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Abstract: Wall-to-wall tree-lists information (lists of species and diameter for every tree) at a regional
scale is required for managers to assess forest sustainability and design effective forest management
strategies. Currently, the k-nearest neighbors (kNN) method and the Weibull diameter distribution
function have been widely used for estimating tree lists. However, the kNN method usually relies on
a large number of field inventory plots to impute tree lists, whereas the Weibull function relies on
strong correlations between stand attributes and diameter distribution across large regions. In this
study, we developed a framework to estimate wall-to-wall tree lists over large areas based on a limited
number of forest inventory plots. This framework integrates the ability of extrapolating diameter
distribution from Weibull and kNN imputation of wall-to-wall forest stand attributes from Moderate
Resolution Imaging Spectroradiometer (MODIS). We estimated tree lists using this framework in
Chinese boreal forests (Great Xing’an Mountains) and evaluated the accuracy of this framework.
The results showed that the passing rate of the Kolmogorov–Smirnov (KS) test for Weibull diameter
distribution by species was from 52% to 88.16%, which means that Weibull distribution could describe
the diameter distribution by species well. The imputed stand attributes (diameter at breast height
(DBH), height, and age) from the kNN method showed comparable accuracy with the previous
studies for all species. There was no significant difference in the tree density between the estimated
and observed tree-lists. Results suggest that this framework is well-suited to estimating the tree-lists
in a large area. Our results were also ecologically realistic, capturing dominant ecological patterns
and processes.

Keywords: Weibull function; kNN; MODIS; tree-lists estimation; boreal forest

1. Introduction

Tree-lists (i.e., lists of species and diameter for every tree) [1] are of primary importance for
deriving many stand attributes of interest (e.g., species composition, basal area, biomass). They are
also valuable information for parameterizing forest landscape models (FLMs) [2], which are useful
tools to examine how climate change, forest management, and other environmental stressors interact
with species distributions and ecosystem conditions over large areas and long time frames [3,4].
As such, tree-lists across large regions are required to assess forest sustainability and design effective
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forest management strategies in response to various disturbance regimes for forest managers and
researchers [2–4].

Tree-lists data are often obtained through field inventories [5], which record the species and
diameter of every tree in the plot. However, field inventories are labor-intensive and unfeasible
for large areas [1,6]. Therefore, researchers usually integrate forest inventory data, remotely sensed
data, and environment data to extrapolate tree-lists to a large area based on the limited plots [7–12].
Generally, there are two extrapolation approaches: imputation methods and parametric diameter
distribution modeling [10,13].

Imputation methods involve a series of nonparametric statistical methods such as k-nearest
neighbors (kNN) [14], most similar neighbors [15], random forests [16], and geo-statistical
estimation [17] to fill target units with measurements from one (or several) reference unit(s) in the
population [1,18]. Particularly, the kNN imputation method is widely used for estimating tree-lists.
When using kNN imputation, the target units are assigned with the tree-lists of the reference units
from field inventory based on the similarity between the reference and target stands [1,8]. The major
advantage of the kNN imputation method is the preservation of the covariance structure of the tree-lists
from the reference data, and it is suitable for modeling multi-model diameter distribution for complex
stands [1,15]. However, kNN imputation is particularly vulnerable for extrapolations beyond the
range of the sample [19]. Therefore, a large number of field plots with tree-lists are required when
using kNN imputation over large areas. This may present a problem in some regions due to data rights
and data scarcity.

The other extrapolation method—parametric diameter distribution modeling—uses parametric
distribution functions such as the log-normal, exponential, gamma, beta, Johnson's SB, and Weibull
functions to fit the diameter distribution for each stand, and then estimates the stand attributes that
correlate to the distribution parameters [1,20]. Once the parameters of the distribution are determined,
the proportions of tree number at each diameter class are identified by the theoretical diameter
distributions. Compared to the kNN method, these methods are not limited by the attribute range
of training sample data, and extrapolation is generally possible if parametric diameter distribution
models are calibrated properly [10,13]. The Weibull function is the best parametric function for
diameter distribution because it has fewer parameters to be estimated and flexibility in describing
different shapes of diameter distributions for many tree species worldwide [10,20,21]. Generally, the
Weibull parameters can be estimated by building the relationships between the Weibull parameters
and stand attributes (e.g., stand age, mean height, mean diameter, and aboveground biomass (AGB)
density). Such stand attributes can be obtained from lidar data or high spatial resolution optical
images [1,22–24]. Therefore, lidar or high spatial resolution optical images are often used in multi-phase
sampling procedures to obtain stand attributes in lieu of field plots in large regions [22,23]. However,
the wall-to-wall coverage of these stand attributes is also lacking across large regions due to the high
cost of acquiring and processing lidar data or other spatial optical images. The application of Weibull
diameter distribution across large regions is also limited by the validity of the stand attributes that are
assumed to have strong correlations to the parameters of the Weibull diameter distribution.

To combine the strengths of kNN and Weibull methods for wall-to-wall stand attributes
imputation across large regions, it is possible to integrate Weibull parameters estimated from field plots
with the stand attributes imputed from kNN [25]. Therefore, our objective in this study was to develop
a framework to estimate tree-lists based on limited forest inventory tree-lists data by integrating a
parametric Weibull density function with stand attributes imputed by the kNN method. We further
tested and assessed this framework and estimated wall-to-wall tree-lists at 250 m spatial resolution in
the boreal forests of China. Our study provides a practical approach to estimating tree-lists over large
areas where open-source forest inventory data are lacking.
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2. Materials and Methods

2.1. Study Area

Our study area was located in the Great Xing’an Mountains in China, which is a typical southern
boreal forest area with elevations varying from 139 to 1511 m (121◦12′–127◦00′ E, 50◦10′–53◦33′ N)
(Figure 1). This area has a cold temperate continental monsoon climate with average annual
temperature varying from 1 ◦C at its southern extremes to −6 ◦C at its northern extremes, and
precipitation varying from 442 mm in the south to 240 mm in the north. More than 60% of the annual
precipitation falls in the summer season from June to August [26]. The slope of our study area is
relatively gentle, with 80% of the area less than 15◦. Most of the landscape is mainly dominated by
cool temperate coniferous forests. The main boreal conifer tree species is Dahurian larch (Larix gmelinii
(Rupr.) Kuzen, hereafter “larch”), which are usually found in cool moist sites. The broadleaf tree species
mainly include white birch (Betula platyphylla Suk.) and aspen (Populus davidiana Dode), and occupy
drier, well-drained sites of the area [27]. Other tree species, such as Korean spruce (Picea koraiensis
Nakai, hereafter “spruce”), Asian black birch (Betula davurica Pall., hereafter “black birch”), Mongolian
Scots pine (Pinus sylvestris var. mongolica Litv., hereafter “pine”), willow (Chosenia arbutifolia (Pall.)
A. Skv.), Mongolian oak (Quercus mongolica Fisch. ex Ledeb.), and a shrub species (Pinus pumila (Pall.)
Regel), are interspersed with larch forests and have a small area of distribution [28]. Black birch
and Mongolian oak were mainly distributed in the southern part of the study area, whereas pine
was distributed in the northern part. Young and middle-aged forests comprised the main part of
the forest landscapes, with the exception of the conservation area due to long-term logging and fire
disturbance. The forest structures varied due to frequent disturbance and large spatial variation in
climate and terrain.
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2.2. Plot and Stand Inventory Data

Two types of forest inventory data were collected in this study. One was the limited plot inventory
data with tree-lists, which were used to build the parameter estimation models of Weibull diameter
distributions by species. The other were the stand inventory data without tree-lists, which were used
to estimate the wall-to-wall stand attributes by the kNN imputation method.

The plot inventory data included a total of 212 plots, which were measured in Huzhong and
Jiagedaqi forestry bureaus in 2011 (Figure 1). Among these plots, 191 plots were in the middle part
of the study area and contained most tree species of the study area except Mongolian oak and black
birch. Thus, we surveyed another 21 plots that included Mongolian oak and black birch located in
the southern part of the study area. All plots were 20 m × 30 m. The diameter at breast height (DBH)
for all trees larger than 5 cm was measured in each plot. We also recorded the GPS coordinates, slope,
elevation, mean stand age, and mean height in each plot. We calculated the arithmetic mean DBH by
species by dividing the sum of tree DBHs by the tree number of corresponding tree species.

Stand inventory data were collected from the China Forestry Science Data Center (CFSDC,
http://www.cfsdc.org), which included 7635 stand polygons with relatively complete attributes from
1997 to 2001. These stand polygons ranged from a few hectares to dozens of hectares. Within each
stand polygon, stand characteristics such as stand DBH, height, age, tree species composition (volume
proportion), and the stand volume density were recorded in accordance with Chinese inventory
requirements for forest management planning and design [29]. Stand DBH is the DBH of the trees
with the mean basal area of the stand. It is different from mean arithmetic mean DBH. The detailed
information about polygon stand inventory data can be found in Zhang et al. [30].

2.3. Predictor Variables

Forest stand characteristics can be characterized by the reflectance values of satellite images and
influenced by environment factors. In this study, Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite image variables and environment variables were selected as predictor variables
to estimate wall-to-wall stand attributes (e.g., stand mean DBH, height, and age). The detailed
lists of predictor variables can be found in Zhang et al. [30]. MODIS variables included seven
MODIS monthly composite surface reflectance bands and several vegetation indices correlated with
vegetation characteristics in June of 2000. Environment variables in this study included climate
variables, topographic variables, and location variables. Climate variables included mean annual
precipitation and temperature between 1982 and 2009, (raster layers with a 1 km spatial resolution),
which were generated by interpolating data from the National Meteorological Center of China by
Mao et al. [31]. Topographic variables including elevation, slope, and cosine of aspect (COSASP) were
derived from the Shuttle Radar Topography Mission digital elevation model (SRTMDEM, 90 m spatial
resolution). SRTMDEM was downloaded from the International Scientific and Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn/).
All the predictor variables except for topographic variables were resampled to 250 m pixel resolution
using nearest neighbor method.

2.4. Overall Framework for Tree-Lists Estimation

The approach in this study included the following steps (Figure 2): (1) We built the Weibull
parameter prediction models (WPPMs) using plot inventory data for estimating diameter distributions
in each pixel; (2) We used kNN models to map forest stand attributes (e.g., species-level biomass, stand
age, height, DBH) and provided the independent variables for WPPMs in each pixel; (3) We estimated
tree-lists by species in each pixel by combining Weibull diameter distributions estimated by WPPMs
and forest stand attributes imputed by the kNN method.

http://www.cfsdc.org
http://www.gscloud.cn/
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2.4.1. Building WPPMs

The two-parameter Weibull function was applied to modeling the diameter distribution by species
in the 212 plots. The equation of the Weibull probability density function is

f (x) =
b
c

( x
c

)b−1
exp

[
−
( x

c

)b
]

(1)

where f (x) is the tree density probability function with diameter, x represents diameter, and b and c are
the shape parameter and scale parameter of the function, respectively.

Maximum likelihood estimation (MLE, Equation (2)) was used to estimate the parameters of
the Weibull functions of each species for each plot. MLE is a common method used to estimate the
parameters of distributions [20,21]. The MLE equation is as follows:

L(x1, x2, . . . , xn, θ) =
n

∏
i=1

f (xi, θ) (2)

where x1, x2, . . . , xn are the observed values of the samples from the population, L(x1, x2, . . . , xn, θ)

is the MLE function, and f (x, θ) is the probability density function with unknown parameters (θ).
The maximum probability for the samples (x1, x2, . . . , xn) is required when using MLE method to
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estimate the value of θ. If the MLE function (L) is a differentiable function, the value of θ satisfies the
requirement of the function:

dL
dθ

= 0 (3)

According to Equation (3), the unknown parameters can be estimated. The MLE method was
executed using the MASS package [32] in R [33]. When parameters b and c were estimated in each plot,
the relationship between the parameters and stand variables could be built. In this study, arithmetic
mean DBH by species was selected as the independent variable to build WPPMs using the ordinary
least squares (OLS) method.

2.4.2. Mapping Forest Stand Attributes

The stand attributes including DBH, age, and height were mapped by integrating the forest
attributes from stand polygons with predictor variables as described in Section 2.3 using the kNN
method. The inverse distance weighted method and k = 6 that Zhang et al. used were selected to
weight the nearest neighbor reference elements. The mean arithmetic DBH for larch and white birch in
each pixel were separately estimated using mean stand DBH, age, and height as independent variables
by Equations (4) and (5), which were built by Qi [34]:

LD = e−0.25412+1.064046lnD+0.002369t−0.0074H , (4)

BD = e0.393344+0.831571lnD+0.00305t+0.005589H . (5)

LD is the mean arithmetic DBH of larch, BD is the mean arithmetic DBH of white birch, D is mean
stand DBH, t is the stand age, and H is the mean stand height. For other species, we used mean stand
DBH instead of mean arithmetic DBH as the independent variable to estimate the diameter distribution
in each pixel. When mean arithmetic DBH by species was estimated, parameters b and c of the Weibull
function by species in each pixel could be calculated using the WPPMs.

2.4.3. Generating Tree-Lists by Species

Species-level biomass in step two for the study area in 2000 were from a previous study, from
which the accuracy for the species-level biomass assessment was provided [30]. In step three, the
species-level biomass was used to estimate the tree-lists in each pixel with the diameter distribution by
species. Once diameter distribution by species was estimated by WPPMs in each pixel, the proportion
of the tree density at each diameter class by species (PTDS) could be calculated in each pixel. Then,
the proportion of the species-level biomass at each diameter class (PSB) was calculated according to
PTDS and single-tree biomass by species at each diameter class [35]. Finally, the species-level biomass
could be divided into each diameter class according to the PSB and converted to the tree density at
each diameter class by dividing them by the single tree biomass at each diameter class.

2.5. Accuracy Assessment

In order for our framework to have a reliable accuracy, each step of the method was assessed
using a variety of accuracy measures.

In the first step, the goodness of fit of the estimated Weibull diameter distributions in each plot
was evaluated by the Kolmogorov–Smirnov (KS) test [36,37] and an error index proposed by Packalén
and Maltamo [12]:

e =
k

∑
i=1

0.5

∣∣∣∣∣ fi
N
− f̌i

Ň

∣∣∣∣∣, (6)

where fi is the observed stem number of class i by species, f̌i is the estimated stem number of class
i by species based on WPPMs, N is the total observed stem number by species, and Ň is the total
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estimated stem number by species. The error index ranges from 0 to 1, with 0 meaning a perfect fit and
1 meaning that the distributions do not overlap at all [38].

WPPMs were evaluated by using leave-one-out cross-validation (LOOCV). The R2, root mean
square error (RMSE), and bias were calculated based on the parameters of Weibull diameter
distribution functions:

RMSE =

√
∑n

i=1(yi − y̌i)

n
, (7)

R2 = 1−
n

∑
i=1

(yi − y̌i)
2/

n

∑
i=1

(yi − y)2, (8)

Bias =
∑n

i=1(yi − y̌i)

n
, (9)

where n is the number of the samples, yi is the ith observed value, y̌i is the ith estimated value, and y is
the mean value of all the observed values. For assessment of WPPMs’ accuracy, n is the number of
plots used to fit WPPMs for each species, yi is the parameter value estimated for plot i based on MLE,
and y̌i is the parameter value estimated for plot i based on WPPMs.

Because R2, root mean square error (RMSE), and bias have also been widely used to evaluate
the accuracy of many maps of forest stand attributes, the maps of stand attributes (e.g., stand DBH,
height, and age) in the second step were also evaluated by calculating these three measures using stand
inventory polygons from the CFSDC. Although all stand inventory polygons were used in random
forests-based kNN (RF-kNN) model development, only the 2nd through 7th nearest-neighboring
polygons were used to impute stand attributes for each target pixel. This means that each polygon
was not used to impute the pixels that had the same place as it and only contributed minimally to
the estimate for the corresponding pixel. Thus, the two datasets can be deemed independent for
comparisons between the field stand values and the modeled pixel values with the same spatial place.

Assessments for estimated tree-lists by species in the year 2000 across the study area were difficult
because we only had the inventory tree-lists data in 2011. In order to compare with the estimated
tree-lists of 2000, we transformed the inventory tree-lists data of 2011 by subtracting the DBH growth
of the six species in the past eleven years based on equations (Table 1) which were built using the
ordinary least squares (OLS) method and evaluated using the leave-one-out cross validation (LOOCV)
method against the published data [39]. We evaluated the accuracy of the estimated tree-lists in 2000
by calculating the error index based on these transformed inventory tree-lists data. The error indices
by species were calculated by each plot and by all the plots as a whole.

We also divided the forest inventory data in 2011 into three age classes (Young, Middle,
and Mature) by technical regulations for inventory for forest management planning and design
(GB/T26424-2010). Additionally, we compared the tree density from observed tree-lists data in 2011
with that derived from estimated tree-lists data in 2000 for the three main forest types (i.e., larch forests,
white birch forests, and mixed forests) with the same age class and similar environment using analysis
of variance (ANOVA). When identifying the similar environment, we mainly considered three factors:
slope, aspect, and elevation.

Table 1. Equations of DBH (d, unit: cm) and age (a, unit: year) for six species and accuracy assessment
using leave-one-out cross validation (LOOCV). RMSE: Root mean square error.

Species Equations R2 RMSE Bias p-value

Larch d = 0.1972a + 1.5701 0.96 1.95 0.04 0.00
White birch d = 0.2287a + 2.222 0.96 0.95 0.00 0.00

Pine d = 0.2659a − 1.47 0.75 4.88 0.00 0.00
Aspen d = 0.3405a − 0.27 0.92 2.86 0.00 0.00
Spruce d = 0.1154a + 7.6919 0.33 3.16 0.00 0.00

Mongolian oak d = 0.1333a + 3.2679 0.87 1.89 0.00 0.00
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3. Results

3.1. Weibull Parameter Prediction Models

The KS test showed that diameter distributions of all species could be well fitted using the Weibull
functions estimated by the MLE method (agreement > 50%), especially for larch, white birch, and
pine (Table 2, agreement > 80%). The leave-one-out cross validation (LOOCV) of WPPMs showed
that the scale parameter (c) had a good relationship with the arithmetic mean DBH (d) for all the
species (Table 3, small RMSE and high R2). However, the arithmetic mean DBH (d) explained less
variation in shape parameter (b) among different plots (R2: 0.13–0.29). Overall, diameter distributions
by species in each plot were well-fitted, with mean values of error indices from 0.27 to 0.43, except
for Mongolian oak. When separately summing the estimated and observed trees by diameter class of
species to calculate the error indices, all the species diameter distributions were well-represented with
low error indices (0.04–0.14) (Table 4).

Table 2. The agreement of each species for the two-parameter Weibull diameter distribution using
Kolmogorov–Smirnov (KS) test (p > 0.05).

Species Samples Passing the KS Test Sample Number Agreement (%)

Larch 134 152 88.16
White birch 63 75 84.00

Pine 35 41 85.36
Aspen 26 40 65.00
Spruce 27 35 77.14

Mongolian oak 12 21 57.14
Willow 1 1 100.00

* Agreement is the percentage of the samples that the passed the KS test.

Table 3. Equations of shape parameter (b) and scale parameter (c) of Weibull diameter distribution
depend on arithmetic mean DBH (d, unit: cm) for each species and accuracy assessment using
leave-one-out cross validation (LOOCV).

Species Equations R2 RMSE Bias p-value

Larch
b = 0.16782d + 1.62285 0.17 1.87 0.00 0.00

c = 1.067865d − 0.508824 1.00 0.34 0.00 0.00

White birch
b = −0.18218d + 5.07848 0.22 0.74 0.00 0.00
c = 1.153572d − 0.347148 1.00 0.12 0.00 0.00

Pine
b = 0.22833d + 0.08927 0.20 1.11 0.00 0.01
c = 1.08108d + 0.51344 0.99 0.21 0.00 0.00

Aspen b = −1.16886d + 4.95978 0.31 0.58 0.00 0.00
c = 1.153572d − 0.359169 1.00 0.08 0.00 0.00

Spruce b = −0.21014d + 4.70319 0.29 0.47 0.00 0.00
c = 1.16454d − 0.357322 1.00 0.07 0.00 0

Mongolian oak b = 0.068193d + 1.245481 0.13 1.14 0.00 0.06
c = 1.140851d − 0.21207 1.00 0.56 0.00 0
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Table 4. Error indices of DBH distributions for each species in all plots based on the WPPMs using
LOOCV method.

Species Mean Value of
Error Indices

Minimum
Value of Error

Indices

Maximum
Value of Error

Indices

Standard
Deviation of
Error Indices

Error Indices
of Summing
All the Plots

Larch 0.33 0.10 0.89 0.15 0.11
White birch 0.27 0.09 0.80 0.13 0.08

Pine 0.39 0.17 0.87 0.18 0.06
Aspen 0.43 0.17 0.79 0.19 0.04
Spruce 0.40 0.17 0.74 0.16 0.14

Mongolian oak 0.62 0.51 0.80 0.09 0.06

* Error indices of summing all the plots are the error indices calculated by regarding all plots as a whole.

3.2. Maps of Forest Stand Attributes

The maps of forest stand DBH, height, and age were estimated at a 250 m spatial resolution using
RF-kNN method and assessed using inventory stand polygon data (Figure 3). Results showed that
mean estimated values of stand DBH and height were close to their mean observed values with lowest
biases (Figure 3a,b), while mean estimated stand age was slightly greater than the observed (Figure 3c).
R2 values for the three stand attributes ranged from 0.47 to 0.60, with the highest values for stand
height, and the lowest values for stand DBH. RMSE values of the three stand attributes (Figure 3) were
relatively accepted compared to their mean observed values (mean stand DBH: 12.55 cm, mean stand
height: 12.22 m, mean stand age: 54.56 years).

The spatial distributions of three estimated stand attributes were in relation to the area of fire
in 1987 and elevations (Figures 1 and 3). Fire areas and low elevation areas had consistently low
predictions of the three stand attributes. In order to obtain the diameter distributions of larch and
white birch in each pixel, arithmetic mean DBH of larch and white birch were also mapped using
Equations (4) and (5) based on the three estimated attributes (Figure 4). Because other species often
occupied very little proportions of the species composition, we used the mean stand DBH instead of
the arithmetic mean DBH of species to calculate their diameter distributions based on the WPPMs in
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are the identification of outliers. The dotted line is the 1:1 line and the dashed line is the geometric
mean functional regression line.
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3.3. Maps of Tree Density from Tree-Lists

Tree density (trees with DBH >5 cm) of three main forest types derived from estimated tree-lists
in 2000s based on WPPMs did not show noticeable difference compared to the observed tree density
of the same forest types with a similar environment (Figure 5). The estimated wall-to-wall tree-lists
only showed slightly poorer accuracy compared to the estimated tree-lists using stand attributes of
plot inventory data in 2011 (Table 4, Figures 6 and 7). When combining all the plots into one data
set, the accuracy of tree-lists for most species improved greatly, except for Mongolian oak, and the
smallest stems of all species were underestimated (Figure 7). The estimated DBH of most tree species
was concentrated in the range of 6 to 22 cm, except for aspen (Figure 8). The total tree density mainly
ranged from 500 to 2500 trees/ha (Figure 9). The larch forests with high tree density mainly distributed
in places with high elevation. White birch often showed an opposite trend to larch for the spatial tree
density distribution, especially in the burned areas in 1987 (Figure 9). For other species, estimated tree
density showed less than 450 trees/ha.
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Figure 5. Boxplots of observed vs. predicted tree density of three main forest types (Larch forests
(a), White birch forests (b) and Mixed forests (c)) with similar environment (p > 0.05). Observed tree
density was calculated from the inventory plot data in 2011. Estimated tree density was calculated from
the estimated tree-lists in 2000s. The same letter “a” indicated that there was no obvious difference
between observed and estimated tree density.
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inventory tree-lists data. The error indices were calculated by regarding all transformed plots as
a whole.
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4. Discussion

With continuous need of detailed forest attributes (e.g., tree-lists) for answering regional questions,
developing methods to obtain such detailed forest attributes attracts a great deal of research interest.
Although both the kNN method and Weibull diameter distribution have been widely used for
estimating tree-lists [5,9,12,13], the integration of these two methods is novel in generating tree-lists
that have seen wide applications. A key novelty of this research is the generation of wall-to-wall
estimates of tree-lists over large areas using a limited number of forest ground inventory data.

For reginal forest attribute estimation like this, one important issue is accuracy.
Because wall-to-wall tree-lists estimated by our framework are transformed from species-level biomass
by kNN imputation and tree density percent from WPPMs, the accuracy of our estimated tree-lists
were mainly determined by WPPMs and kNN imputation models. For a more general assessment
of our method framework, we compared the accuracies of WPPMs and kNN models with other
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similar studies. We found that the parameter prediction models of Weibull diameter distributions
(WPPMs) in our study produced comparable accuracy with the previous studies. For example, Liu [40]
reported that the determination coefficient (R2) of the shape parameter (b) estimated by the previous
parameter prediction models (PPMs) was generally close to 0.1—slightly poorer than our results.
Additionally, our estimates of scale parameter (c) for all the species were slightly better than the results
that Diamantopoulou et al., reported in the south and southwestern (Mediterranean) regions of Turkey
(c: R2 = 0.96–0.99). The mean error index (0.32–0.34) of the estimated diameter distributions in a typical
Finnish managed boreal forest area that Packalén and Maltamo reported was similar to our results
about the dominant tree species. These comparisons indicate that our WPPMs can be used at least as
accurately as previous studies to estimate tree diameter distribution.

Our imputed wall-to-wall stand attributes (e.g., stand DBH, height, and age) also showed
comparable accuracy to the previous similar studies. For example, the accuracy of our study was
very close to the results that Beaudoin et al. (2014) [41] reported about the stand age and height in
a Canadian forest, with R2 of 0.57 and 0.58, RMSE 44.29 years and 5.66 m, and bias of 1.54 years
and 0.07 m. In addition, the area with low estimated values of stand DBH, height, and age was
consistent with the area disturbed by fires in 1987 and low elevations linked to intensive human
activities, indicating that our spatial predictions of forest attributes are realistic, capturing dominant
ecological patterns and processes.

Although we were unable to directly assess the accuracy of the estimated tree-lists in the 2000s due
to the lack of tree-lists inventory data in this period, the assessments of WPPMs and kNN imputation
models in our study demonstrated that our estimated tree-lists had comparable accuracy to previous
studies. The assessment of the estimated tree-lists in 2000 based on transformed inventory tree-lists
data provided the accuracy about our method framework, which were comparable with a previous
study that was in much smaller area [12]. The comparisons between estimated and observed total
density also indicated that the estimated tree-lists in 2000s had no obvious difference with tree-lists
from the forest inventory in 2011 with the same forest types and similar environmental conditions.
In addition, the estimated tree density ranging from 400 to 2500 trees/ha (Figure 9) (DBH ≥ 5 cm) is
consistent with the previous results reported by Zhai, et al. [42] and Zhao et al. [43]. These comparisons
also indicated that the estimated tree-lists had a relatively reliable accuracy.

There are many methods to describe the diameter distributions of forests stands, among which the
Weibull function is one of the most simple and accurate functions for modeling diameter distribution.
Liu et al. [44] compared three methods of Weibull function in modeling diameter distributions in
Daxing’an Mountain, China. They found that a finite mixture model (FMM) of Weibull functions was
more flexible to describe highly skewed and irregular diameter distributions than a single Weibull
function to fit the whole stand only, and a single Weibull function to fit each species component
separately was also able to fit each species component well in mixed forest stands. However, FMM
is often difficult to use for large regions due to many unknown parameters requiring estimation [45].
A single Weibull function to fit each species component separately is easy to use but first requires
the information of species composition, which is also difficult to obtain only through the forest
inventory across large regions. Our method framework could use a Weibull function to fit each species
component separately and provide the information about species composition across large regions
using a kNN model based on MODIS data. MODIS data have wide coverage and high temporal
resolution, and have been widely used to generate regional maps of forest attributes [3,5,24,30,41,46–50].
The advantage of our method framework is its use of MODIS data as predictor variables to estimate
stand attributes. Compared to other high-resolution optical images (e.g., Landsat), MODIS data
provide abundant and near-real-time information for the forest stand attribute imputation across large
regions [14,30]. Therefore, our framework may be more feasible for use across large regions to describe
diameter distributions.

Many approaches have been used to estimate Weibull parameters for describing diameter
distributions such as ordinary least squares (OLS), seemingly unrelated regression (SUR), cumulative
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distribution function regression (CDFR), or artificial neural network (ANN) methods [21].
Although Diamantopoulou et al. [20] proved that complex methods (e.g., ANN) were superior to
simple methods (e.g., OLS) in the estimation of Weibull parameters, the application of complex
methods is often limited across large regions because they are often based on a training method and
their results cannot go not beyond the range of training samples. The OLS method is simple and has
been widely used to fit the parameter models. Additionally, many previous studies have also proved
that it was possible to estimate the scale or shape parameters of a two-parameter Weibull function
using the parametric models fitted by OLS [51,52]. Therefore, in this study parametric WPPMs were
built using only OLS.

In this study, only the arithmetic DBHs of larch and white birch were calculated and used when
estimating the wall-to-wall species’ diameter distribution. For other species, we used stand DBH
instead of tree species’ arithmetic DBH to estimate the parameters of Weibull diameter distribution
because of their small percentage of forest species composition for most forest stands in our study area.
Although it is reasonable for the Chinese boreal forests, which have simple stand structures, great
uncertainties might be produced for forests with complicated structures using stand DBH instead of
tree species’ arithmetic DBH. Therefore, our method framework is generally suited for forests with
simple stand structure, such as boreal forests.

5. Conclusions

Wall-to-wall tree-lists across large regions are required to support science, policy, and reporting
information requirements. However, it is difficult to obtain such information across large regions due
to the high cost of the forest inventory. In this study, we presented a framework to estimate wall-to-wall
tree-lists using limited forest inventory plots by integrating a Weibull diameter distribution with the
imputed stand attributes based on the kNN method in Chinese boreal forests. The Weibull function
showed strong ability to describe the diameter distributions of tree species. The WPPMs of six species
showed acceptable accuracy for estimating the parameters of Weibull functions. The imputed stand
age, mean height, and DBH across the study area by the kNN method also showed comparable
accuracy with previous study. The estimated tree density derived from tree-lists did not show obvious
difference between the observed and estimated data for similar forest types. Our estimated tree-lists
also captured some effects of ecological processes, such as fire disturbance. Our method provides an
alternative for estimating the tree lists over large area such as the boreal forest biome in China.
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