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Abstract: Crown size estimations are of vital importance in forest management practice. This paper
presents nonlinear models that were developed for crown width prediction of Black pine (Pinus nigra
Arn.) natural, pure, even-aged stands in Olympus Mountain, central Greece. Using a number of
measured characteristics at tree and plot level from 66 sample plots as independent variables, an
attempt was made to predict crown width accurately, initially based on Least Square Analysis. At
the second stage, nonlinear mixed effect modeling was performed in order to increase the fitting
ability of the proposed models and to deal with the lack of between observations independence error
assumption. Based on the same form, a generalized crown width model was developed by including
six main regressors, such as the diameter at breast height, the total height, the canopy base height,
the basal area, the relative spacing index and the diameter to quadratic mean diameter ratio, while at
the final stage, the same model was expanded to mixed-effect. The proposed models were evaluated
against independent crown width sample observations that were also obtained from the study area.
The results showed that the two types of mixed-effect models performed equally well and, therefore,
we propose those for use in forestry practice. Furthermore, the exact contribution of each inherent
variable in crown width allometry was evaluated, thus providing a framework to facilitate field
measurements for forest management predictions.

Keywords: crown width prediction; forest management; nonlinear forest models; mixed effects
models; Black pine

1. Introduction

Crown size is defined as the horizontal space that is available for the display of leaves [1]. It forms
the tree growing space, which is associated with the availability of all of the required supplies for the tree
growth [2]. Therefore, crown size is a critical feature of any tree growing at stand or open conditions,
particularly in mountain areas, where water limitations rarely occur. In forestry practice, crown size
estimation is considered of vital importance because it is associated with many different factors of forest
management concern, such as the photosynthetic capacity [3], stem volume [4], increment efficiency [5],
tree competition [6,7], tree health and vigor [8], as well as carbon, water and energy exchange [9]. From an
ecological point of view, crown size directly affects many of the understory flora and fauna components by
regulating the amount of the penetrated sunlight and precipitation to the lowest layers, thus retaining the
forest moisture [10]. In order to measure the dimensions of a crown, Gregoire and Valentine [11] suggested
several approaches. In the current research, it was assumed that crown size at above-ground level depends
mainly on the crown dimensions at different directions forming an approximately circular shape via
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vertical projection [12]. Hence, its mathematical expression involves crown width measurements, or the
horizontal distance between the edges of each tree crown passing through the center of the trunk to at
least two vertical directions.

Hemery et al. [3] have pointed out the importance of modeling crown width under a thinning
regime for final crop spacing by linking the diameter at breast height and the crown width (crown
diameter) with the available growing space. However, the increasing use of remote sensing
techniques in forestry has generated a need for well-defined allometric relationships between the
basic dendrometric parameters in order to perform accurate estimations of the standing wood volume.
Popescu et al. [13] demonstrated that the crown width is a tree dimension that is possible to measure
directly with a lidar photogrammetric technique, while Gering and May [14] inversed a simple linear
model for crown width prediction in order to predict diameter at breast height from aerial photos
or photogrammetric data. Therefore, the development of forest tree allometric statistical models
would provide valuable tools in forest management decision making by allowing the prediction of
the relevant stand attributes. Despite the importance of crown width modeling, a limited number
of studies have been published to date in comparison to studies related to tree-height prediction.
In crown width modeling, the typical variable that has been used as a regressor is the diameter at
breast height (e.g., [3,12,15–17]), mainly due to the fact that this variable is included in almost all types
of forest inventories and it is easy to measure it in the field. Incorporation of additional variables would
improve the fitting ability of the candidate regression models; however, it would require additional
sampling effort. From a practical point of view, therefore, it would be very useful to use any variable
that could be easily measured in the field as an independent variable, such as the dominant height,
instead of their mean values [18]. A possible disadvantage of using stand-level attributes as regressors
is the assumption that stands with similar characteristics are described by similar linear or nonlinear
models, which is not fully accurate [19].

In many cases, crown width modeling has been based on data that has been obtained from
installed sample plots or even from repeated measurements along the same tree, which most often
present a hierarchical nested structure, thus violating the assumption of between observations error
independence [20]. Therefore, we applied non-linear mixed effect modeling in order to ensure the
independency assumption by adding a plot-specific random-effect part along with a fixed part in each
estimated parameter during the modeling process. Mixed-effect models of forest growth and yield
have been recommended by several authors in the literature as an alternative solution to independency
issues emanating from ordinary least squares application (e.g., [19,21–28]). As far as crown width
modeling is concerned, application of the mixed-effect modeling approach has been more limited as
yet (Sánchez-González et al. [23], Ducey [29], Fu et al. [30,31], Hao et al. [32], Yang and Huang [7]
and Sharma et al. [33,34]). In most cases, the mixed-effect models were reported to have generated
more accurate predictions than the fixed effect models, since the structural heterogeneity, at tree or at
stand level, was reflected by the random-effect parameters. In any case, a subsample of observations
would always be used for calibration, although this might be a disadvantage during the data analysis.
However, in many cases, four to five observations would suffice for a reasonable accuracy of the
mixed-modeling predictions [21].

Black pine (Pinus nigra Arn.) is an important commercial tree species in Greece that covers an
area of 281,692 hectares. Its annual wood volume amounts to 13,892,819 m3, corresponding to 10%
of the country’s total wood production [35]. Black pine geographically extends from the Iberian
Peninsula to the Alps, Apennine Mountains, and the Balkan region, Asia Minor, Crimea and the USA
and Canada. In Greece, Black pine is mainly located in the mountains of the continental country with
some populations also extending to the islands of the North Aegean Sea. In Olympus Mountain,
which has served as the study area for the research presented in the current article, the Black pine
forest stands are, to a big extent, pure, even-aged and they are managed by the Hellenic Forest
Service predominately for wood production. Black pine, in addition to its economic value, has the
ability to grow in degraded ecosystems. This is the reason that Black pine has been widely used in
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afforestation of mountain areas [36]. The canopy of Black pine protects the vulnerable soils from
erosion by creating a physical obstacle against erodibility factors, such as rain and wind and also
by supplying material for the formation of a thick protective layer of pine litter [37]. Therefore, the
prediction possibility of the required growing space of this species would support forest management
decisions regarding afforestation. Furthermore, the development of crown width prediction models
could facilitate standing volume estimations via remote sensing analysis and the establishment of the
most appropriate silvicultural regimes in the framework of sustainable forest management.

In the context of our research, the main hypothesis was that the crown width-diameter allometry
of Black pine (Pinus nigra Arn.) would be significantly influenced by a combination of basic tree- and
stand-level parameters, such as diameter, basal area, stand density measures and tree characteristics.
Furthermore, an additional hypothesis was that the generalized crown width-diameter models of
Black pine would be more accurate than the single mixed ones. Therefore, the specific objectives of
our research involved the following: (i) to develop a crown width prediction model of Black pine for
use in Greece and other countries (ii) to evaluate the combinatorial effect of basic tree- and stand-level
parameters along with random variables of mixed models on crown prediction and (iii) to compare
different crown prediction strategies.

2. Materials and Methods

2.1. Data

The research reported in the current article was conducted over a two-year period in Olympus
Mountain, Central Greece, where 66 non-permanent sample plots were installed, so as to measure a
number of variables at tree and stand level (Figure 1). Measurements were carried out in a total of 3442
trees over an area of approximately 73,477 hectares that also included the Olympus National Park. The
main forest species in the area is Black pine (Pinus nigra Arn.) and, to a lesser extent, the Macedonian fir
(Abies borisii-regis Mattf.), intermingled with broadleaved species in some restricted locations. The climate
is a typical sub-Mediterranean and the annual rainfall is about 715 mm. The geological substratum is
mainly composed of limestones, granite outcrops and flysch. The elevation from the sea level in the
established sample plots varied between 780 and 1520 m, with a mean value of 1148 m. Slope steepness
ranged between 1.11% and 64.90%, and averaged at 36.51% from the horizontal level.
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In order to select forest stands with Black pine as dominant species, a representative vector-format
file (shapefile) of vegetation type and cover was used in GIS environment (ArcGIS 10.2, ESRI, Redlands,
CA, USA) and 70 potential plot locations were selected randomly, using the random point function.
Due to the complex terrain of the study area, the random sampling process made it possible to cover
all the potential site qualities of the area. The shape of the sample plots was circular with stable radius,
covering an area of 500 m2 in each case. In order to minimize the repeated measurements in each
tree in an attempt to avoid the within-tree error correlation, we used the “canopy spread” module of
LaserAce hypsometer (Trimble, Sunnyvale, CA, USA) to estimate the crown width (CW) in two vertical
directions [38]. The diameter at breast height (DBH) was measured using a digital caliper to the nearest
0.1 m, and the total height (H) of each tree was measured by using the three-point measurement of
LaserAce hypsometer. At stand level, the total basal area per hectare (BA in m2·ha−1), the number of
stems per hectare (N·ha−1), the dominant height (mean height of the 100 largest trees per hectare or
equally proportional—HDOM), the dominant diameter (mean diameter of the 100 largest trees per
hectare or equally proportional—DDOM) and the quadratic mean diameter (QMD) were calculated.
The HDOM and the DDOM were measured locally by selecting the five largest trees in each plot [39].

The Site Index in each plot was estimated using the Site Index Curves for Black Pine in Greece [40].
The total sample was composed of 3442 trees, the majority of which 90% was used for model
development and about 10% for model validation [41]. The descriptive statistics of the total sample
are shown in Table 1.

Table 1. Descriptive statistics of the total sample.

Variables

Fitting Data (n = 3080) Validation Data (n = 362)

Mean Min Max Standard
Deviation Mean Min Max Standard

Deviation

diameter (cm) 23.85 1.10 85.40 11.52 21.99 1.20 64.0 12.45
height (m) 14.75 1.40 30.40 5.41 13.26 2.30 23.40 4.48

canopy base height (m) 7.37 0.20 19.90 3.53 5.81 0.30 10.80 2.12
crown width (m) 4.04 0.20 13.70 1.92 4.58 0.60 11.60 2.18

height/diameter ratio 67.67 23.64 154.54 19.91 71.74 33.78 143.63 19.50
stems per hectare (N·ha−1) 1050 240 2100 396 1196 480 1500 386

dominant height (m) 20.17 13.58 27.92 3.04 18.00 1.06 20.80 2.20
dominant diameter (m) 38.19 25.34 72.90 8.89 34.91 26.32 45.24 6.17

site index (m) 17.15 8.80 22.20 2.99 17.72 12.10 19.90 2.39
basal area (m2·ha−1) 56.70 25.70 99.09 16.06 54.97 28.07 76.80 16.18

quadratic diameter (cm) 27.11 17.76 40.10 5.04 24.71 21.48 38.86 4.77
basal area of larger

trees(m2·ha−1) 41.63 1.68 99.09 20.76 36.27 1.68 76.80 18.59

diameter to dominant diameter 0.67 0.02 1.70 0.30 0.63 0.06 1.34 0.31
diameter to quadratic diameter 0.93 0.03 2.68 0.41 0.90 0.10 2.06 0.43

height to dominant height 0.73 0.06 1.15 0.24 0.68 0.12 1.10 0.24
reineke stand density index 1166.4 437.0 1960 312.8 1053.6 480.3 1513.3 293.4

relative spacing index 0.153 0.100 0.442 0.04 0.152 0.124 0.235 0.035

2.2. Model Development

Diameter at breast height (DBH) is the most commonly used independent variable in crown width
modeling, since the relationship between DBH and crown width (CW) has been well established in
the literature. The mathematical form that links DBH and CW could be either linear [12,14,16,42] or
nonlinear [7,23,30,34]. For the needs of the current research, a number of candidate simple linear and
nonlinear models were fitted and the best ones, in terms of their fitting ability, were selected for further
analysis. The candidate models are shown in Table 2.
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Table 2. Simple linear and nonlinear models for crown width modeling.

Model Name Mathematical Expression Reference

M1 Linear CW = β0 + β1DBH [12,14]
M2 Power CW = β0DBHβ1 [43]
M3 Monomolecular CW = β0[1 − exp(−β1DBH)] [23]
M4 Exponential CW = β0 exp(β1DBH) [7]
M5 Logistic CW = β0/[1 + β1 exp(−β2DH)] [30]

CW = crown width, DBH = The diameter at breast height, M1, . . . ,M5 = Candidate models.

2.3. Additional Variables for Prediction-A Generalized Crown Width Model

It has been well established that DBH and CW for open and stand grown trees are closely
correlated [44]. The incorporation of DBH as the only predictive variable assumes that trees of the
same stem diameter also have the same mean crown dimensions, regardless of the competition levels
inside the stand; an assumption that does not hold. In order to relax this assumption, previous
research efforts have instead used tree variables, such as the crown length or ratio, the tree height
and the distance dependent or independent stand-level predictors, which reflect the competition
status [7,15,23,34,45]. The inclusion of additional variables leads to the creation of generalized models,
which usually improve the crown width predictability in large areas under different stand competition
regimes. However, a potential disadvantage of the generalized crown width prediction models is the
inherent assumption that stands with similar attributes also present similar trends in crown modeling.

The inclusion of a number of stand attributes in the base model, which affect crown size,
constitutes a standard procedure for expanding a simple model to a generalized form. For the
sake of model simplicity, a number of predictors at stand level were tested [31] and the final form of
the model was created. In this context, tree attributes, such as the total height (H), the height/diameter
ratio (HDR) and the canopy base height (CBH), were used as covariates for crown width prediction.
Furthermore, one tree-centered competition variable that is the basal area of the largest trees (BAL)
and three size ratios, the diameter/dominant-diameter (DBH/DDOM), the height/dominant height
(H/HDOM) and the diameter/quadratic mean diameter (DQMD), were tested in order to explain a
larger part of crown variation. The most common distance-independent predictors at stand level that
have been incorporated in generalized crown width models were the dominant height or diameter,
the number of stems per hectare, the basal area, the quadratic mean diameter and the Reineke’s
Stand Density Index (SDI), which was expressed as SDI = (N per ha) × (QMD/25.4)1.605 [46]. In the
current research, in addition to the aforementioned stand level variables, the Relative Spacing Index

(RSI), estimated as RSI =
√

1000
N per ha /HDOM [34,47,48], was also evaluated during the development

stage of a generalized nonlinear crown prediction model following a methodology which involved
a direct addition of a variable into the model [33], thus approximating a forward selection method.
The relationships of crown width with the basic variables at tree- and at stand- level are presented in
the corresponding scatter plots (Figure 2). The candidate models were evaluated against each other
using the ANOVA function for nested models in R statistical language (R Core Team) by using the
Akaike information criterion (AIC), together with the log-likelihood (−2LL) ratio test and the statistical
significance of each associated parameter.
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Figure 2. Scatter plots of crown width against basic parameters at tree and stand level of the fitting 
data. DBH = diameter at breast height, H = total height, CBH = canopy base height, HDR = 
height/diameter ratio, HDOM = height of the 100 largest trees per hectare or equally proportional, 
DDOM = diameter of the 100 largest trees per hectare or equally proportional, RSI = relative spacing 

Figure 2. Scatter plots of crown width against basic parameters at tree and stand level of the fitting data.
DBH = diameter at breast height, H = total height, CBH = canopy base height, HDR = height/diameter
ratio, HDOM = height of the 100 largest trees per hectare or equally proportional, DDOM = diameter of
the 100 largest trees per hectare or equally proportional, RSI = relative spacing index, SDI = Reineke’s
stand density index, BA = basal area, BAL = basal area of the largest trees. (A) diameter at breast
height versus crown width (B) total height versus crown width (C) canopy base height versus crown
width (D) height/diameter ratio versus crown width (E) dominant height versus crown width (F)
dominant diameter versus crown width (G) relative spacing index versus crown width (H) Reineke’s
stand density index versus crown width (I) basal area versus crown width (J) basal area of large trees
versus crown width.
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2.4. Mixed Effect Models

Very often, the field measurements that are obtained from established sample plots present a
hierarchical nested structure, which violates the basic least square assumption of between observations
independence [32]. The mixed effect models provide an appropriate framework to overcome this
limitation [49] by estimating plot average parameters along with a random part, which is related
specifically to each sample plot and, consequently, to the stand average conditions. The general vector
form of a mixed effect model, with respect to crown width modeling, was expressed as:

CWi = f(
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where σ2 was a scaling factor for error dispersion [49], Gi was the diagonal matrix for within
plot variance heteroscedasticity and Γi was an identity matrix that was related to the within plot
autocorrelation structure of the residuals. When evidences of heteroscedasticity are present, a
variance function may be applied, such as the power, the exponential and the constant/power
functions [20,30,34,51], so as to link variance with a predictor. The diagonal elements of G matrix are
provided by the selected variance function. Assuming that the i indicator represents the different plots
and the j indicator represents each tree located within the plot, the variance functions were expressed
through the following mathematical expressions [31]:

Var
(
εij
)
= σ2DBH2δ

ij (power function) (3)

Var
(
εij
)
= σ2exp

(
2δDBHij

)
(exponential function) (4)

Var
(
εij
)
= σ2

(
δ1 + DBHδ2

ij

)2
(constant-power function) (5)

where δ, δ1 and δ2 are parameters to be estimated. The most suitable function was determined by
visual inspection of the residuals and the Akaike Criterion (AIC).

2.5. Statistical Analysis

In order to evaluate the fitting ability of the ordinary least square and the mixed effect models,
the following criteria were selected:

1. the root mean square error (RMSE)

RMSE =

√√√√∑n
j=1

(
CWj − ĈWj

)2

n
(6)

2. an efficiency index (EI) based on R-squared expression [28]:

EI = 1 −
∑n

j=1

(
CWj − ĈWj

)2

∑n
j=1
(
CWj − CWj

)2 (7)
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3. the Akaike Information Criterion (AIC):

AIC = −2log(L) + 2p (8)

4. the mean prediction bias:

Bias =
∑n

j=1

(
CWj − ĈWj

)
n

(9)

where CWj, ĈWj και CWj represent the measured, estimated and mean values of crown width
of the jth observation, n the total number of observations, p the number of the estimated model
parameters and L the log-likelihood function of the fitted model. In addition, the model parameter
estimates should be statistically different from zero. Visual inspection of the residuals was used,
so as to detect heteroscedasticity trends. Following the suggestions of Temesgen et al. [52], the
threshold value of bias was set to 10cm in order to preclude severely biased equations.

2.6. Calibrated Response

In general, the fitting procedure of crown width modeling requires a minimum number of
observations to produce unbiased estimates at stand level. The corresponding required number of
observations for height-diameter model fitting should be at least 20–25 per stand, according to van
Laar and Akça [53]. An interesting property of mixed models is the ability to calibrate the random
part of the parameters, even if a small number of observations would be available, and still obtain
sufficiently accurate estimates. Usually four to five observations per stand would be sufficient enough
to calibrate a mixed model and to obtain reliable parameter estimates [21,30]. In our case, the random
effects vector prediction was based on the following Bayesian estimator [54]:

b̂i ≈ D̂ ẐT
i
(
R̂i +Ẑi D̂ ẐT

i

)−1
êi (10)

where D̂ was the estimated variance-covariance matrix for the random parameters, R̂i the
variance-covariance matrix for within plot variability, Ẑi was the matrix of partial derivatives, estimated
at b̂i, with respect to its fixed parameters [21]. Using the derivatives of Equation (11) for a total sample

of j = 2 trees from ith plot, the Ẑi matrix becomes [
DBHb0

i1 b0DBHb1
i1 ln(DBHi1)

DBHb0
i2 b0DBHb1

i2 ln(DBHi2)
]. The algorithm was

suitably implemented in R statistical language along with the nlme function.
The performance of each Black pine crown width model, generalized or mixed, was further

evaluated against independent Black pine validation data, which were not included in model
development. Two main sample scenarios were formulated in an effort to assess the predictive
ability of each modeling technique separately:

1. No calibration, use of only fixed effect parameters.
2. Four observations of crown width-diameter [34].

The procedure was repeated 100 times for each plot, following different combinations of randomly
selected trees [28]. The mean values of the statistical measures after 100 repetitions were reported
for comparison.

The evaluation was based on the mean values of RMSE and bias, which were obtained through
the fitting process of the proposed models in each of the six validation sample plots. The analysis
was based on R statistical language, the nls function for nonlinear modeling and the nlme function for
nonlinear mixed effect models.
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3. Results

3.1. A Simple Mixed Effect Model

The fitting statistics of the simple least square nonlinear models are presented in Table 3.

Table 3. Fitting statistics of the simple models

Fitting Criteria
Simple Models

M1 M2 M3 M4 M5

EI 0.6445 0.6477 0.6420 0.5738 0.6394
RMSE 1.1202 1.1151 1.1241 1.2266 1.1282
Bias 0.0000 0.0031 0.0322 −0.0405 −0.0085

EI = efficiency index, RMSE = root mean square error, Bias = prediction bias.

All the parameter estimates were statistically significant at (p < 0.01) level. All models, except
the M4 model, predicted crown width relatively well, although the linear M1 and the nonlinear M2
appeared more accurate during the calibration stage. Based on the fitting statistics of Table 3, the M2
model performed slightly better than the M1 and, therefore, it was selected as the basis for mixed effect
development. At the first stage, it was assumed that both the M2 fixed parameters contained a random
part [55], according to the following form (MM1):

CW = (β0 + b0)DBH(β1+b1) (11)

where b0 and b1 were the random effects of the model. The model converged at the calibration stage,
however we detected evidence of heteroscedasticity in the residual plots. In order to minimize the
unequal variance trends, the variance was modeled with functions, which were compared in terms of
their fitting performance.

According to the results presented in Table 4, the constant-power function provided significantly
different results compared to the same model using equal residual variance. The parameter estimates
and fit statistics of the final model are presented in Table 5. In order to examine the coverage extent of
the mixed model on both the fitting and the validation data, the mixed model was localized for each
plot by using four randomly selected trees (Figure 3). According to Figure 3, the simple mixed model
covered the range of the observed crown width values of the total sample.

Table 4. Fitting statistics of the simple mixed model (MM1), using different types of variance functions.

Variance Function Akaike Criterion (AIC)

σ2 8534.211
constant–power 8169.929

exponential 8263.744
power 8208.646

Table 5. Estimated parameters and fitting statistics of the simple mixed model (MM2).
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overlaid on the fitting data (A) and on validation data (B).

Hence, the final form of the simple mixed-effect model was

MM1 + constant-power function MM2 (12)

All the estimated parameters were significantly different than zero, according to the t-statistic
test values.

3.2. Development of a Generalized Model

The following model form (13) presented the best fitting ability and it was selected as a generalized
model for the prediction of black pine crown width. Using a total number of six predictors, it can be
expressed as (GM1):

CW = β0DBHβ1(BAβ2+β3CBH+β4RSI+β5H+β6DQMD) (13)

The residual analysis of the GM1 model revealed trends of unequal variance (heteroscedasticity),
since variance changed as diameter values were increasing. Following the methodology described by
Ritz and Streibig [56], a weighted least square method was used with weights in form of a function.
The power function yielded the best results, and the final form of the proposed ordinary least square
model is presented in Table 6.

Table 6. Estimated parameters and fitting statistics of GM2.
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Hence, the final form of the generalized model was

GM1 + power function GM2 (14)

The fixed parameters of the GM2 model were statistically significant at the p < 0.001 level.
The contribution of each covariate of the GM1 model to the variations of crown width is presented

in Figure 4. The curves were created by using the mean values of the variables in Table 1, the fixed
parameters of Table 6 and equal intervals of the test variable, starting from the minimum to the
maximum range [33,34].
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3.3. Development of a Generalized Mixed Effect Model

Starting from the mathematical form of the GM1 model, it was assumed that both fixed parameters,
that is β0 and β1, contain a random part and that the model converged for the fitting data. However,
the random part of the β1 parameter revealed almost zero variation and the model was simplified
by modifying the β1 parameter to fixed. In addition, the parameter estimate (β6) that was linked to
DQMD was not significant according to the t-statistic criterion and the mixed model was precluded
from further analysis. The GM1 model was further modified by excluding the DQMD variable and
convergence was achieved with both two and one random parameters. The two nested models were
compared between them with the ANOVA method [20] and no significant differences were detected
between them following the results of the log-likelihood ratio test (−2LL) (p > 0.05). This resulted
in the selection of the simplest form of the two models with one random variable, according to the
following mathematical expression (GMM1):

CW = (β0 + b0)DBHβ1(BAβ2+β3CBH+β4RSI+β5H) (15)

The residual analysis of the GMM1 model revealed treads of unequal variance and a
constant-power function was used to model variance with diameter. The final form of the proposed
generalized mixed model was (GMM2):

GMM1 + constant-power function GMM2 (16)

The parameter estimates and fit statistics of the proposed generalized mixed model are presented
in Table 7. The fixed parameters of the GMM2 model were significant at the p < 0.001 level.

Table 7. Estimated parameters and fitting statistics of the GMM2.
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In an effort to compare the two modeling strategies (simple and generalized mixed modelling), 
the distribution of the standardized residuals was evaluated graphically (Figure 6). 

The extent of GMM2 coverage to crown width variation of the total sample was tested graphically
by localizing the mixed-effect parameters to each sample plot using a random sample of four trees.
According to Figure 5, the generalized mixed effect model covered the largest part of crown variation.
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In an effort to compare the two modeling strategies (simple and generalized mixed modelling),
the distribution of the standardized residuals was evaluated graphically (Figure 6).
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Figure 6. Comparison of the two modelling strategies, simple mixed model (A) and generalized mixed
model (B).

According to Figure 6, the two models performed equally well, with slightly better fitting of the
GMM2 model. However, both models revealed no trends of unequal variance across the total range of
the tested variables.

3.4. Evaluation

A total set of n = 362 trees from six randomly selected independent plots that were located at
different stands within the study area was used in order to evaluate the predictive ability of the simple
mixed (MM2) and the generalized mixed (GMM2) models. The fixed-effect (FE) corresponded to the
fixed-effect part of the corresponding model.

The value attributes of the independent sample were among those that were used for model
development, while the calibration of the mixed model random parameters was based on the random
selection of four trees.

After a series of combinations of random tree selection, the mean RMSE values of all the modeling
techniques were calculated, and they are presented in Figure 7. As it is shown in Figure 7, it can be
concluded that both mixed models (MM2 and GMM2), for which a pre-sample for calibration of four
random trees was used, could predict crown width with low RMSE, when compared to fixed models.
The RMSE for all six sample plots was 0.966 m and the mean bias was 0.0021 m for the MM2 model,
while the corresponding values for GMM2 were 0.933 m and 0.2557 m, respectively.
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The corresponding mean value as the minimum possible RMSE from the simple least square
analysis for each separate plot was 0.782 m for the basic model and 0.994 m for GM2, whereas the fixed
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parts (FE) of the mixed models presented the highest RMSE, that is, 1.232 m for MM2 and 1005 m for
GMM2. The mean bias of the generalized model (GM2) was about 0.445 m which is relevant to under
prediction biases of crown width.

4. Discussion

The models presented in the current article explained the greatest part of the crown width
variation, a finding that has also been pointed out by other relevant studies [33,34]. The crown
width-diameter allometry tends to be explained by a linear model, despite the slightly better
performance of the M2 model, which complies with the findings of Dawkins [42]. However, the
power-type M2 model was considered as more flexible since it was easy to be linearized and then
expanded to a mixed effect model. The same model for crown width modeling has also been used
by Russell and Weiskittel [57] and Sharma et al. [33,34]. In its simple form, the stem diameter is the
only predictor of crown horizontal dimension, which is not as accurate because such models seem to
overestimate crown size for dense stands and to underestimate it for sparse stands [33,58]. Indeed, as
it is shown in Figures 7 and 8, the simple model that only uses DBH as the independent variable, that
is the FE (MM2) model, presented the largest error values along with the most biased estimates of all
models that were tested. For this reason, a number of covariates at tree and at stand level were added
to increase the percentage of crown variation that could be explained by the model.
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independent data of crown width-diameter.

Basal area, as a measure of stand density, is expected to affect crown width [59], while the
canopy base height has been mentioned as a valid predictor of crown width by a number of relevant
studies [31–34]. Tree height has also been used as a valid regressor of crown width allometry at tree
level [31,32], while both the RSI and the fraction between diameter and quadratic mean diameter have
been found to affect crown width variation according to Ducey [29]. Sharma et al. [33,34] have used
the RSI in crown width modeling along with a number of other variables at tree or at stand level.
In our current research, as it can be concluded from Figure 4, the contribution of RSI in crown width
variation is increased, second only to basal area. However, the contribution of each parameter alone
is quite different than altogether, as long as the crown width expression is concerned. In this sense,
the differences that emerged were related to the overall contribution of each variable in crown width
modeling. From Figure 2, it is quite clear that as height increases, crown width increases too, which is
biologically valid. However, in conjunction with other variables (Equation (13) and Table 6), crown
width decreases as height increases. This, however, was reported much earlier by Briegleb [60], who
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concluded that “for trees of given diameter, the shorter trees have larger crowns than the taller”. As a
result, the value of the GM2 model can be evaluated in a biological base, since it explains the crown
width allometry by considering the combined effect of a number of parameters rather than the effect of
each one independently. In this sense, dominant height is expected to affect crown width according
to the findings of other relevant studies (e.g., [31,33,34]). In the current study, during the forward
modeling process, HDOM appeared strongly related to crown width, however after the inclusion of BA
and CBH, the associated parameter of HDOM turned to insignificant at the p > 0.05 level. In addition,
despite the positive correlation between crown width and RSI, an inverse relationship was detected
according to Equation (13). This phenomenon may be attributed to the inclusion of the basal area in
the model, which seems to affect crown width variation more than the other inherent predictors—a
hypothesis that is further supported by Figure 4. As such, RSI decreases as the number of trees and the
dominant height increases, however the basal area and the tree diameter provide a biological limit
which actually determines the size of the trees in the stand.

Another interesting outcome from the current study is the exclusion of DQMD variable from the
GM2 model after its expansion to mixed-effect. The inclusion of a random part in the model replaced
the contribution of the DQMD in the crown width variation, while the almost zero variance of β1

parameter in Equation (15) can be attributed to the combined effect of the inherent variables.
The expansion of the base model M2 to mixed-effect significantly improved the predictive ability

of the model. As can be observed in Tables 3 and 5, the efficiency index (similar to R2) increased to
13% in comparison to that of the base model, indicating that the random part explained a great part of
crown variation, which was not possible to explain before. This may be attributed to the increased
flexibility of the MM2 model, since both parameters were assumed to contain a random part. However,
during the evaluation stage, the sub-sample of four random trees at plot level was not sufficient enough
to restrict the potential error to the minimum possible; instead, the unbiased estimations increased
their overall efficiency. A possible disadvantage in using this technique is the typical lack of crown
size measurements in standard forest inventories [61], which might limit the practical use of mixed
effect modeling.

The inclusion of four predictors in the mixed model increased the model’s precision by 0.41%,
a relatively low rate, taking into consideration its increased complexity. During model evaluation,
the GMM2 model presented reduced prediction error in comparison to the MM2 model, however its
prediction bias increased, according to Figures 7 and 8, which was not observed during the model’s
calibration. Comparison between simple and generalized mixed models has been attempted earlier
by several authors. Temesgen et al. [62] demonstrated that a generalized mixed-effect model which
included both random and stand-level variables resulted in low RMSE reductions, compared to simple
mixed models which included random effects and tree-level predictors. The results of the current
study confirm this hypothesis, since the prediction improvement of the GMM2 model is relatively low
compared to the MM2 model as far as crown width modeling is concerned. The random part of the
simple MM2 model explained a large part of crown width variation, which the generalized GMM2
model managed to explain with the additional prediction variables.

Ease of use in forestry practice should be an important concern of the analysts towards the
development of such models. DBH and basal area are the main variables at tree and stand level,
respectively that are used extensively around the world in forest inventories and forest management
planning. Often, crown width allometry is used inversed [13], aiming at stem diameter calculations via
remote sensing techniques in order to estimate the wood standing volume within stands, a procedure
that could be further facilitated by using simple models calibrated at stand level. In this case, the fixed
part of the MM2 model is proposed for practical use in the field.

5. Conclusions

In conclusion, a crown width mixed effect model for crown size prediction of Black pine is
proposed in the current article. The model, which uses the stem diameter as the basic regressor,
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improves the fitting ability of the simple fixed effect model. It is also more accurate than a model which
includes a basic stand density covariate in its formulation, as it uses a number of random variables
that explain a great part of crown variation. By defining crown width allometry, a very useful tool for
wood volume estimation is provided, which can also be linked to remote sensing analysis in the frame
of sustainable forest management.
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