidic
soils. In a study of N forms and root-zone pH on growth and N uptake of tea (Camellia sinensis (L.)
O. Kuntze) plants, a close relative of C. oleiferea that is also tolerant to acidic soils, Ruan et al. [32]
reported that plants fertilized with NO3

− exhibited yellowish leaves and reduced growth compared
to those receiving NH4

+ or NO3
− and NH4

+ regardless of root-zone pH. Absorption of NO3
− was

2 to 3.4 fold slower than NH4
+ when supplied separately, and 6 to 16 fold slower when supplied

simultaneously. Additionally, supply of NO3
− reduced chlorophyll content and GS activity [32].

Coffee plants (Coffea arabica L.) fed with NH4
+ also absorbed and assimilated more N than plants fed

with NH4
+ and NO3

− or NO3
− only [33]. Our study did not examine the specific absorption rate of

NO3
− and NH4

+ but showed that seedling growth of C. oleiferea was the greatest when NO3
− and

NH4
+ were applied at the 1:1 ratio, and NO3

− and NH4
+ applied separately had much lower dry

weight accumulation and lower contents of total N, chlorophyll, soluble saccharides and proteins as
well as lower enzymatic activities of POD, SOD, NR, GS, and GOGAT. Our results agreed with those
for C. sinensis that application of both NH4

+ and NO3
− increased N uptake and increased biomass
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accumulation [32] but differed from those that held that application of NH4
+ alone was equal or better

than the application of NH4
+ or NO3

−.
Recently, increasing evidence has suggested that mixtures of NO3

− and NH4
+ are beneficial for

plant growth compared to NO3
− or NH4

+ alone [31], a finding which may be attributed to several
factors: (1) Nitrate is a nutrient, and plants have developed a whole set of systems for uptake, transport,
and assimilation of NO3

−. (2) There is a complementary effect between NO3
− and NH4

+ as reported
by Lima et al. [34]. Application of NH4

+ stimulates lateral root branching, whereas NO3
− stimulates

lateral root elongation. When NO3
− and NH4

+ are applied together, concomitant enhancement of
branching and elongation of lateral roots occurs, suggesting that the application of NO3

− and NH4
+ has

local, complementary effects on root growth [31]. (3) The presence of NO3
− enhances NH4

+ uptake and
decreases NH4

+ efflux. A study with rice (Oryza sativa L.) showed that an increased total NH4
+ uptake

occurred concomitantly with a decrease in total NH4
+ efflux in the presence of NO3

−, thus enhancing
net NH4

+ uptake [35]. (4) Nitrate is a local and systemic signal molecule. A wide range of genes can
be regulated by NO3

−, which significantly affect plant growth and development [36]. Although the
present study did not investigate N effects at molecular levels, our results suggest that the increased
uptake of N in seedlings fertigated with an equal ratio of NO3

− and NH4
+ could enhance NR and

GS/GOGAT cycle, increase chlorophyll content and Rubisco activity and thus raise soluble saccharides
and proteins, and subsequently plant growth, i.e., dry matter accumulation. Additionally, SOD and
POD can scavenge reactive oxygen species (ROS), protect cell membrane structure, and maintain the
ROS metabolism balance in plants. The increased activities of SOD and POD may safeguard plants
from ROS damage. (5) Root-associated microbes could be another factor influencing N uptake, such as
mycorrhizal fungi [37]. Roots of Rhododendron fortunei Lindl., also an acid-loving plant, can effectively
use NO3

− due to the presence of ericoid mycorrhizal fungus (Oidiodendron maius) that can fully utilize
NO3

− [38,39]. It is unknown if C. sinensis and C. oleiferea have different rhizosphere mycorrhizal fungi
or other microbes. Nevertheless, further research to test the aforementioned possibilities is needed,
and information gathered from such tests will improve current nutrient management programs for
C. oleifera production.

5. Conclusions

Camellia oleifera is a traditional woody oil plant in China and has been cultivated for more than
2000 years. Recent recognition of its healthy value as a cooking oil and its adaptation to a wide range
of subtropical forest soils has renewed interest in its cultivation. As C. oleifera is an acid-loving plant,
farmers have been using chemical fertilizers with NH4

+ or urea as main sources of N to produce this
crop. As a result, production of C. oleifera based on farmers’ experience has not resulted in significant
improvement in crop yield. Thus, there is an urgent need for science-based information on nutrient
management. This study determined how different ratios of NO3

− and NH4
+ could affect growth of

C. oleifera seedlings. Results show that C. oleifera seedlings prefer both NO3
− and NH4

+ with a ratio
of 1:1. Seedlings receiving NO3

− and NH4
+ at this ratio had highest total N content and dry weight

accumulation; elevated chrolophyll, soluble saccharide and protein contents as well as higher activities
of POD, SOD, NR, GS, and GOGAT. Our results show that growth of C. oleifera seedlings is enhanced
using fertilizers with an equal ratio of NO3

− and NH4
+. Further study on evaluating mature plant’s

responses to different ratios of NO3
− and NH4

+ will be conducted to determine if they also require
such a ratio of NO3

− and NH4
+.
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