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Abstract: Here, we investigated the capabilities of a lightweight unmanned aerial vehicle (UAV) 
photogrammetric point cloud for estimating forest biophysical properties in managed temperate 
coniferous forests in Japan, and the importance of spectral information for the estimation. We 
estimated four biophysical properties: stand volume (V), Lorey’s mean height (HL), mean height 
(HA), and max height (HM). We developed three independent variable sets, which included a height 
variable, a spectral variable, and a combined height and spectral variable. The addition of a 
dominant tree type to the above data sets was also tested. The model including a height variable 
and dominant tree type was the best for all biophysical property estimations. The root-mean-square 
errors (RMSEs) for the best model for V, HL, HA, and HM, were 118.30, 1.13, 1.24, and 1.24, 
respectively. The model including a height variable alone yielded the second highest accuracy. The 
respective RMSEs were 131.74, 1.21, 1.31, and 1.32. The model including a spectral variable alone 
yielded much lower estimation accuracy than that including a height variable. Thus, a lightweight 
UAV photogrammetric point cloud could accurately estimate forest biophysical properties, and a 
spectral variable was not necessarily required for the estimation. The dominant tree type improved 
estimation accuracy. 

Keywords: managed temperate coniferous forests; point cloud; spectral information; structure from 
motion (SfM); unmanned aerial vehicle (UAV) 

 

1. Introduction 

Up-to-date and spatially detailed information on forest biophysical properties is fundamental to 
allowing managers to ensure sustainable forest management [1]. Thus, a methodology that captures 
the spatial and periodic information of forest biophysical properties is required. Remote sensing is 
an important option for capturing the spatio-temporal information of forest biophysical properties. 
Measuring three-dimensional (3D) forest structure as a point cloud is an established way to capture 
the information. 

Airborne light detection and ranging (Lidar) is an active remote sensing system that directly 
measures 3D structures by emitting laser pulses from an aircraft-borne sensor. Because the emitted 
laser pulses can reach the ground by penetrating a dense forest canopy, airborne Lidar can provide 
terrain height, as well as a point cloud. The relative height between the point cloud and the local 
terrain height is well suited for measuring stand-level forest biophysical properties, including stand 
volume [2,3], and tree height [2,4]. Currently, airborne Lidar is the most accurate remote sensing 
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system for obtaining specific stand-level forest biophysical properties [1,5]. However, because of cost 
limitations, repeat surveys using airborne Lidar data are often difficult [6]. Therefore, we need 
alternative approaches to obtain forest biophysical properties. 

Digital aerial photographs are an alternative option to generate a point cloud. Recent advances 
in computer science make it possible to generate a point cloud semi-automatically using the Structure 
from Motion (SfM) approach [7,8]. Unlike airborne Lidar, digital aerial photographs cannot provide 
terrain height information, but they can provide the point cloud of the upper canopy surface [9], 
especially under dense forest canopy conditions. However, the relative height between the point 
cloud derived from digital aerial photographs and the terrain height provided by another data 
source, such as airborne Lidar, can be used to estimate forest biophysical properties [10–13]. Thus, 
periodic acquisitions of digital aerial photographs may be a practical option in areas where accurate 
terrain height information is available (e.g., a digital terrain model (DTM) derived from an existing 
Airborne Lidar dataset). 

Lightweight unmanned aerial vehicles (UAVs) may be a suitable platform for acquiring digital 
aerial photographs for small areas at low cost [14,15]. Because the material and operational cost of 
lightweight UAVs is low [16], they can acquire digital photographs at a lower cost than a manned 
aerial vehicle with increased spatial and temporal resolution. If we can estimate forest biophysical 
properties from the lightweight UAV photogrammetric point cloud as accurately as a point cloud 
derived from digital aerial photographs acquired by a manned aerial vehicle, the former may become 
an alternative option to measure forest biophysical properties. At present, the digital images derived 
from lightweight UAVs may differ from those derived from manned airborne vehicles. In particular, 
lightweight UAVs are sometimes equipped with consumer-grade digital cameras and inexpensive 
global navigation satellite system (GNSS), which may lead to distortions or positioning errors, 
respectively [17,18]. 

Several studies have assessed the value of UAV photogrammetric point clouds in predicting 
biophysical properties [19–24]. However, these focused mainly on dominant tree heights (e.g., [25]) 
or individual tree height (e.g., [19–21]). Relatively few studies have evaluated the accuracy of 
predicting other stand-level forest biophysical properties, such as stand volume. In a limited study, 
Puliti et al. [17] demonstrated that the use of a UAV can provide accurate forest characteristics in 
boreal coniferous forests. Thus, more experiments should be conducted in a variety of forest types to 
determine the validity of the defined parameters and the accuracy of the reported data [17]. 

Compared with airborne Lidar, digital aerial photography has the advantage that multispectral 
information is automatically captured, but digital aerial photographs have a disadvantage that 
terrain height cannot be acquired under dense forest canopy conditions. The spectral information 
data provide detailed information on the 3D structural change of the forest canopy [22], and previous 
studies using airborne Lidar suggested that adding multispectral or hyperspectral data improved the 
estimation of biophysical properties [26–28]. Thus, spectral information can improve the accuracy of 
biophysical property estimations when both point cloud and spectral information derived from a 
UAV are used. However, Puliti et al. [17] showed that adding spectral information into a biophysical 
property estimation using a UAV photogrammetric point cloud resulted in a limited improvement. 
One reason for this limited improvement was that the UAV photographs in the study were acquired 
in late fall, which may result in a low spectral response from vegetation [17]. Thus, further research 
is needed to evaluate the importance of spectral information when using a lightweight UAV 
equipped with a consumer-grade digital camera. 

In this study, we investigated the capabilities of the lightweight UAV photogrammetric point 
cloud using the SfM approach to estimate forest biophysical properties in managed temperate 
coniferous forests. We estimated four biophysical properties—stand volume (V), Lorey’s mean height 
(HL), mean height (HA), and max height (HM)—using variables derived from a UAV photogrammetric 
point cloud. For the estimation, six independent variable sets, which included height variables alone, 
spectral variables alone, and a combination of height and spectral variables, were compared. Finally, 
we investigated the capability of the UAV photogrammetric point cloud and the importance of 
spectral information for estimating biophysical properties. 
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2. Materials and Methods 

2.1. Study Area 

The study was conducted in a temperate forest area (131°32′3″ E, 33°6′51″ N) in Oita prefecture 
located in southwestern Japan (Figure 1). The area is dominated by plantations of evergreen conifers 
trees, including Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa). The stand age of the 
coniferous forests ranges from eight to 62 years. The elevation ranges from 520 to 775 m above sea level. 

 

Figure 1. Location of the study area. The municipal boundaries provided by ESRI Japan were used as 
the country border. The forest cover map was created by visual interpretation based on aerial 
photographs acquired by a lightweight unmanned aerial vehicle (UAV). 

2.2. Field Measurements 

Field measurements in Sugi-dominated stands and Hinoki-dominated stands were conducted 
at previously established permanent plots as a part of different ongoing field studies. Since we used 
already established plots, there were two sizes of rectangular permanent plots: 400 m2 (20 m × 20 m) 
and 225 m2 (15 m × 15 m). The two Hinoki plots were 225 m2, and others were 400 m2. There were 9 
and 11 plots in the Sugi and Hinoki stands, respectively. Field data were collected between September 
2016 and October 2016. Within each plot, diameter at breast height (DBH) and tree height for all trees 
with DBH >5 cm were measured. In total, 1197 trees were measured. The plot locations were recorded 
with a GNSS (MobileMapper 120, Spectra Precision, Westminster, CO, USA). It should be noted that 
we could not measure the heights of 12 trees because they were inclined from the perpendicular. For 
trees without a height measurement, we estimated their heights using the Näslund equation [29]. 

For the UAV photograph survey, 11 SfM ground-control points (GCPs) were distributed across 
the survey area prior to the acquisition of UAV photographs (Figure 1). Each GCP was approximately 
55 × 65 cm with a red cross marked on a white sheet. The GCP locations were also acquired by 
MobileMapper 120, which is a differential GNSS providing sub-meter accuracy after post-processing. 

We calculated the stem volume for each measured tree using tree volume equations developed 
by the Forest Agency, Japan [30]. Then, V for each plot was calculated by summing the volume of 
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each tree and dividing by the plot size. We also derived HL, HA, and HM for each plot from field data 
(Table 1). 

The plot and GCP location data were post-processed using the nearest GNSS-based control stations 
constructed by the Geospatial Information Authority of Japan (GSI) with MobileMapper Office 4.6 
(Spectra Precision, Westminster, CO, USA). 

Table 1. Summary of the biophysical properties, which were stand volume (V), Lorey’s mean height 
(HL), mean height (HA), and max height (HM), calculated from field measurements (SD indicates the 
standard deviation). 

Dominant Tree Type The Number of Plots 
V (m3/ha) HL (m) HA (m) HM (m) 

Mean SD Mean SD Mean SD Mean SD
Sugi 9 712.37 142.20 18.67 2.06 18.17 2.07 21.91 1.98 

Hinoki 11 491.75 249.36 15.67 5.25 15.21 5.13 18.50 5.92 

2.3. Remote Sensing Data 

UAV photographs were acquired under leaf-on canopy conditions between September and 
October 2016, which corresponded to late summer and early fall. A Phantom 4 UAV was used to 
acquire the photographs. The UAV has an integrated camera, with a 1/2.3 CMOS sensor that can 
capture red–green–blue (RGB) spectral information. The UAV was operated manually with visual 
confirmation in accordance with Japanese laws. The flying altitude was between 70 and 110 m above 
ground level, and the flying speed was approximately 2.5 m/s. The average ground sampling distance 
was 4.3 cm. The aerial photographs were captured at 5-s intervals to achieve an overlap of more than 
80%. It should be noted that an additional UAV photograph acquisition flight was conducted in 
January 2017, which corresponded to winter conditions, to add the rightmost GCP in Figure 1. Since 
there were overlaps between the first and additional acquisition, we concurrently created a 
photogrammetric point cloud. While the acquisition was conducted during the winter season, the 
acquired photographs did not include any plots. Thus, the photographs were not used for the 
biophysical parameters estimation but used just for adding a GCP. 

2.4. Remote Sensing Data 

2.4.1. Processing of the UAV Photographs 

The UAV photographs were processed using PhotoScan Professional version 1.2.6 ([31]; 
Petersburg, Russia) to generate a photogrammetric point cloud that includes both height and spectral 
information (i.e., red, green, and blue). PhotoScan Professional is a commercial software that uses the 
SfM approach to generate a 3D reconstruction from a collection of overlapping photographs, which 
can provide a dense and accurate 3D point cloud [17]. Briefly, the workflow composed of the “Align 
photos” stage and the “Build a dense point cloud” stage. “Align photos” is the stage at which camera 
location and orientation, and internal parameters are determined [32]. We selected “High accuracy” 
and “Reference” as settings for “Accuracy” and “Pair preselection”, respectively. Eleven GCPs were 
used to improve the accuracy of the “Align photos” stage. We imported the post-processed GCP 
location data into PhotoScan Professional and manually identified each GCP within the UAV 
photographs. The overall RMSE of GCP matching process was 2.94 m (Table 2). The “Build a dense 
point cloud” stage generates dense 3D, point cloud data based on the camera location and orientation, 
and internal parameters determined by the “Align photos” stage. We selected “Medium quality” and 
“Mild” as settings for “Quality” and “Depth filtering”, respectively, following previous studies [17]. 

We constructed a 1-m resolution grid of a digital surface model (DSM) and for the spectral data 
from the generated 3D point cloud data. The DSM was created by assigning the highest value of the 
3D point cloud for each grid cell. The 1-m resolution grid of the spectral data of each band (i.e., red, 
green, and blue) was created by assigning the average value of the 3D point cloud. Then, the three 
band values of each grid were normalized radiometrically by dividing each band value in the grid 
by the sum of the values of all bands in the corresponding grid, as described in previous studies [17,33,34]. 
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Table 2. The errors of ground-control points. 

Ground-Control Points X Error (m) Y Error (m) Z Error (m) Total Error (m) 
1 1.15 5.19 −1.42 5.50 
2 0.48 0.26 −0.07 0.55 
3 −3.26 −1.08 −3.87 5.17 
4 0.92 −0.15 0.44 1.03 
5 2.19 −0.54 −0.26 2.27 
6 −1.01 −0.81 0.15 1.30 
7 0.81 −1.89 −0.85 2.23 
8 −0.48 −0.63 0.90 1.20 
9 1.16 −0.30 −0.01 1.20 
10 −1.53 1.68 1.87 2.94 
11 −0.49 −1.77 3.14 3.64 

RMSE 1.47 1.89 1.71 2.94 

2.4.2. Calculation of a Canopy Height Model (CHM) and Variable Extractions 

A CHM was calculated as the relative height by subtracting the terrain height from each grid 
value of the DSM. We used a digital terrain model (DTM) developed by the Geospatial Information 
Authority of Japan as the terrain height. The DTM consists of 5-m spatial resolution data derived 
from airborne Lidar. The vertical accuracy is expressed as the standard deviation within 2 m (GSI, 
2014). Because the spatial resolution of the DTM was 5 m, we interpolated the 5-m resolution data 
into 1-m data using the inverse distance weighted interpolation method. 

Then, 13 variables derived from the CHM were calculated within each field plot, including mean 
canopy height (hmean, the average value of the relative height), deciles of the height percentiles (h10, 
h20, …, h100), and standard deviation (hsd). In addition to the height variables, we calculated the means 
(RGBR, mean, RGBG, mean, and RGBR, mean) and standard deviations (RGBR, sd, RGBG, sd, and RGBR, sd) of the 
spectral values. 

2.4.3. Statistical Analysis 

A regression model approach was applied to develop the biophysical properties estimation 
model following previous studies [10,35]:  = ℎ  (1) 

where F is the biophysical property calculated from the field data; β0, β1, and β2 are the regression 
coefficients; h is the height variable (i.e., Hmean, h10, …, h100, hsd); RGB is the spectral variable; b is the 
regression coefficient of a dummy variable; and z is the dummy variable. The dummy variable was 
used to assess the influence of dominant tree type (dtype) on the regression. The dummy variable (i.e., 
z) has a value of 1 for Hinoki-dominated stands. For the Sugi-dominated stands, the dummy variable 
has a value of 0. To avoid problems of collinearity, we did not include more than one variable for 
each height and spectral variable, while we calculated 13 variables (i.e., Hmean, h10, …, h100, hsd) and six 
variables (i.e., RGBR, mean, RGBB, mean, …, RGBR, sd) for the height and spectral properties, respectively. 
Equation (1) was log transformed to solve the equation as a linear regression using Equation (2): log = + log ℎ + log +  (2) 

To evaluate the importance of each height and spectral variable for estimating forest biophysical 
properties, we initially regressed the biophysical properties against a height variable alone and a 
spectral variable alone. Then, we regressed the biophysical properties against a combination of a 
height variable and a spectral variable. Finally, we evaluated the importance of dominant tree type 
by adding dominant tree type as an independent variable, resulting in a combination of a height 
variable and dominant tree type, a spectral variable and dominant tree type, and a height variable, a 
spectral variable, and dominant tree type. 

The accuracies of the estimates of the best model were validated using a coefficient of 
determination (R2), the root-mean-square error (RMSE), a Bayesian information criterion (BIC), and 
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the relative RMSE expressed as a percentage. The relative RMSE was defined as the RMSE divided 
by the mean value of the field data. Because the number of field plots was limited (i.e., 20), R2 and 
RMSE were calculated using a leave-one-out cross-validation. R2 was calculated using linear 
regression of the observed versus estimated values. The number of independent variables was the 
same within each dataset. Thus, for each independent variable dataset, we selected the best model 
using R2. For comparisons between different independent variable datasets, we used the BIC. The 
statistical analysis was conducted using R ver. 3.12 [36]. 

3. Results 

For each biophysical property, the variables derived from the UAV photogrammetric point 
cloud were regressed using six independent variable sets, and the selected models were summarized 
(Table 3). When the biophysical properties were regressed against a height variable alone, h90 was 
selected for the models. The R2 values of the selected models for V, HL, HA, and HM were 0.71, 0.93, 
0.91 and 0.93, respectively. The respective RMSEs were 131.74, 1.21, 1.31, and 1.32, respectively. The 
model that included a spectral variable alone yielded lower estimation accuracy than the one 
including a height variable, and the R2 of the selected models for V, HL, HA, and HM, were 0.26, 0.23, 
0.21, and 0.26, respectively. The selected model including both a height variable and a spectral 
variable yielded almost the same R2 as the model including a height variable. When the biophysical 
properties were regressed with the addition of the dominant tree type information, in terms of R2, 
adjR2, RMSE, and relative RMSE, the accuracies of the estimation were comparable to those obtained 
using the respective independent variable sets without the dominant tree type information. 

In terms of the BIC, the model that included a height variable with the addition of dominant tree 
type information was the best model for all the biophysical property estimations within the six 
independent variable sets. The selected models used h90 and dominant tree type for all the biophysical 
property estimations. The RMSEs for V, HL, HA, and HM were 118.30, 1.13, 1.24, and 1.24, respectively. 
The relative RMSEs of the selected models for HL, HA, and HM were between 6.17 and 7.50. The relative 
RMSE of V, which was 20.02%, was larger than that of the other biophysical properties. Figure 2 
shows a scatterplot of the observed versus predicted values for each biophysical property using the 
best models. The regression lines for HL, HA, and HM were almost in line with the 1:1 line. 

Table 3. Summary of the selected estimation models for four forest biophysical properties: stand 
volume (V), Lorey’s mean height (HL), mean height (HA), and max height (HM) (bold indicates the best 
model for each biophysical property). 

Dependent Variables 
Independent 

Variable 
Selected 

Variables R2 AdjR2 RMSE 
Relative 
RMSE BIC 

V 

h h90 0.71 0.70 131.74 22.29 7.14 
RGB RGBG, sd 0.26 0.21 291.80 49.37 58.99 

h + RGB h90, RGBB, sd 0.68 0.64 143.15 24.22 9.95 
h + dtype h90, dtype 0.78 0.75 118.30 20.02 2.99

RGB + dtype RGBB, sd, dtype 0.20 0.11 303.16 51.29 53.01 
h + RGB + dtype h90, RGBR, sd, dtype 0.80 0.76 112.97 19.11 3.83 

HL 

h h90 0.93 0.92 1.21 7.08 −41.14 
RGB RGBB, sd 0.23 0.19 4.31 25.29 19.73 

h + RGB h90, RGBB, mean 0.94 0.92 1.19 7.00 −39.41 
h + dtype h90, dtype 0.92 0.93 1.13 6.65 −42.56

RGB + dtype RGBB, sd, dtype 0.90 0.10 4.69 27.57 22.73 
h + RGB + dtype h90, RGBG, mean, dtype 0.93 0.92 1.15 6.7  −39.71 

HA 

h h90 0.91 0.91 1.31 7.92 −35.96 
RGB RGBB, sd 0.21 0.16 4.30 25.97 21.12 

h + RGB h90, RGBB, mean 0.92 0.91 1.25 7.53 −35.26 
h + dtype h70, dtype 0.90 0.91 1.24 7.50 −34.12

RGB + dtype RGBB, sd, dtype 0.89 0.08 4.62 27.96 24.11 
h + RGB + dtype h90, RGBB, mean, dtype 0.92 0.91 1.24 7.51 −34.29 

HM h h90 0.93 0.92 1.32 6.61 −42.74 



Forests 2017, 8, 343  7 of 10 

 

RGB RGBB, sd 0.26 0.22 4.62 23.05 14.92 
h + RGB h90, RGBR, mean 0.94 0.92 1.32 6.57 −40.37 
h + dtype h90, dtype 0.92 0.93 1.24 6.17 −44.89

RGB + dtype RGBB, sd, dtype 0.90 0.13 5.04 25.17 17.91 
h + RGB + dtype h90, RGBR, mean, dtype 0.93 0.94 1.13 5.63 −44.30 

 

Figure 2. Observed biophysical properties versus predicted biophysical properties from the best 
model of each of the canopy height models. A diagonal dotted line and a solid line indicate the 1:1 
line and regression line between the predicted biophysical properties and observed biophysical 
properties, respectively. 

4. Discussion 

In this study, we assessed the accuracy of forest biophysical property estimation using a 
lightweight UAV photogrammetric point cloud in managed temperate coniferous forests. Previous 
studies assessed the accuracy of the estimation in temperate broadleaved forests and conifer-
dominated boreal forests. These studies focused especially on tree heights such as dominant tree 
height and Lorey’s mean height (e.g., [17,25]). They showed relative RMSEs of 8.4% in temperate 
broadleaved forests [25] and 13.3% in conifer-dominated boreal forests [17]. Studies focusing on stand 
volume or aboveground biomass estimation are rare. Puliti et al. [17] fitted variables derived from a 
UAV photogrammetric point cloud for V and HL in conifer-dominated boreal forests in Norway. The 
study showed a relative RMSE of 15.0%. Kachamba et al. [37] similarly evaluated the aboveground 
biomass estimation accuracy using a UAV photogrammetric point cloud. They showed a relative 
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RMSE of 46.7%. In the present study, R2 values were between 0.72 and 0.93, and the relative RMSEs 
were between 6.92% and 22.84% in managed temperate coniferous forests. Thus, we conclude that 
the estimation results in managed temperate coniferous forests are comparable to those of conifer-
dominated boreal forests and superior to those of dry tropical forests. One reason why our results 
are superior to those of dry tropical forests is that Kachamba et al. [37] did not use the terrain height 
data derived from airborne Lidar, but data generated by filtering a UAV photogrammetric point cloud.  

The models including a spectral variable alone yielded a lower model accuracy than the models 
including a height variable alone for all the biophysical properties. The accuracy of the models 
including both a height variable and a spectral variable also yielded lower accuracy than that of the 
model including a height variable alone. Thus, we conclude that the spectral information did not 
improve the forest biophysical property estimations. Spectral information is often used for tree 
species recognition in forest inventory applications using 3D point clouds, since height information 
alone typically does not identify different tree species [38]. However, previous studies, which used a 
point cloud derived from airborne Lidar or digital aerial photographs, suggested that spectral 
information helped to refine the biophysical property estimation [17,26–28]. In contrast, the present 
study showed that adding spectral information did not improve forest biophysical property 
estimations using a lightweight UAV photogrammetric point cloud. One possible reason is that we 
used the consumer-grade digital cameras and, therefore, spectral variables from only the visible 
range were used. It is important to note that, in our study, a spectral variable can estimate forest 
biophysical properties, but the R2 was approximately 0.2. One advantage of using a spectral variable 
is that terrain height information is not required for forest biophysical property estimations. Because 
we need accurate terrain height information to use height variables for forest biophysical property 
estimations, using a height variable may be difficult in areas, such as tropical forests, where accurate 
terrain height information cannot be obtained [37]. Thus, spectral information may become an important 
estimator. Further research is required to explore the importance of spectral information in these regions. 

The model that includes a height variable and dominant tree type yielded the lowest BIC for all 
the biophysical property estimations. Thus, we conclude that adding dominant tree type improved 
the accuracy of forest biophysical property estimations. However, it should be noted that the 
improvement was limited in terms of R2 and RMSE, compared with the model that included a height 
variable alone. Thus, we also conclude that the dominant tree type is not necessarily required because 
of the limited improvement, although this information did improve model accuracy. The importance 
of adding forest or dominant tree type information has been examined previously, especially for 
estimating aboveground biomass using airborne Lidar. These studies showed that adding forest or 
dominant tree type information has a limited effect on improving the estimation accuracy in boreal 
coniferous [39] and tropical forests [35]. While studies that examined the importance of adding forest 
or dominant tree type information using a photogrammetric point cloud are limited, Ota et al. [10] 
also obtained similar results using a manned aircraft-derived, photogrammetric point cloud in 
tropical forests. We confirmed that the UAV photogrammetric point cloud can also estimate forest 
biophysical properties independently of dominant tree type in managed coniferous forests. This 
becomes a strong advantage when using point cloud-based forest biophysical property estimations 
in areas where several forest types occur in mixed communities because of the simplified calibration 
process and forest inventory [10]. 

5. Conclusions 

The main conclusion of this study is that a UAV photogrammetric point cloud can accurately 
estimate forest biophysical properties, including V, HL, HA, and HM, in managed temperate coniferous 
forests. For the estimations, a height variable alone is required, while a spectral variable is not 
necessarily required. The dominant tree type, if it is available, improves the estimation accuracy. 
While a spectral variable yielded lower estimation accuracy, it may be informative in areas where 
accurate terrain height is not available. Thus, further study is required to explore the importance of 
spectral information in these areas. 
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