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Abstract: Competition between plants has an important role during the natural succession of forest
communities. Niche separation between plants can reduce such interspecific competition and enable
multispecies plant to achieve coexistence, although this proposition has rarely been supported in
experiments. Plant competition can be captured by spatial segregation of the competing species
to avoid fierce direct conflicts for nutrients and light. We investigated a site of 400 m × 1000 m in
Beijing Pine Mountain National Nature Reserve that was established for protecting Chinese pine and
some rare fungi. Six dominant tree species (Fraxinus chinensis Roxb., Syringa reticulata (Blume) H.
Hara var. amurensis (Rupr.) J. S. Pringle, Quercus mongolica Fisch. ex Ledeb., Armeniaca sibirica (L.)
Lam., Pinus tabuliformis Carrière, and Ulmus pumila L.) were individually marked. Metrics of spatial
segregation, based on the theory of spatial point process, were calculated to detect spatial competition.
The corresponding type (species)-specific probabilities and the p-values from a spatially implicit test
revealed significant overall spatial segregation between the six tree species. We further used the
cross-type L-function to check the spatial correlation between Chinese pine and the other tree species,
and detected a significant spatial repulsion relationship with four other tree species. Our study
shows that each of the six dominant tree species occupies a different subarea in the landscape to
effectively reduce direct spatial competition. We thus argue that patchy distributions of different tree
species could be common in late forest community succession, and the coexistence of plants could
be maintained over a large spatial scale. Management intervention, such as thinning the densities
of dominant tree species, could be used to foster species coexistence and ensure the productivity of
commercial stands.

Keywords: cross-type L-function; Monte Carlo test; multivariate point process; niche differentiation;
spatial segregation; type-specific probability

1. Introduction

Patchy distributions of individuals in forest communities are typical, driven largely by
competition and disturbance [1,2]. Understanding how competition and disturbance jointly affect
species persistence and distribution can help to address many management challenges, such as
the protection of rare species [3], the control of biological invasions [4], and the prediction of the
effects of climate change [5]. The two-species Lotka–Volterra model predicts only two results from
competition: stable coexistence or the stronger competitor repels the weaker one [6]. Similarly,
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multispecies Lotka–Volterra competition model predicts either coexistence or extinctions of some
species [7]. However, such Lotka–Volterra models are spatially inexplicit and thus neglect, in most
cases, the effects of spatial scale, heterogeneity, and disturbance on the consequence of competition.
In natural forests, however, the weaker competitors can be compensated by being stronger dispersers
or colonizers from r-selection [8]. Moreover, human and/or natural disturbance could create
temporally available empty habitats for these stronger dispersers but weaker competitors to recruit.
Consequently, other mechanisms are available to foster coexistence by inducing niche differentiation
and negative frequency dependence [9], such as the response to the variation of spatiotemporal
environments [10], the division of resources, and the endemic natural alkenes of species in natural
forests [11]. With distance-limited dispersal and spatially autocorrelated habitat heterogeneity,
these coexistence mechanisms could then lead to the signature pattern of spatial segregation in
forest communities.

Spatial point pattern analysis is an important technique to explore the interspecific and
intraspecific relationship in space [12–14]. If the count data of plants on a given scale are random in
different subregions, the Poisson distribution can be deployed for description; this is usually regarded
as the null hypothesis [15]. If there exists some levels of spatial clustering or repulsion, the null
hypothesis will be violated. In this case, Ripley’s K function becomes the most widely used method in
forest ecology [16], which can distinguish three types of spatial distributions: clustering, randomness,
and regular distributions of individuals [17]. It has been extended further to analyze interspecific spatial
relationship by considering multivariate point processes [13]. Recent developments have extended the
use of K-function for analyzing the spatiotemporal point patterns [12], even though such an extension
appears to be more appropriate for examining the spatial dynamics and intra- or interspecific spatial
relationships of seedlings or plants with short recruitment periods (e.g., herbaceous plants).

For the typical data of forest inventories, the temporal turnover of trees is usually caused by
environmental disturbance, and thus does not reflect the results from competition as the duration
of forestry survey is often much shorter than the life span of trees. For forest communities without
frequent disturbances, community structures could experience substantial changes on small scales.
On large scales, such changes of tree compositions can be minuscule from year on year. A 10-year
interval, however, could be enough to study the spatiotemporal changes of trees. However, in practice,
for most forest inventory data with one snapshot survey, spatial analysis is the more useful for forest
ecology and management (e.g., ref. [18]). To test for spatial segregation, a nonparametric kernel
estimation method was proposed, which has been used to test for spatial segregation among the
spoligotypes of bovine tuberculosis and moso bamboos with different ages, among others [19–22].
However, this method has not been paid enough attention in forest research.

Chinese pine (Pinus tabuliformis Carrière) is a native conifer in northern China. It has been used as
an indicator species for the investigation of climate change effects on forest ecosystems [1,23,24].
Only few studies have explored the spatial competition between the Chinese pine and other
co-occurring species. Given the important ecological and economic values of Chinese pines in regional
forest communities, it is necessary to explore its spatial relationship with other co-occurring tree species
on a reasonable spatial scale. In this paper, we explored the spatial relationships among dominant tree
species using a large natural forest site of 400 m × 1000 m where Chinese pine was a dominant species.

2. Materials and Methods

2.1. Study Site

The study site is located within the Beijing Pine Mountain National Nature Reserve (40◦30′50′′ N,
115◦49′12′′ E); the reserve was established in 1985, and is located in Yanqing County, Beijing, China.
In August 2014, we delineated all trees with the diameter at breast height (DBH) ≥2 cm within
a landscape of 400 m × 1000 m (made up of one-thousand 20 m × 20 m plots). DBHs and locations of
trees were recorded. In the following, we count the abundances of tree species, calculate the level of
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spatial segregation between given pairs of dominant tree species, and compute the spatial correlations
of these dominant tree species. We also considered two subregions, [0, 400] × [0, 400] and [0, 400] ×
[600, 1000], taken from the study area [0, 400] × [0, 1000], for our analyses.

2.2. Statistical Methods

2.2.1. Species-Specific Probabilities for Spatial Segregation

Diggle et al. proposed a method to test spatial segregation using multivariate point processes [19].
Spatial segregation is defined in a multivariate point pattern if, for at least some species, j 6= i, where the
conditional intensity of species j at location x given species i at x is less than the marginal intensity of
species j at x. A type-specific probability was defined as the conditional probability that a case known
to occur at x is of type k:

pk(x) =
λk(x)

m
∑

j=1
λj(x)

=
ρk(x)

m
∑

j=1
ρj(x)

(1)

Here, λk(x) (k = 1, 2, 3, . . . , m, where is m the number of species) denotes the intensity function at
location x, and it was assumed to be the product of λ0(x), the intensity function for the univariate
Poisson process of each species in a background habitat context, and ρk(x), the probability that species
k will occur at location x given a background habitat context. The Poisson process of a species is
considered to be completely unsegregated if ρk(x) is proportional to the spatial structure of the habitat
ρ(·); that is, ρk(x) = αkρ(x), where αk represents a species-specific constant. A complete spatial
segregation means that only one species can occur at a given location, pk(x) = 1.

A kernel estimation approach was used for the calculation of the species-specific probabilities,
pk(x):

p̂k(x) =

n
∑

i=1
{wk(x− xi)I(Yi = k)}

n
∑

j=1
wk
(
x− xj

) (2)

Here, Yi represents the type of the i-th point event; n represents the total number of all types of point
events; wk(·) is the kernel function with bandwidth hk:

wk(x− xi) =
exp

[
−‖x− xi‖2/

(
2h2

k
)]

h2
k

(3)

and I(·) is the indicator function:

I =

{
1 if Yi = k
0 if Yi 6= k

(4)

In Equation (2), there is only one parameter needed to be fitted, i.e., the bandwidth. Diggle et
al. [19] suggested using the maximum log-likelihood approach to estimate the bandwidth hk:

L(p1, · · · , pm) =
n

∑
i=1

m

∑
k=1
{I(Yi = k) log[pk(xi)]} (5)

To avoid the apparent uninformative bandwidth of hk = 0 and assume that all types of point
events have the same bandwidth (h), the cross-validated log-likelihood function for h is modified as
the following:

Lc(h) =
n

∑
i=1

m

∑
k=1

{
I(Yi = k) log

[
p̂(i)k (xi)

]}
(6)
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Here, p̂(i)k (xi) represents the kernel estimation based on Equation (2) and all observations except
(xi, Yi).

2.2.2. Significant Test for Spatial Segregation

Under the assumption of no spatial variation, we have

pk(x) =
αkρ(x)

m
∑

j=1

[
αjρ(x)

] = αk
m
∑

j=1
αj

(7)

Let us use nk/n to estimate αk, where nk denotes the abundance of species k. In this case, at an any
given location x, pk(x) = αk. Diggle et al. [19] proposed a statistic to test the null hypothesis of no
spatial segregation:

T =
n

∑
i=1

m

∑
k=1
{ p̂k(xi)− α̂k}2 (8)

Note that the above statistic is used as an overall test, although it does not reflect the
spatial variation at specific locations. To capture location specific spatial variation, we used the
following formula:

B(x) = p̂k(x)− α̂k (9)

Monte Carlo simulation under the null hypothesis based on random labelling was used to test
the significance of spatial segregation. In each simulation, the locations of events were fixed, but the
labels of species were randomly allocated. Let t1 represents the calculated statistic T based on the
observations, and let t2, t3, . . . , ts represent the calculated statistics based on the simulated data,
where s − 1 represents the number of simulations. The p-value for significant test can be calculated
as: (k + 1)/s, where k is the number of tj > t1. If the observed pattern violates the null hypothesis of
no spatial variation, the calculated statistic t1 should be much greater than tj from the Monte Carlo
simulations; otherwise, the calculated statistic t1 should be much smaller. For the statistic B(x), we can
also calculate its p-value analogous to that of T statistic, but for specific locations x. We further calculate
the 95% tolerance interval on the risk surface (i.e., the p-value isoline surface; see ref. [25] for details);
it can provide us with an intuitive test for subregions where the relative intensities significantly deviate
from the expected average of the null hypothesis. Areas with the p-value less than 0.025 have greater
relative intensities than the average level; areas with the p-value greater than 0.975 have lower relative
intensities than the average level. We ran 399 Monte Carlo simulations.

2.3. Analysis and Test of Spatial Relationship

As Chinese pine is the dominant species in the study area, we used the cross-type L-function to
analyze the spatial correlation (attraction or repulsion or independence) between Chinese pine and
the other dominant tree species [13]. In the spatial analysis of point patterns, the spatial features of
point process are usually captured by the first- and second-order properties [12,26]. The first-order
properties are described by the first-order intensity λ(x), which denotes the mean number of point
events per unit area at location x. The second-order properties are reflected by the second-order
intensity, which measures the relationship between numbers of events in pairs of samples within the
study region. The K-function is normally used for quantifying second-order properties:

λ·K(r) = E(N) (10)

Here, λ represents the intensity, r represents the distance scale, E(·) represents the expectation,
N represents the number of events with distance r away from an arbitrary event. For the complete
spatial randomness (CSR), the K-function has
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K(r) = πr2 (11)

If the point pattern exhibits spatial clustering, an excess of events at short distances would
be expected. Hence, for small values of r, the estimate of K(r) will be greater than its theoretical
value under the hypothesis of CSR. The definition of Equation (11) is only for the univariate point
process. To analyze the spatial relationship of the multivariate point pattern (i.e., for multiple species),
the cross-type K-function is defined as

λ2·K12(r) = E(N12) (12)

Here, 1 and 2 represent different types of events (a pair of species), N12 represents the number of type
2 events with distance r from an arbitrary event of type 1, and λ2 represents the intensity of type 2
points. If these two-type points are independent Poisson processes, we also have

K12(r) = πr2 (13)

To stabilize the variance, we used the cross-type L-function instead of K-function:

L12(r) =
√

K12(r)/π (14)

If two types of points are independent, L12(r) is equal to r, in theory. However, considering the
randomness, even for two independent Poisson processes, the estimate of L12(r) based on the estimate
of K12(r) will deviate from r. In this case, the Monte Carlo simulation is performed to test the spatial
relationship between two types of point processes. The random labelling is also used for executing
the Monte Carlo simulation. Although the randomization of the dependence-of-components null
hypothesis was usually used to check the spatial correlation between two different types of points,
the precondition of correctly using this method is that the study region must be spatially homogeneous.
However, for the study regions on some mountains, like that in the current study, the precondition
cannot hold because of the complicated topographical changes. In fact, many papers related to this
question have misused the randomization test of the independence-of-components null hypothesis
to analyze the spatial correlation of two different tree species in some journals of ecology and forest
science [27,28]. Thus, we chose the random labeling as a substitute. In fact, strictly speaking, both the
random labelling and independence of components are essentially not correct methods. However,
we only used the results of the random labelling to compare those by the spatial segregation test that
should be better than the traditional two methods (namely, the randomization test of the random
labelling null hypothesis and that of the independence-of-components null hypothesis). For random
labelling, we calculate L̂12(r) − r based on 399 simulations. In particular, we assessed the spatial
correlation between the Chinese pine and the other tree species on different distance scales (from 0 to
80 m with an increments of 0.2 m).

R software (version 3.2.2) was used for carrying out all analyses [29]. Package “spatialkernel”
(version 0.4-19) was used to perform the non-parametric estimation of spatial segregation,
and package “spatstat” (version 1.43-0.025) was used to calculate the cross-type L-function and Monte
Carlo simulations.

3. Results

3.1. Abundances of Tree Species

Table 1 provides the species name, the mean DBH, and heights with the corresponding standard
deviations. There are six tree species that have high densities (1903 Fraxinus chinensis Roxb.,
4618 Syringa reticulata (Blume) H. Hara var. amurensis (Rupr.) J. S. Pringle, 8466 Quercus mongolica
Fisch. ex Ledeb., 6227 Armeniaca sibirica (L.) Lam., 24,579 P. tabuliformis, and 2124 Ulmus pumila L.),
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with Figure 1 illustrating the spatial distributions of these six dominant tree species in the subregion of
[0, 400] × [0, 400] (unit: m).
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Table 1. List of tree species in the study region [0, 400] × [0, 1000] (unit: m). y denotes the y-axis coordinate of the study region; NA denotes no value.

Species
Code Latin Name Family Abundance

(0 ≤ y ≤ 1000 m)
Abundance

(0 ≤ y ≤ 400 m)
Abundance

(600 ≤ y ≤ 1000 m) DBH (cm) Height (m)

1 Acer mono Maxim. Aceraceae 482 280 195 7.38 ± 4 5.9 ± 2.29
2 Acer truncatum Bunge Aceraceae 228 124 92 7.66 ± 5.63 5.53 ± 3.08
3 Berberis beijingensis Ying Berberidaceae 1 1 0 2.5 ± NA 1.75 ± NA
4 Betula dahurica Pall. Betulaceae 205 138 62 13.92 ± 7.07 7.64 ± 3.12
5 Betula platyphylla Suk. Betulaceae 89 42 46 17.43 ± 4.91 10.33 ± 1.7
6 Carpinus turczaninowii Hance Betulaceae 8 1 4 7.65 ± 2.98 7.04 ± 1.05
7 Chimonanthus praecox (L.) Link Calycanthaceae 3 3 0 5.47 ± 3.41 3.01 ± 0.37
8 Sambucus williamsii Hance Caprifoliaceae 6 4 0 4.17 ± 0.94 2.56 ± 0.46
9 Diospyros lotus L. Ebenaceae 2 0 0 20.83 ± 2.32 8.72 ± 0.49

10 Lithocarpus cleistocarpus (Seemen) Rehd. & E. H. Wils. Fagaceae 19 15 4 5.38 ± 0.53 5.78 ± 0.6
11 Quercus mongolica Fisch. ex Ledeb. Fagaceae 8466 4016 3064 11.07 ± 5.74 6.33 ± 2.73
12 Juglans cathayensis Dode Juglandaceae 29 13 12 10.54 ± 10.66 8.1 ± 5.64
13 Juglans mandshurica Maxim. Juglandaceae 824 376 211 11.84 ± 8.23 8.03 ± 3.9
14 Albizia kalkora (Roxb.) Prain Leguminosae 156 93 59 6.98 ± 5.53 5.65 ± 2.94
15 Hibiscus mutabilis L. Malvaceae 7 1 5 6.16 ± 0.73 6.16 ± 0.13
16 Myrtus communis L. Myrtaceae 24 17 7 11.6 ± 0.6 7.52 ± 0.57
17 Fraxinus chinensis Roxb. Oleaceae 1903 994 688 7.04 ± 4.26 5.27 ± 2.49
18 Fraxinus mandshurica Rupr. Oleaceae 30 12 8 9.87 ± 6.81 7.85 ± 3.78
19 Fraxinus rhynchophylla Hance Oleaceae 743 277 208 7.63 ± 4.87 5.6 ± 2.48
20 Syringa pekinensis Rupr. Oleaceae 1 1 0 12.1 ± NA 7.35 ± NA
21 Syringa reticulata (Blume) H. Hara var. amurensis (Rupr.) J. S. Pringle Oleaceae 4618 1935 1668 7.26 ± 4.35 5.27 ± 2.39
22 Pinus tabuliformis Carrière Pinaceae Lindl. 24,579 7539 11,534 12.85 ± 6.02 8.55 ± 2.83
23 Rhamnus davurica Pall. Rhamnaceae 2 0 1 7 ± 0.71 6.7 ± 0.14
24 Ziziphus jujuba Mill. Rhamnaceae 62 18 37 11.1 ± 7.52 5.49 ± 2.97
25 Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chow Rhamnaceae 3 0 2 14.63 ± 6.01 5.9 ± 2.72
26 Amygdalus davidiana (Carrière) de Vos ex Henry Rosaceae 9 5 4 8.62 ± 4.26 6.65 ± 1.35
27 Armeniaca mume Sieb. Rosaceae 4 4 0 4.98 ± 0.43 6.88 ± 0.16
28 Armeniaca sibirica (L.) Lam. Rosaceae 6227 1789 2602 8.35 ± 4.55 5.04 ± 2.56
29 Crataegus pinnatifida Bunge Rosaceae 1 0 0 10.5 ± NA 5.17 ± NA
30 Malus baccata (L.) Borkh. Rosaceae 21 6 12 10.84 ± 12.52 4.96 ± 3.73
31 Prunus salicina Lindl. Rosaceae 1 1 0 3.7 ± NA 2.8 ± NA
32 Pyrus bretschneideri Rehd. Rosaceae 17 14 0 6.64 ± 0.75 4.32 ± 0.61
33 Sorbus alnifolia (Siebold & Zucc.) C. Koch Rosaceae 121 18 42 8.73 ± 5.04 6.02 ± 2.66
34 Sorbus discolor (Maxim.) Maxim. Rosaceae 492 71 168 7.71 ± 4.33 6.43 ± 2.46
35 Leptodermis potanini Batal. Rubiaceae 220 19 62 4.82 ± 2.88 4.61 ± 1.84
36 Populus davidiana Dode Salicaceae 37 23 11 9.97 ± 8.44 7.24 ± 2.94
37 Ailanthus altissima (Mill.) Swingle Simaroubaceae 36 29 7 9.46 ± 7.68 7.71 ± 5.43
38 Tilia amurensis Rupr. Tiliaceae 687 434 202 9.27 ± 4.87 6.76 ± 2.68
39 Tilia mandshurica Rupr. & Maxim. Tiliaceae 2 0 2 12.35 ± 2.76 8.07 ± 2.22
40 Celtis bungeana Blume Ulmaceae 655 403 181 5.61 ± 4.24 4.77 ± 2.39
41 Hemiptelea davidii (Hance) Planch. Ulmaceae 12 0 1 6.71 ± 5.43 4.7 ± 2.53
42 Ulmus davidiana Planch. var. japonica (Rehder) Nakai Ulmaceae 230 133 61 6.9 ± 4.42 5.78 ± 3.24
43 Ulmus macrocarpa Hance Ulmaceae 133 5 31 7.71 ± 4.56 6.21 ± 2.33
44 Ulmus pumila L. Ulmaceae 2124 826 729 12.79 ± 7.89 8.34 ± 3.66
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3.2. Test of Spatial Segregation

Figure 2 exhibits the bandwidth choice. When h = 5.5 m, the cross-validated log-likelihood was
maximized. Figure 3 exhibits the species-specific probabilities of six dominant tree species in the
region of [0, 400] × [0, 400] (unit: m). We can see that these tree species have occupied different
subareas. The two most dominant tree species, Q. mongolica and P. tabuliformis, appeared to be spatially
segregated. The overall p-value from the 399 Monte Carlo simulations, based on Equation (8) for
testing spatial segregation, was 0.025, indicating significant spatial segregation for these six tree species.
Figure 4 illustrates the 95% tolerance intervals on the p-value surfaces based on Equation (9), showing
areas where the relative intensities are significantly higher/lower than the average based on the null
hypothesis of no spatial segregation.
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3.3. Spatial Correlations between the Chinese Pine and Other Five Tree Species

The cross-type L-function with the randomization test of the random labelling null hypothesis
shows that there is significant relationship of repulsion between the Chinese pine and another four
dominant species, with the exception of U. pumila (Figure 5). The estimates of L̂12(r)− r wandered
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outside the gray-shaded envelope. However, within 70 to 80 m scales, Q. mongolica and P. tabuliformis
appear to be independent from each other (Figure 5c). On a scale from 0 to 20 m, U. pumila and P.
tabuliformis have a repulsion relationship but, on larger scales, even up to 80 m, these two tree species
show spatial independence. In addition, P. tabuliformis exhibits a spatial clustering in this study area,
as the estimate also wandered outside the upper bound of envelope (Figure 5e).
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the randomization test of the random labelling null hypothesis. In the subscript of the estimated
cross-type L, 1 represents F. chinensis, 2 represents S. reticulata var. amurensis, 3 represents Q. mongolica,
4 represents A. sibirica, 5 represents P. tabuliformis, and 6 represents U. pumila. The grey area are formed
by simulation envelops; the red curve represents the difference between the estimated cross-type L of
two types minus the corresponding distance scale r. (a) P. tabuliformis and F. chinensis; (b) P. tabuliformis
and S. reticulata var. amurensis; (c) P. tabuliformis and Q. mongolica; (d) P. tabuliformis and A. sibirica;
(e) P. tabuliformis and itself; (f) P. tabuliformis and U. pumila.
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For another study region of [0, 400] × [600, 1000] (unit: m), the results were the similar to the
above results from the region of [0, 400] × [0, 400] (unit: m). The bandwidth for estimating the
species-specific probabilities is 6 m, slightly higher than the estimate of bandwidth 5.5 m in the region
of [0, 400] × [0, 400]. However, it does not affect the main results on spatial segregation (and, thus,
is not shown).

4. Discussion

Ghalandarayeshi et al. [30] studied the spatial interactions of four dominant tree species in
a semi-natural forest in Denmark (beech, elm, ash, and sycamore maple) based on cross-type g-function
(i.e., the pair correlation function) which has the same function as the cross-type L-function for
examining the spatial correlations between species [13]. They detected a weak repulsion relationship
between beech and elm in less disturbed plots up to 6 m, and more disturbed plots up to 2 m.
Over larger scales (up to 25 m), the two tree species appeared to intermingle in space. By contrast,
beech and ash also intermingled in both less and more disturbed plots, indicating that these two species
are distributed independently from each other. In disturbed plots, they detected spatial attraction
between elm and ash up to 3 m apart, and between 8 to 12 m apart. Interestingly, they showed that these
tree species did not exhibit spatial segregation in less disturbed plots. In another study, Xiang et al. [31]
reported the spatial correlations among overstorey tree species, and between understorey trees and
overstorey trees in a subtropical forest based on the cross-type L-function. They also found negative
correlations (repulsion) among overstorey tree species. For the understory trees and overstorey
trees that are less than 17 m apart, the two types of plants showed spatial independence (namely
intermingled in space), although a repulsion relationship was detected for the two types of trees 17
and 40 m apart in space.

Although dominant tree species were found to have little negative correlations in the semi-natural
forest of Denmark, we detected significant negative correlations between four species and the most
dominant Chinese pine in our study. The site investigated by Ghalandarayeshi et al. [30] has been
under conservation protection for a much longer period, and the forest community there might thus
have experienced long-term natural succession, meaning that the dominant tree species at their report
might have excluded other competitive tree species, or have reduced the densities of these competitive
tree species to render them rare. In addition, greater spatial heterogeneity might be another factor that
might explain the strong negative correlations between the Chinese pine and other four species in our
study. Heterogeneous landscapes can result in spatial variations in competitive abilities among tree
species, with weaker competitors (in homogeneous environments) potentially outcompeting stronger
competitors with increasing environmental heterogeneity [32]. This also explains why, in the case
of Xiang et al. [31], the species can coexist over large scales in the complex mountainous landscape,
but still exhibit strong spatial competition.

Our study shows that the Chinese pines exhibits a spatial clustering (Figure 5e), although we
did not distinguish the ages of trees. Although we found spatial segregation and spatial negative
correlations among the six dominant tree species, there might be a lack of spatial negative correlations
among the trees with different ages for the same species. Sandhu et al. [20] checked the spatial
segregation of the moso bamboos with different ages using the method proposed by Diggle et al. [19],
and they found that there was a significant spatial segregation among these moso bamboos. However,
using the cross-type L-function to analyze the spatial correlations among these bamboos, we only
detected spatial independence. The calculated L̂12(r)− r wandered inside the simulation envelopes.
Also using the cross-type L-function, Wang et al. [33] explored the effect of gap size on the spatial
patterns of Chinese pine regeneration, and found that the regeneration established before gap creation
was independent from that after gap creation. This suggests that, for the same tree species, the trees
with different ages do not show a tendency of repulsion or attraction. However, for the spatial point
pattern, it was spatially aggregated on the scales from 0 to 5 m. By contrast, within 5−8 m, Chinese
pines exhibited a Poisson random distribution [33]. Different from their results, our study shows that
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the Chinese pine population exhibited spatial clustering over the scale from 0 to 80 m, without any
evidence for randomness. We think that the difference should be related to the extent of disturbance
in the forests. In the study area of Wang et al. [33], although Chinese pine was still a dominant
tree species, the grassland can also be temporarily dominant because of the excessive harvesting.
By contrast, our study site was protected since 1985, with no harvesting allowed. Most natural pines
have been intentionally kept when the reserve was established. After 30-year population recruitment,
the present spatial distributions of Chinese pine could be more akin to its natural distribution and,
thus, distributed in a spatial clustering way. In fact, spatial clustering is rather common for most plant
species over large scales [12,34]. However, such a spatial clustering might only reflect the influence
of environmental heterogeneity on the growth and dispersal of plants, e.g., following Matérn and
Thomas processes [13,35].

Figure S1 in the online Supplementary Material shows the interspecific spatial correlation
between P. tabuliformis and other five tree species obtained from the randomization test of the
independence-of-components null hypothesis. The results appear to be unreliable because any other
species exhibit a significant spatial independence from P. tabuliformis on almost all of the given
distance scales, which is apparently not in accordance with the fact of interspecific competition,
especially the root competition [36]. In the subregions that are dominantly occupied by P. tabuliformis,
other tree species have a smaller chance to survive than those in the places where the population
of P. tabuliformis has a lower density (Figure 1). We consider that the misuse of the independence
of components as the null hypothesis of the randomization test might lead to a false conclusion.
In mountainous areas, it is unsuitable to use the independence of components as the null hypothesis of
a randomization test because of the spatial heterogeneity that exactly breaks down the precondition
of using such a test [13]. The criticism of the use of the randomization test of the random labelling
in analyzing the spatial correlations of different tree species focuses on the argument that the null
hypothesis of applying this method is unsuitable because investigators are usually concerned about
whether different tree species are spatially independent point processes. The null hypothesis of
the randomization test of the random labelling is that the marks are conditionally independent and
identically distributed [13,27]. However, the conditional independence is exactly what we want to
know in examining whether weaker competitors are inclined to keep themselves far away from the
sites where stronger competitors have occupied. Therefore, we advocate the use of the randomization
test of the random labelling null hypothesis in exploring the spatial correlations of different tree
species in heterogeneous environments. At least, the current study illustrates that the conclusions
drawn from the non-parametric estimation of spatial segregation and those drawn from the cross-type
L-function with the simulation envelopes generated by the random labelling were similar, whereas the
randomization test with the independence-of-components null hypothesis provided unreliable results.

5. Conclusions

In our study area, F. chinensis, S. reticulate reticulata var. amurensis, Q. mongolica, A. sibirica,
P. tabuliformis (Chinese pine), and U. pumila are dominant forest tree species. There are significant signs
of spatial segregation between these six tree species. Although P. tabuliformis is the most dominant
species, it does not drive other tree species to extinction, with each species dominating different
subareas in the landscape, as shown in the surface of type(species)-specific probabilities. In particular,
U. pumila had a positive spatial correlation with the Chinese pine over the scales from 20 to 80 m,
whereas another four species had negative spatial correlations with the Chinese pine. This implies the
possibility of species coexistence due, probably, to the spatial heterogeneity and disturbances in spite
of notable interspecific competition between these species.

Supplementary Materials: The following is available online at http://www.mdpi.com/1999-4907/9/12/768/s1,
Figure S1: Analysis of spatial relationship between Chinese pine and five other tree species based on the
randomization test of the independence-of-components null hypothesis.

http://www.mdpi.com/1999-4907/9/12/768/s1


Forests 2018, 9, 768 14 of 15

Author Contributions: P.S. and J.G. contributed equally to this work. Y.L. designed the experiment; J.G., Z.S. and
Y.L. carried out the field experiment; P.S., J.G. and C.H. analyzed the data and wrote the manuscript; P.S. and C.H.
revised the manuscript. All authors read and commented on this manuscript.

Funding: This research was funded by the Priority Academic Program Development of Jiangsu Higher Education
Institutions, the National Key Research and Development Program of China (grant number: 2017YFC0504004)
and the National Natural Science Foundation of China (grant number: 31500345).

Acknowledgments: We are thankful to Peter J. Diggle, Ege Rubak, Weiwei Huang and Ping Zhou for their useful
help during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, H.; Sork, V.L.; Wu, J.; Ge, J. Effect of patch size and isolation on mating patterns and seed production
in an urban population of Chinese pine (Pinus tabuliformis Carr.). For. Ecol. Manag. 2010, 260, 965–974.
[CrossRef]

2. Forman, R.T.T.; Godron, M. Patches and structural components for a landscape ecology. Bioscience 1981, 31,
733–740.

3. DeCesare, N.J.; Hebblewhite, M.; Robinson, H.S.; Musiani, M. Endangered, apparently: The role of apparent
competition in endangered species conservation. Anim. Conserv. 2010, 13, 353–362. [CrossRef]

4. Hui, C.; Richardson, D.M. Invasion Dynamics; Oxford University Press: Oxford, UK, 2017.
5. Chu, C.; Kleinhesselink, A.R.; Havstad, K.M.; McClaran, M.P.; Peters, D.P.; Vermeire, L.T.; Wei, H.Y.; Adler, P.B.

Direct effects dominate responses to climate perturbations in grassland plant communities. Nat. Commun.
2016, 7, 11766. [CrossRef] [PubMed]

6. Tilman, D.; Lehman, C.L.; Yin, C.J. Habitat destruction, dispersal, and deterministic extinction in competitive
communities. Am. Nat. 1997, 149, 407–435. [CrossRef]

7. Lehman, C.L.; Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat.
2000, 156, 534–552. [CrossRef]

8. Parry, G.D. The meanings of r- and K-selection. Oecologia 1981, 48, 260–264. [CrossRef]
9. Adler, P.B.; HilleRisLambers, J.; Levine, J.M. A niche for neutrality. Ecol. Lett. 2007, 10, 95–104. [CrossRef]
10. Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol.

2000, 58, 211–237. [CrossRef]
11. Connell, J.H. On the role of natural enemies in preventing competitive exclusion in some marine animals

and in rain forest trees. Dyn. Popul. 1971, 298, 298–312.
12. Diggle, P.J. Statistical Analysis of Spatial and Spatio-temporal Point Patterns; CRC Press: London, UK, 2014.
13. Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; Chapman &

Hall/CRC: London, UK, 2015.
14. Hui, C.; Landi, P.; Minoarivelo, H.O.; Ramanantoanina, A. Ecological and Evolutionary Modelling; Springer:

Cham, Switzerland, 2018.
15. Baddeley, A.; Diggle, P.J.; Hardegen, A.; Lawrence, T.; Milne, R.K.; Nair, G. On tests of spatial pattern based

on simulation envelopes. Ecol. Monogr. 2014, 84, 477–489. [CrossRef]
16. Ripley, B.D. Modelling spatial patterns (with discussion). J. R. Stat. Soc. B 1977, 39, 172–212.
17. Hui, C.; Veldtman, R.; McGeoch, M.A. Measures, perceptions and scaling patterns of aggregated species

distributions. Ecography 2010, 33, 95–102. [CrossRef]
18. Hui, C.; Vermeulen, W.; Durrheim, G. Quantifying multiple-site compositional turnover in an Afrotemperate

forest, using zeta diversity. For. Ecosyst. 2018, 5, 15. [CrossRef]
19. Diggle, P.; Zheng, P.P.; Durr, P. Nonparametric estimation of spatial segregation in a multivariate point

process: Bovine tuberculosis in Cornwall, UK. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 645–658. [CrossRef]
20. Sandhu, H.S.; Shi, P.; Yang, Q. Intraspecific spatial niche differentiation: Evidence from Phyllostachys edulis.

Acta Ecol. Sin. 2013, 33, 287–292. [CrossRef]
21. Serra, L.; Juan, P.; Varga, D.; Mateu, J.; Saez, M. Spatial pattern modelling of wildfires in Catalonia,

Spain 2004–2008. Environ. Model. Softw. 2013, 40, 235–244. [CrossRef]

http://dx.doi.org/10.1016/j.foreco.2010.06.014
http://dx.doi.org/10.1111/j.1469-1795.2009.00328.x
http://dx.doi.org/10.1038/ncomms11766
http://www.ncbi.nlm.nih.gov/pubmed/27273085
http://dx.doi.org/10.1086/285998
http://dx.doi.org/10.1086/303402
http://dx.doi.org/10.1007/BF00347974
http://dx.doi.org/10.1111/j.1461-0248.2006.00996.x
http://dx.doi.org/10.1006/tpbi.2000.1486
http://dx.doi.org/10.1890/13-2042.1
http://dx.doi.org/10.1111/j.1600-0587.2009.05997.x
http://dx.doi.org/10.1186/s40663-018-0135-1
http://dx.doi.org/10.1111/j.1467-9876.2005.05373.x
http://dx.doi.org/10.1016/j.chnaes.2013.07.009
http://dx.doi.org/10.1016/j.envsoft.2012.09.014


Forests 2018, 9, 768 15 of 15

22. Lu, Z.B.; Shi, P.J.; Reddy, G.V.P.; Li, L.M.; Men, X.Y.; Ge, F. Nonparametric estimation of interspecific
spatio-temporal niche separation between two lady beetles (Coleoptera: Coccinellidae) in Bt cotton fields.
Ann. Entomol. Soc. Am. 2015, 108, 807–813. [CrossRef]

23. Sun, J.; Liu, Y. Age-independent climate-growth response of Chinese pine (Pinus tabuliformis Carrière) in
North China. Trees Struc. Funct. 2015, 29, 397–406. [CrossRef]

24. Liu, Y.; Liu, H.; Song, H.; Li, Q.; Burr, G.S.; Wang, L.; Hu, S. A monsoon-related 174-year relative humidity
record from tree-ring in δ18O the Yaoshan region, eastern central China. Sci. Total Environ. 2017, 593−594,
523–534. [CrossRef]

25. Kelsall, J.E.; Diggle, P.J. Spatial variation in risk of disease: A nonparametric binary regression approach.
Appl. Stat. 1998, 47, 559–573. [CrossRef]

26. Hui, C.; McGeoch, M.A.; Warren, M. A spatially explicit approach to estimating species occupancy and
spatial correlation. J. Anim. Ecol. 2006, 75, 140–147. [CrossRef] [PubMed]

27. Goreaud, F.; Pélissier, R. Avoiding misinterpretation of biotic interactions with the intertype K12-function:
Population independence vs. random labelling hypotheses. J. Veg. Sci. 2003, 14, 681–692. [CrossRef]

28. Grabarnik, P.; Myllymäki, M.; Stoyan, D. Correct testing of mark independence for marked point patterns.
Ecol. Model. 2011, 222, 3888–3894. [CrossRef]

29. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2015. Available online: https://www.R.-project.org (accessed on 17 April 2018).

30. Ghalandarayeshi, S.; Nord-Larsen, T.; Johannsen, V.K.; Larsen, J.B. Spatial patterns of tree species in Suserup
Skov—A semi-natural forest in Denmark. For. Ecol. Manag. 2017, 406, 391–401. [CrossRef]

31. Xiang, W.; Liu, S.; Lei, X.; Frank, S.C.; Tian, D.; Wang, G.; Deng, X. Secondary forest floristic composition,
structure, and spatial pattern in subtropical China. J. For. Res. 2013, 18, 111–120. [CrossRef]

32. Legendre, P.; Fortin, M.-J. Spatial pattern and ecological analysis. Plant Ecol. 1989, 80, 107–138. [CrossRef]
33. Wang, Z.; Yang, H.; Dong, B.; Zhou, M.; Ma, L.; Jia, Z.; Duan, J. Effects of canopy gap size on growth

and spatial patterns of Chinese pine (Pinus tabuliformis) regeneration. For. Ecol. Manag. 2017, 385, 46–56.
[CrossRef]

34. Diggle, P.J.; Gómez-Rubio, V.; Brown, P.E.; Chetwynd, A.G.; Gooding, S. Second-order analysis of
inhomogeneous spatial point processes using case–control data. Biometrics 2007, 63, 550–557. [CrossRef]

35. Shi, P.J.; Sandhu, H.S.; Reddy, G.V.P. Dispersal distance determines the exponent of the spatial Taylor’s
power law. Ecol. Model. 2016, 335, 48–53. [CrossRef]

36. Hou, H.; Ding, L.; Xu, Z.; Wang, L.; Zhao, Y. Root distribution of young trees of typical species in the northern
region of Yanshan Mountains. For. Resour. Manag. 2018, 10–15. (In Chinese)

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/aesa/sav064
http://dx.doi.org/10.1007/s00468-014-1119-6
http://dx.doi.org/10.1016/j.scitotenv.2017.03.198
http://dx.doi.org/10.1111/1467-9876.00128
http://dx.doi.org/10.1111/j.1365-2656.2005.01029.x
http://www.ncbi.nlm.nih.gov/pubmed/16903051
http://dx.doi.org/10.1658/1100-9233(2003)014[0681:AMOBIW]2.0.CO;2
http://dx.doi.org/10.1016/j.ecolmodel.2011.10.005
https://www.R.-project.org
http://dx.doi.org/10.1016/j.foreco.2017.10.020
http://dx.doi.org/10.1007/s10310-011-0329-7
http://dx.doi.org/10.1007/BF00048036
http://dx.doi.org/10.1016/j.foreco.2016.11.022
http://dx.doi.org/10.1111/j.1541-0420.2006.00683.x
http://dx.doi.org/10.1016/j.ecolmodel.2016.05.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Site 
	Statistical Methods 
	Species-Specific Probabilities for Spatial Segregation 
	Significant Test for Spatial Segregation 

	Analysis and Test of Spatial Relationship 

	Results 
	Abundances of Tree Species 
	Test of Spatial Segregation 
	Spatial Correlations between the Chinese Pine and Other Five Tree Species 

	Discussion 
	Conclusions 
	References

