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Abstract: Biomass is a key biophysical parameter used to estimate carbon storage and forest
productivity. Spatially-explicit estimation of biomass provides invaluable information for carbon
stock calculation and scientific forest management. Nevertheless, there still exists large uncertainty
concerning the relationship between biomass and influential factors. In this study, aboveground
biomass (AGB) was estimated using the random forest algorithm based on remote sensing imagery
(Landsat) and field data for three regions with different topographic conditions in Zhejiang Province,
China. AGB distribution and change combined with stratified terrain classifications were analyzed to
investigate the relations between AGB and topography conditions. The results indicated that AGB in
three regions increased from 2010 to 2015 and the magnitude of growth varied with elevation, slope,
and aspect. In the basin region, slope had a greater influence on AGB, and we attributed this negative
AGB-elevation relationship to ecological forest construction. In the mountain area, terrain features,
especially elevation, showed significant relations with AGB. Moreover, AGB and its growth showed
positive relations with elevation and slope. In the island region, slope also played a relatively more
important role in explaining the relationship. These results demonstrate that AGB varies with terrain
conditions and its change is a consequence of interactions between the natural environment and
anthropogenic behavior, implying that biomass retrieval based on Landsat imagery could provide
considerable important information related to regional heterogeneity investigations.
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1. Introduction

Biomass is an important biophysical parameter used to understand carbon dynamics on the
background of global climate change, and the spatiotemporal estimation of biomass will provide
invaluable information for carbon calculation and scientific forest management [1,2]. In the past few
decades, remote sensing has been increasingly used to estimate aboveground biomass because of
its macroscopical, nondestructive, and efficiency advantages compared to time- and space-limited
field survey methods [3,4]. Historically, the field-measured biomass has been usually calculated by
establishing species-specific allometric equations based on height and diameter at breast height (DBH)
gauged within standardized plots, which provide the basic samples for remote sensing-based biomass
simulation [5,6]. Spatiotemporal biomass retrieval based on remote sensing has been increasingly
implemented, because when compared to single-period biomass distribution, it provides more details
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for biomass change detection and further exploration of the influencing mechanisms [7]. Among
various remote sensing data sources, Landsat imagery has acquired wide applications in biomass
estimation due to its open-access data availability, appropriate spatial resolution, and abundant
history archive [3,8]. Multiple potential features can be derived from the existing Landsat imagery,
including multispectral bands, vegetation indices, texture bands, and time-sequence data, which
provide abundant information for biomass retrieval [9–11].

Statistical methods and radiative transfer models are two common methods used to quantify
biomass spatial distributions [12,13]. Radiative transfer models usually describe mechanisms
using combinations of complicated parameters, which makes the process difficult to implement.
Comparatively speaking, statistical methods realize this prediction processes by establishing
relationships more directly. Among the most advanced approaches, machine learning methods have
received considerable attention in recent years [14,15]. Compared to traditional regression algorithms
such as multiple linear regression, machine learning algorithms have no strict assumptions on input
variables or relationships between response variables and explanatory variables [16]. Support vector
machine, random forest, and k-nearest neighbor are the most often implemented algorithms that result
in satisfactory prediction [17–19]. Random forest (RF) is frequently selected as the regression method
for biomass retrieval because of its outstanding performance, for example with higher prediction
accuracy [20,21]. The difference between RF and other state-of-the art machine learning methods is
that RF requires fewer parameters, but provides more accurate predictions [22].

Varied natural environments and human activities greatly influence changes in AGB
(aboveground biomass). In the anthropogenic era, forest management has a profound impact on
forest ecosystem dynamics. China’s Natural Forest Conservation Program has increased the total
biomass in China by persistent afforestation and reforestation [7]. At the same time, the influence of
natural conditions on biomass change has also been investigated. Sattler et al. found that biomass
could get different accumulations in sloped and flat regions after afforestation [23]. However, Lee et al.
stated that there were no significant relationships between biomass and topographical factors in that
intact lowland forest [24]. Therefore, the biomass distribution and change influenced by topography
should be further explored. Although Du et al. pointed out that the biomass spatial distribution in
Zhejiang Province was related to topographical factors including altitude and slope [25], biomass
heterogeneity caused by topography across different districts has not been investigated, especially
when combined with remote sensing techniques.

The impact of hierarchical elevation and ecological forests on biomass spatiotemporal change has
been explored previously [9]. In this study, the objectives are: (1) based on the field measurements in
2010 and 2015, to map the distribution of aboveground biomass under different topographic conditions
in Zhejiang Province in both years; (2) to inspect further topographical factors including slope and
aspect on AGB and its change; and (3) to reveal the regular pattern within different regions under
discrepant natural environment and human conditions. The flowchart of this research was displayed
in Figure 1.
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wood resources in the past several decades, and now, a majority of the land is covered with secondary 
forests. The local government has made great efforts to protect forests. As a result, the total forest 
coverage in the province has reached 60.91%. To investigate the influence of different topographic 
factors on AGB and its change, three counties named Wuyi County (administered by Jinhua City), 
Xianju County (belonging to Taizhou City), and Dinghai District (governed by Zhoushan City) were 
selected as the study areas (Figure 2). They are representative of basin, mountain, and island regions, 
which are located in the middle, southeast, and northeast of Zhejiang Province, respectively.  

Figure 1. The flowchart of this research.

2. Materials and Methods

2.1. Study Area

Zhejiang Province is located in the southeastern region of China, ranging from 118◦02′ E–123◦08′ E,
27◦03′ N–31◦11′ N, with a subtropical monsoon climate. The annual average temperature is between
15 and 18 ◦C and the annual precipitation is between 1100 and 2000 mm. Being one of the most
developed provinces with regard to the economy in China, it has consumed a large number of wood
resources in the past several decades, and now, a majority of the land is covered with secondary forests.
The local government has made great efforts to protect forests. As a result, the total forest coverage
in the province has reached 60.91%. To investigate the influence of different topographic factors on
AGB and its change, three counties named Wuyi County (administered by Jinhua City), Xianju County
(belonging to Taizhou City), and Dinghai District (governed by Zhoushan City) were selected as the
study areas (Figure 2). They are representative of basin, mountain, and island regions, which are
located in the middle, southeast, and northeast of Zhejiang Province, respectively.

2.2. Field-Measured Data

Field investigations were carried out in 2010 and 2015 by Zhejiang Academy of Forestry. Sample
plot design and selection were completed by taking into account the local geographical environment
factors across the whole province. The size of each plot was 20 m × 20 m for trees, with three 2 m
× 2 m subplots set in the diagonal line of each plot for shrubs and grasses [14]. The total biomass in
each plot was calculated by summing the biomass of all trees, shrubs, and herbs, which was further
defined as the final aboveground biomass (AGB) with a unit of Mg/ha. AGB values of broadleaved
forests, coniferous, and broadleaved mixed forests, shrubs, bamboo forests, pine forests, and Chinese
fir forests were calculated using measured DBH and height values embedded in specific allometric
equations developed by Yuan et al. [26].

Quadrats outside the forest region and administrative boundary were deleted after checking their
positions on remote sensing images and Google Earth based on visual interpretation. The outliers
were selected and removed using the Pauta method, also named 3σ (standard deviation) measurement,
by calculating the mean and variance values [20]. The statistics of the final dataset for subsequent
analysis are shown in Table 1.
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Table 1. Statistics of field-based aboveground biomass (Mg/ha).

Statistic
Wuyi County Xianju County Dinghai District

2010 2015 2010 2015 2010 2015

Number of plots 130 130 49 49 43 43
Mean 91.22 99.37 79.07 93.78 87.96 112.81
Max 188.29 212.01 131.92 144.51 184.64 299.81
Min 20.32 16.85 7.71 13.28 3.38 5.38
SD 38.61 41.68 27.90 31.51 50.74 66.74

2.3. Remote Sensing Data

Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land Imager (OLI) images (L1T)
were downloaded from the United States Geological Survey (USGS) website [27]. Compared to the
selected multispectral bands with a spatial resolution of 30 m, the thermal infrared channels for TM
(120 m) and OLI (100 m) were abandoned for their coarser resolution. The first blue band (0.43–0.45 µm)
of Landsat 8 OLI was removed to keep the bands consistent with Landsat 5 TM. The dates of the
acquired images were almost in the same season by considering the phenology. Nevertheless, limited
by the availability of cloudless images, the selections were based on the hypothesis that there was
no significant biomass difference between imagery acquisition and field investigation. Detailed
information about the Landsat images is listed in Table 2.

Digital Elevation Model (DEM) data were acquired from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) V2 product with
a spatial resolution of 30 m. Based on the DEM data, elevation, slope, and aspect were generated as
the three basic geomorphology features. Administrative boundaries, present land use maps, forest
maps, Google earth images, and socioeconomic statistics were collected as additional datasets.
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To reduce the impact of the atmosphere, radiometric calibration was completed by inputting gain
and offset information from the attached files, and an atmospheric correction using fast line of sight
atmospheric analysis of spectral hypercubes (FLAASH) was executed. C correction was adopted as
the topographic correction method to reduce the impact of terrain effects, especially for regions with
shady slopes.

Table 2. Landsat imagery acquisition information.

Study Area Path/Row Sensor Imagery Acquisition Time

Dinghai District 118/39 TM5
OLI

17 July 2009
3 August 2015

Wuyi County 119/40 TM5
OLI

24 May 2010
13 October 2015

Xianju County 118/40 TM5
OLI

28 July 2007
20 July 2016

2.4. Biomass Estimation from Remote Sensing

2.4.1. Feature Derivation

Consequently, the pixels containing corresponding sample plots were selected to link the spectral
information of Landsat imagery with the biomass density of quadrats based on the hypothesis that there
should be no significant difference between the biomass per area in the 20 m × 20 m field plots and
their position-homologous 30 m × 30 m Landsat pixels. Candidate predictor variables were extracted
from the remote sensing imagery specific to previous studies, including multispectral bands, vegetation
indices, and texture information. The corrected Normalized Difference Vegetation Index (NDVIc),
incorporating shortwave infrared bands (SWIR), was calculated [28]. Three components, including
brightness, greenness, and wetness, were also derived through the tasseled cap (TC) transformation [29].
Texture variables were also extracted using the gray-level co-occurrence (GLCM) method.

2.4.2. Machine Learning Method

Biomass data selected from field plots were considered as the response variable, and derivatives
from remote sensing imagery were treated as predictive variables. Random forest was selected as
the prediction method to establish the relationship between AGB and derivatives because numerous
researchers have testified to this algorithm’s outstanding performance in biomass estimation [5,20,30].
The algorithm randomly selects variables at each node in the regression and classification tree and uses
the bootstrap method to construct training samples without pruning. During this process, 2/3 samples
are usually selected as training data, and the others are treated as validation data, which is also called
“out-of-bag” [22]. The random selection of samples and variables makes the prediction results variable,
but efficient. There are two important parameters, named mtry and ntree, that should be adjusted
during the modeling process [31]. ntree controls the number of trees and is usually set to 500, while
mtry determines the number of features and is usually set to 1/3 of the total number of input features.
In addition, random forest is capable of estimating the relative importance of input features, which can
be indicated by two built-in indices named %IncMSE and IncNodePurity. %IncMSE refers to Mean
Decrease Accuracy and is calculated by constructing each tree of an ensemble with and without the
specific variable. For all trees, the differences in error of these two variants are recorded, averaged,
and normalized by their standard deviation [32,33]. It has been used in many previous studies [22]
and was adopted in the current study.

2.4.3. Precision Evaluation

Ten-fold cross-validation was selected as the accuracy assessment approach. It divided the dataset
into 10 groups. Once one of the groups was selected as the validation set, the other groups were treated
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as the training set each time. The process was repeated 10 times until all the groups had been traversed.
Random forest modeling and accuracy assessment were implemented in the R 3.5.1 © open source
software through the “caret” package [34]. R2 values indicating the variance in the response variable
explained by the predictor variables were computed to evaluate modeling accuracy. Furthermore,
scatter diagrams of predicted and field-measured biomass values were plotted.

2.5. AGB Mapping and Spatio-Temporal Characteristic Analysis

To improve the accuracy of identification, a hierarchical system with six categories (0–30, 30–60,
60–90, 90–120, 120–150, >150 Mg/ha) used in Zhao et al.’s study was applied to the estimated AGB
maps in all regions [6]. Simultaneously, topographic variables including elevation, slope, and aspect
were classified into different levels by referring to Du et al.’s work [25]. Elevation was reclassified
with an interval of 200 m for Wuyi and Xianju. Considering the relative lower elevation in Dinghai
District, an interval of 50 m was set by consulting the work of Pan et al. [35]. In terms of slope and
aspect, six grades of slope (0–5◦, 5–15◦, 15–25◦, 25–35◦, 35–45◦, and >45◦) and eight categories of aspect
(north, northeast, east, southeast, south, southwest, west, northwest) were adopted to investigate the
influence of slope and aspect on AGB distribution and its change. Meanwhile, mean values for each
category were calculated from the estimated AGB maps for comparison. Besides, regression methods
were used to check whether there was significant correlation between AGB/change and corresponding
topography variables.

3. Results

3.1. The Importance Rank of Variables

Due to the randomness of the random forest algorithm, all the modeling process had to be
repeated 20 times [20,36]. To investigate the performance of different variables involved in biomass
estimation, %IncMSE were normalized for more convenient comparison [36], and the top 10 variables
participated in the modeling process in three regions were selected to form the rank of the most
important variables shown in Figure 3. Among all the selected variables, NDVIc was always selected
as the most significant predictor in 2010, but the SWIR band (OLI Band 6) and derivatives from tassel
transformation were among the best in 2015.

3.2. Accuracy Assessment

All the samples were used to predict the AGB as a previous study had found that using all
samples, when compared to a smaller sample size, was propitious to biomass estimation [5]. R2 were
calculated to inspect the modeling accuracy (Figure 4). It can be seen that R2 values fluctuated with
different magnitudes, where the estimation in 2010 in Wuyi County (blue, solid line) obtained the
best performance, while the prediction in Dinghai (green) showed relatively lower accuracy. Besides,
Figure 5 shows the scatter plots by using the simple linear regression method for estimated AGB and
field measurements. Limited by the total number of samples, Xianju and Dinghai had lower R2 values
than Wuyi, but all values of R2 were beyond 0.8. Meanwhile, underestimation of the values of the
highest biomass and overestimation on the values of the lowest biomass cannot be ignored.

3.3. Bitemporal Distribution and Change of Aboveground Biomass

When inspecting the spatial change in different periods, Figure 6 showed that the overall AGB
in three regions increased from 2010–2015. AGB values below 30 Mg/ha accounted for a relatively
small proportion in all the regions, which were mostly distributed in water areas and construction
lands (when compared to the land use map, but not shown here). Simultaneously, AGB values
beyond 150 Mg/ha also occupied a low percentage, and AGB in most regions changed in the range
of 30–120 Mg/ha. Moreover, AGB in Dinghai District increased evidently, almost covering the
whole region.
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The topographic features in the three regions in Table 3 indicated that Dinghai District, occupying
the smallest area, had the lowest mean values of elevation, slope, and aspect, while Xianju County,
covering the largest area, owned the highest mean values. Meanwhile, Wuyi and Xianju Counties
had higher mean values of AGB than Dinghai District had both in 2010 and 2015. However, the AGB
in Xianju County acquired the least increase with the minimum increase rate, and Dinghai had the
highest increase rate of AGB.

Table 3. Basic information and AGB change in three regions.

Regions Area
(km2)

Elevation
(m)

Slope
◦

Aspect
◦

AGB (Mg/ha) Increase
(Mg/ha)

Increase Rate
(%)2010 2015

Wuyi County 1583.13 383.83 16.01 177.23 91.18 106.23 15.05 16.51
Xianju County 1999.78 408.71 19.18 179.83 79.55 88.10 8.55 10.75

Dinghai District 534.40 62.97 10.87 169.44 70.59 83.23 12.64 17.91
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3.4. Spatiotemporal Biomass Change in the Three Regions

3.4.1. AGB Change in Wuyi County

Figure 7 showed that the relations between AGB/change and terrain features in Wuyi County
had different trends. When the elevation became higher, AGB gradually grew until the elevation
reached 900 m, then it started to decrease with higher elevation. This situation took place both in
2010 and 2015. Although in general, AGB increased with higher elevation, the magnitude of biomass
increase was getting smaller (Figure 7a). In terms of slope (Figure 7b), a higher slope possessed higher
biomass values, but a steeper slope made lower AGB increase, especially when the slope was higher
than 45◦; AGB in 2015 was obviously smaller than that in 2010. As for the aspect, Figure 7c shows
that the mean values of AGB were almost similar in both years; even the change during this period
in different aspects was almost the same. The radar chart (Figure 7d) provides more information to
understand the AGB distribution characteristics for eight aspects, where all the octagons had nearly
equal angles. No significant AGB difference could be found for different aspects, which was verified
by the regression methods displayed in Table 4. It was also demonstrated that the magnitude of AGB
increase had significant negative correlations with elevation and slope.
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Figure 7. AGB/change within the stratified topography in Wuyi County: (a) AGB/change with
elevation; (b) AGB/change with slope; (c) AGB/change with aspect; (d) radar chart of AGB/change
with aspect.

Table 4. Regression results between AGB/change and terrain features in Wuyi County.

Year
Elevation Slope Aspect

R2 p-Value Sig. R2 p-Value Sig. R2 p-Value Sig.

2010 0.28 0.1817 – 0.69 0.0393 * 0.35 0.1243 –
2015 0.00 0.1470 – 0.45 0.1470 – 0.16 0.3330 –

2010–2015 0.77 0.0044 ** 0.85 0.0085 ** 0.20 0.2658 –

Note: * significant at the 0.05 level, ** significant at the 0.01 level, – insignificant.

3.4.2. AGB Change in Xianju County

The relation between AGB/change and terrain features in Xianju County is displayed in Figure 8.
Figure 8a,b indicates that biomass increased with higher elevation and a steeper slope both in 2010
and 2015, but Figure 8c states that aspect had different relationships with biomass in these two years.
Combined with the results in Table 5, AGB and its increase had a positive relation with elevation and
slope. Meanwhile, AGB had a significant negative relation with aspect in 2010, but the relationship
became insignificant in 2015 (Figure 8c). On the basis of the result in the radar chart (Figure 8d), AGB
acquired a higher increase in magnitude in the western aspects.
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Figure 8. AGB/change within the stratified topography in Xianju County: (a) AGB/change with
elevation; (b) AGB/change with slope; (c) AGB/change with aspect; (d) radar chart of AGB/change
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Table 5. Regression results between AGB/change and terrain features in Xianju County.

Year
Elevation Slope Aspect

R2 p-Value Sig. R2 p-Value Sig. R2 p-Value Sig.

2010 0.69 0.0410 * 0.68 0.0444 * 0.56 0.0324 *
2015 0.92 0.0026 ** 0.79 0.0171 * 0.31 0.1493 –

2010–2015 0.94 0.0016 ** 0.86 0.0077 ** 0.65 0.0152 *

Note: * significant at the 0.05 level, ** significant at the 0.01 level, – insignificant.

3.4.3. AGB Change in Dinghai District

From Figure 9, different relations can be found between AGB/change and three topographic
factors. Connecting the results of Figure 9a to Table 6, it can be seen that AGB and its change increased
with high elevation, but in 2010 and from 2010–2015, the linear correlations were not significant. When
inspecting the slope, AGB generally increased with higher slope in each year, but when the slope
became steeper, AGB changed with a lower increase un magnitude, especially when the slope was
higher than 50◦; AGB in 2015 was smaller than 2010 (Figure 9b). Although Figure 9c revealed that
in the south aspect, AGB had the lowest value both in 2010 and 2015, the regression results (Table 6)
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affirmed that aspect had no significant relations with AGB in two years, and AGB kept at a relatively
steady level during this period.
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Table 6. Regression results between AGB/change and terrain features in Dinghai District.

Year
Elevation Slope Aspect

R2 p-Value Sig. R2 p-Value Sig. R2 p-Value Sig.

2010 0.22 0.2385 – 0.90 0.0041 ** 0.05 0.5934 –
2015 0.69 0.0109 * 0.49 0.1217 – 0.05 0.5822 –

2010–2015 0.45 0.0693 – 0.78 0.0202 * 0.01 0.7868 –

Note: * significant at the 0.05 level, ** significant at the 0.01 level, – insignificant.

3.4.4. Comparison of AGB/Change in Three Regions

To investigate the AGB difference between the three terrain regions scientifically, the values of
AGB/change were compared under the same assessment system using a unified stratified classification
(Figure 10). Figure 10a shows that the mountains in Wuyi County had the highest elevation beyond
1000 m and Dinghai District held the lowest elevation. However, Xianju County always possessed
the highest AGB in each subclass with a considerable magnitude of increase. AGB change in Wuyi
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in the period from 2010–2015 showed a decrease tendency when the elevation was higher, while in
the other two regions, AGB obtained the opposite trend. In terms of slope, Xianju stood out for its
notably higher AGB in 2015 among all the stratifications. Besides, when the slope became steeper, AGB
increased with less magnitude in Wuyi and Dinghai, and it even became a negative number when the
slope was larger than 45 degrees. However, the increase of AGB in Xianju kept growing during this
period, independent of the change of slope (Figure 10b). As for the aspect, it can be observed from
Figure 10c that Wuyi had the highest AGB and Dinghai had the lowest AGB in each aspect, both in
2010 and 2015. Furthermore, three regions all achieved increased AGB in all aspects, with Wuyi having
the highest magnitude, but Xianju holding the least growth in each aspect.
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4. Discussion

4.1. Comparison of Variable Importance

The relative importance of different variables involved in the modeling process is normalized and
compared in Figure 3. Among the most important variables in 2015, except for that in Xianju, SWIR
(OLI Band 6) held relatively higher score values of %IncMSE, which can be explained by the reason that
SWIR is more sensitive to moisture and shade components inherent in the forest stand structure and
less impacted by atmospheric conditions [6,37]. Moreover, NDVIc incorporating SWIR acquired better
performance in 2010 than it did in 2015 for all regions, which suggested that it would be apt to support
the hypothesis that this variable was more suitable for open forest stands [28,38]. The preceding
presentation showed that AGB generally increased from 2010–2015, while here, the relative importance
of NDVIc descended on the whole. In terms of tasseled cap, its components have been widely used
in biomass estimation [14,21,39]. Brightness, greenness, and wetness were successively selected
as important predictor variables, similar to other Landsat-related biomass estimation research [40].
However, it has been stated that Landsat 8 has a refined near-infrared spectral band for more accurate
spectral acquisition when compared to the Landsat former series [11], but the advantage in the
near-infrared band of OLI Band 5 over TM Band 4 remains to be further investigated.

4.2. The Effect of Forest Policy on Biomass Spatiotemporal Variations

The total afforested area in Zhejiang Province increased from 2010–2012, but slightly decreased
from 2013–2015 (Table 7). In addition, the total forestry production value increased from 2010–2015
(Figure 11). This implies that afforestation in the future will be limited by the finite area of land
resources combined with rapid socioeconomic consumption, which indicates that the configuration
characteristic of Zhejiang forests will change from quantity augmentation to quality improvement.
Biomass is defined as the total amount of organic matter present at a given time per unit area and is
the foundation of energy and nutrient exchange for forest ecosystem. Therefore, it is usually treated
as an important indicator of forest quality, and the results of our previous study showed that forest
policy implementation of ecological forests was beneficial for the increase of biomass [9]. Thus,
proper management such as establishing nature reserves, implementing forest protection policies, and
enhancing public awareness of forest ecological benefit would have a powerful effect on the spatial
change of biomass.

In this context, forest protection campaigns such as plain greening and ecological forests, which
promote afforestation and prohibit deforestation, will provide a better environment for biomass
accumulation and in some way explain the general increasing tendency of AGB in our study area.
The government of Wuyi County delimited the ecological forest in 2001, and up to September 2010,
the provincial ecological forest reached 42,894.89 ha, which accounted for 44.72% of the total forested
land area in Wuyi [41]. It holds a larger proportion of mountain areas with relatively high forest age
that promote higher biomass density. Comparably, there has been 18,996.21 ha of ecological forest
in Dinghai District until 2015, holding a proportion of 64.2% [42]. Additionally, Xianju is one of the
earliest pilot counties in Zhejiang province to implement the ecological forest program. Therefore, all
of these measures would facilitate biomass increase.

Table 7. The total afforested area in Zhejiang Province from 2010–2015.

Year 2010 2011 2012 2013 2014 2015

Total Afforested Area (km2) 15.21 40.47 43.92 42.36 39.40 32.02
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4.3. The Terrain Impact on Biomass Distribution and Change

Biomass distribution is effected by many factors. In this study, we focus on the relationship
between AGB and three important topographic factors including elevation, slope, and aspect among
different regions. By summing up the above results, some interesting points have been found.

For the elevation feature, AGB in the three regions had a positive correlation with elevation
more or less, especially for Xianju County. At the same time, it should be pointed out that when the
elevation was higher, the AGB change obtained quite different trends in the three regions, where Wuyi,
Xianju, and Dinghai had negative, positive, and insignificant correlations with elevation, respectively.
As stated in the study of Zhang et al. [43], the property of main local tree species largely determined
the characteristics of biomass spatial and temporal variation. There is a great percentage of broad forest
in Xianju County, especially for the locations in the ecological forest, whose community composition
containing large broadleaf species is mainly distributed at higher altitudes with better hydrothermal
conditions. This may be the reason why in this region, AGB increases faster in higher mountains than
that in flat areas. However, in Wuyi, a possible reason to explain why lower regions have a larger
magnitude of AGB increase is that forest management activities like plain greening and ecological
forest construction have been implemented [41]. Furthermore, the relatively limited elevation with
a highest elevation below 400 m and the surrounding sea and ocean environment lead AGB in Dinghai
to have a weakened relation with elevation.

With regard to slope, AGB/change in the three regions had significant relations with slope to
varying degrees. Both in 2010 and 2015, AGB in Wuyi, Xianju, and Dinghai had a positive relation with
slope. Du et al. assumed that vegetation distributed in higher slopes avoided the frequent intervention
of human activity, and could be better preserved, contributing to more plentiful forest growth that
promoted biomass accumulation [25]. However, in Wuyi and Dinghai, AGB acquired a negative
increase when the slope was larger than 45◦.

When it comes to aspect, it seems that aspect only had a significant correlation with AGB/change
to some extent. Aspects in the south, southwest, west, and northwest are called sunny slopes [44,45],
and AGB in these aspects achieved a larger magnitude of increase in Xianju. However, AGB at different
aspects in Wuyi and Dinghai had no distinct difference. Comparably, aspect had the lowest relation
with AGB and its change among the three topographic factors.

When comparing the relative importance of the three terrain parameters, elevation and slope
both played significant roles in temporal AGB change. Although all features influenced AGB in
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Xianju, a typical mountainous area, elevation was at the top of the list. By comparison, slope was
inclined to be the most important determinant for the island region of Dinghai. In Wuyi, slope also had
a relatively more significant relation with AGB. Despite this, at the provincial level, Du et al. found that
forest carbon density increased with higher altitude in Zhejiang Province [25]. The situation becomes
complicated when the provincial scale changed to smaller regional scales. In our study, unambiguous
principles to explain the AGB-terrain relationship in the three regions are still needed in further
investigations, as a number of studies has found that topography is closely related to solar radiation,
temperature, moisture, and soil condition, all these interrelate with vegetation growth and human
activities [9,46,47]. The objective of this study was to reveal the relationship between AGB/change
and topography factors, while the spatiotemporal characteristics of AGB should be explained by the
combination of natural condition and anthropogenic behavior.

4.4. Future Works

Although the spatial AGB maps in different periods were produced and the characteristics of
AGB/change were analyzed, further studies should be conducted in the future. First, TM images for
Wuyi County (in May and October) and Xianju County (in 2007) were an expedient selection restricted
by the coverage of clouds, as mentioned above. Strictly speaking, remote sensing data should be
selected by referring to field data to ensure that both were collected from the same period. Second,
total biomass should include tree trunks, branches, and foliage, but the optical imagery we used
captured only the signals from the vegetation canopy, and even contained noise from soil and other
environmental backgrounds, which resulted in great uncertainty in the biomass estimation. Lidar
has been widely used as it has the ability to provide vertical information that is closely related to
AGB [48,49]. Third, the random forest algorithm was used to produce the AGB map and rank the
relative importance of selected variables, but it is still a black box in which the interaction mechanism
between remote sensing data and forest biochemical parameters is unrevealed. Approaches with
more distinct mechanisms can be explored. Fourth, limited by our available forest investigation
dataset, a typical region representing plain terrain in the north of Zhejiang has not be included to
form a more comprehensive comparison. Fifth, time series biomass estimation should be used instead
of bi-temporal biomass change to find more valuable and detailed information [50]. It should be
noted that in this study, the mean aboveground biomass density in Dinghai district was the lowest,
but when investigating the industrial structure in three regions, Dinghai had the highest GDP (gross
domestic product) during 2010–2015 (Figure 12). Therefore, more frequent remote sensing imagery
can be explored to find out whether a correlation exists between biomass and socioeconomic factors.Forests 2018, 9, x FOR PEER REVIEW  18 of 21 
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5. Conclusions

The distribution of aboveground biomass changes with various natural and anthropogenic
environment conditions. Remote sensing provides a nondestructive and efficient way to describe
the temporal and spatial characteristics of this information and has earned increased attention in
recent years. In this study, Landsat imagery covering three regions in Zhejiang Province, China, was
collected, representative of different topographic regions including basin, island, and mountain areas.
Combined with field-measured plots, bi-temporal aboveground maps (2010 and 2015) were produced
based on the random forest algorithm. The spatial distributions and changes in AGB were investigated
and analyzed through establishing stratified topographic categories based on DEM data. As a result,
the biomass in all regions increased from 2010–2015. In the basin region that had more frequent human
activities, forests in lower-altitude regions had higher biomass increases. In the mountain region,
AGB was uppermost influenced by elevation, and forests at higher elevations acquired both a higher
value and an increased magnitude. For the islands, with limited elevation and water surrounding
environment, the dominant influence for AGB/change was inclined to be the slope. Comparatively
speaking, aspect had the weakest relation with AGB. More works should be done to clarify the complex
relationships between AGB and diverse terrain conditions.

The local government of Zhejiang Province has taken such actions as plain greening and ecological
forest implementation to promote the increase of forest coverage and prevent deforestation, which is
beneficial to regional forest ecosystems. In the future, with the excavation of limited potential forests,
the improvement of forest quality should be the focus of forest management. Biomass is an important
parameter for forest ecosystem assessment. As shown by this study, the interaction between natural
conditions and human activities, which cannot be completely separated, exerts considerable influence
on local forests. Remote sensing-based biomass estimation, with especial attention paid to regional
heterogeneity, can provide scientific guidance for natural resource management.
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