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Abstract: The increasing probability of Taxus baccata (L.) decline given climate change brings forth 
many uncertainties for conservation management decisions. In this article, the authors present the 
effects of applying regeneration cuttings since the year 2000 on the viability of the understory yew 
population. By collecting data from a stand located at the centre of the largest population of 
European yew in Slovakia, containing approximately 160,000 individuals, and analysing tree-ring 
records from 38 sampled trees, the improved performance of yews, including stem growth, seed 
production, and number of regenerated individuals, was revealed. Thinning the canopy by 
removing 15% of the growing stock volume per decade, combined with the subsequent irregular 
shelterwood cuttings, was assessed as a useful strategy. Moreover, lower radial growth of females 
compared to males, but simultaneously their similar response to climate, suggests a possible 
trade-off between reproduction and growth. Release cuttings of up to 30% of the standing volume 
in the vicinity of the female trees, executed in the rainy summers following warmer winters, and 
consistent elimination of deer browsing, can further enhance the positive effects of applied cuts on 
yew viability. Overall, the suggested active measures could be considered as an effective option to 
preserve the unique biodiversity of calcareous beech-dominated forests in Central Europe. 
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1. Introduction 

European yew is a previously common evergreen gymnosperm tree species which has 
disappeared from many areas, primarily due to direct human activities connected with the 
devastation of its natural habitats and its overexploitation. This has increased public concern and led 
to direct conservation actions, resulting in its individual protection, as well as the establishment of 
yew protected areas. Changes in climate, together with the slow growth, delayed reproduction, and 
extraordinary long life cycle of yew (Taxus baccata L.), brings up many challenges for forest 
management operations aimed at maintaining suitable ecological conditions for yew in forest 
stands. Because of distinctive habitat fragmentation and the shrinking [1] and patchy distribution of 
suitable habitat conditions, given its restriction to calcareous soil and poor dispersal ability [2], 
climate change is likely to increase the probability of yew decline. 

The largest threat to yew maintenance in forest stands is their decreased growth, and related to 
this pattern, the high rates of adults’ auto-reduction and extensive absence of regeneration [3]. 
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Abstract: The increasing probability of Taxus baccata (L.) decline given climate change brings forth
many uncertainties for conservation management decisions. In this article, the authors present
the effects of applying regeneration cuttings since the year 2000 on the viability of the understory
yew population. By collecting data from a stand located at the centre of the largest population of
European yew in Slovakia, containing approximately 160,000 individuals, and analysing tree-ring
records from 38 sampled trees, the improved performance of yews, including stem growth, seed
production, and number of regenerated individuals, was revealed. Thinning the canopy by removing
15% of the growing stock volume per decade, combined with the subsequent irregular shelterwood
cuttings, was assessed as a useful strategy. Moreover, lower radial growth of females compared to
males, but simultaneously their similar response to climate, suggests a possible trade-off between
reproduction and growth. Release cuttings of up to 30% of the standing volume in the vicinity of the
female trees, executed in the rainy summers following warmer winters, and consistent elimination
of deer browsing, can further enhance the positive effects of applied cuts on yew viability. Overall,
the suggested active measures could be considered as an effective option to preserve the unique
biodiversity of calcareous beech-dominated forests in Central Europe.
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1. Introduction

European yew is a previously common evergreen gymnosperm tree species which has
disappeared from many areas, primarily due to direct human activities connected with the devastation
of its natural habitats and its overexploitation. This has increased public concern and led to direct
conservation actions, resulting in its individual protection, as well as the establishment of yew protected
areas. Changes in climate, together with the slow growth, delayed reproduction, and extraordinary
long life cycle of yew (Taxus baccata L.), brings up many challenges for forest management operations
aimed at maintaining suitable ecological conditions for yew in forest stands. Because of distinctive
habitat fragmentation and the shrinking [1] and patchy distribution of suitable habitat conditions,
given its restriction to calcareous soil and poor dispersal ability [2], climate change is likely to increase
the probability of yew decline.

The largest threat to yew maintenance in forest stands is their decreased growth, and related
to this pattern, the high rates of adults’ auto-reduction and extensive absence of regeneration [3].
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Deliberate cessation of silvicultural interventions can result in an increase in canopy density, with the
lack of yew regeneration as a consequence [4]. Other reasons for unsuccessful natural regeneration
include the competition of other tree species [5] and browsing and bark-stripping by ungulates [6],
which could become a fatal threat to yews in the initial phases of their development [7,8]. Studies on
the management of yew populations by silvicultural treatments, aimed at maintaining and potentially
improving the status of this species, are scant [4,9–11], as are the investigations into the relationship
between regeneration and parent trees [12]. Release cuttings were confirmed to have a positive
effect on fruit production in tree species [12]. A careful selective cutting also relieves competition
pressure from neighbouring trees. As observed earlier, the removal of 18–20% of the standing volume
consequently reduces inter-species competition and increases the average height of yew trees [9].
Intense disturbances and sudden exposition of yew trees to direct sunlight may have a strong negative
effect on their growth [13], but silvicultural measures could help mitigate the effects by improving the
stability of stand structures and reducing the risk of large-scale extinction.

The use of regeneration cuttings is primarily aimed at promoting the reproduction of yew trees,
and also offers the opportunity to compare growth pattern responses and to test resource allocation
between vegetative growth and sex-related investment into the production of pollen, fruits, and
seeds [14]. Dioecy is an evolutionary strategy focused on maximizing reproductive success, and
is costly—especially when combined with the production of extraordinarily heavy fruits and seed
crops, aimed at attracting many seed dispersers [15,16]. “Normal” masting sensu Kelly [17] refers to
mast fruiting, which is the production of large seed crops, where individuals are assumed to switch
resources away from vegetative growth or reserves toward seed production, while still producing
some seeds in other years [18]. This production of large amounts of seeds is assumed to deplete
the trees’ internal carbon reserves [19]. Yew therefore represents an interesting opportunity to study
intra-species differences in carbon allocation to growth and reproduction processes. Scientific findings
on gender-based differences in growth are relatively consistent. In optimum environmental conditions,
males have higher growth rates and are larger than females [14,20]. Sex-related differences in
growth—if not impaired by stressful environmental conditions [21]—are a result of higher reproductive
costs for females after they have reached sexual maturity [22]. Nevertheless, it was observed that
female trees growing at the microsite level in more productive, favourable, and wetter sites are able to
outperform males [23].

Still, little is known on the long-term influence of reproduction on growth and changes in tree-ring
widths [16,22]. Under higher reproductive demands, tree-ring widths may potentially be used to record
the reproductive costs of growth in dioecious species. Inter-annual variations in climate that drive
the radial growth of trees also modulate the process of reproduction. Possible differences in growth
rates between males and females in a particular year could also be attributed to sex-related differences
in responses to climate. In temperate forests, sex-specific sensitivity of tree growth to climate has
rarely been studied, and research provides inconsistent results. For example, young Spanish juniper
females (Juniperus thurifera L.) were found to be more sensitive to water stress during summer than
the male trees [24]. Higher female sensitivity to low temperature and low rainfall was also confirmed
for common juniper (Juniperus communis subsp. Communis L.) [22]. Contrary to this, there are also
observations showing no significant differences in growth and response to climate variability between
female and male trees [25].

Populations of European yew are currently reported to be increasing [26]. Their expansion is
likely the result of a combination of conservation actions and changes in forest management systems.
The need for active management intervention to relieve the stress on young and old yew trees is
becoming obvious. The general goal of our study was to assess the effectiveness of irregularly cutting
shelterwood with the specific aim of improving the growth and regeneration processes of the European
yew population growing in actively managed forests. Besides the regeneration of the dominant tree
species (beech), the localization of shelterwood cuts took into consideration the existence of yew
throughout the stand, resulting in irregular spatial arrangement of regeneration groups. We focused on
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one case study area in Slovakia and analyzed stand structure, yew natural regeneration, and tree-ring
records. To improve the active management strategy, the evaluation was performed considering the
possible effects of current climate change affecting the viability of yew.

In the study, we hypothesised that:

i The intensity of small-scale shelterwood cuttings influences the seed production and growth
processes of mature yew trees.

ii The density of naturally regenerated yew is related to the size and radial growth rate of the
parent trees.

iii Reproduction (masting) reduces the diameter increment, and therefore sex-related differences in
radial growth should be expected.

iv Different life strategies of male and female trees are likely to result in gender-specific sensitivity
to variation in climate.

2. Materials and Methods

2.1. Study Area

The study area of Pavelcovo is at an altitude range of 400–825 m a.s.l. and has 6000 to 7000 yew
individuals, and belongs to the Starohorské Mountains, where the largest and most concentrated
population of European yew in Slovakia, with 160,000 individuals, is present ([6,27,28], Figure S1).
The selected managed forest stand (48◦46′14.88” N; 19◦07′10.33” E) represents a limestone beech
forest (Fagetum dealpinum) in which yew trees exhibit the top growth performance. It is located in
the research demonstration facility Pro Silva “Šípovo”, established in 2008 to preserve and improve
the yew population status, covering an area of 119 hectares. Annual precipitation is 840 mm and
the mean annual temperature is 8.0 ◦C. The total area of the stand is 15.41 ha, has a slope of 35%
with a prevailing south-eastern aspect, and the growing stock reaches 284 m3 per hectare (Table S1).
The stand was established by seeding after a clear-cut in 1880–1890 [29], but historical records provide
no information on the origin and survival of yew in the stand. In the past, limited thinning of the
canopy was completed in the stand, resulting in decreasing the vitality of the yew population. Based on
the research results from the Pavelcovo yew reserve (which has a common border with the subject
forest stand [9,11]), crown thinning with positive selection in the overstory, with an intensity of 15%
per decade, was proposed as a measure to maintain light availability, to increase crown volume and
surface area, and thus stimulate yew growth and fructification. In 2000, the first interventions were
aimed at stand regeneration with an irregular shelterwood cut with a planned regeneration period of
30 years, 1–2 interventions per decade, and intensity from 20 to 30% (Figure S2). Besides the beech
stand regeneration, the intervention took into consideration the creation of favourable conditions for
the maintenance of yew. Therefore, some of the regeneration groups were placed into parts of the stand
with the presence of adult yews that existed in an irregular distribution of regeneration groups across
the stand. Middle- and lower-layer beech stems around yew trees remained intentionally untouched,
in order to protect them from sudden exposure to direct sunlight. If the middle and lower layer was
absent, several canopy stems surrounding yew trees were excluded from the cutting. Regeneration
cuttings resulted in successful fructification, but due to heavy browsing of yew juveniles by deer, no
seedlings with lateral branches—which yew forms at the age of 4–5 years—were recorded during the
subsequent field survey in 2011 [30]. In 2008, a fence 18 m × 20 m was built in the stand to study the
dynamics of yew natural regeneration protected from browsing, and PVC nets were applied to stems
of older yews as a protection against bark-stripping.

In the investigated sites, European beech (Fagus sylvatica L.) was the dominant tree species,
reaching a proportion of 50% as calculated from stem density. The most abundant admixed tree
species were sycamore maple (Acer pseudoplatanus L., 13%), Norway spruce (Picea abies (L.) Karst., 13%),
and European yew (Taxus baccata L., 12%). The proportions of the other tree species did not exceed
5%: Acer platanoides (L.) (5%), Fraxinus excelsior (L.) (3%), Abies alba (Mill.) (2%), Sorbus torminalis (L.)
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Crantz (1%), and Pinus sylvestris (L.) (1%). Stand structure as described by using diameter and
height distributions according to tree species shows that beech is represented in all diameter classes
and it occupies the entire vertical profile (Figure 1). The majority of admixed spruce and maple is
concentrated in the middle and upper tree layer, whereas yew is found almost exclusively in the lower
tree layer.
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by having an executed first regeneration cut (seeding cutting) in the plot, as well as an already 
finished shelterwood cut (final cutting), with no canopy trees in the plot’s surroundings. On the 
plots, the positions of all living trees with DBH ≥8 cm, snags, and stumps were recorded by 
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2.2. Sampling Design and Measurements

The stand was surveyed in autumn 2015. Starting near the upper border of the stand, we walked
along the contour line (isohypse) and marked a point every 40 m. If a mature yew with diameter at
breast height (DBH) ≥15 cm was present in a distance less than 3 m, a circular sampling plot of 500 m2

with the yew in the centre—hereafter called the “central stem”—was established. After reaching the
stand border, we moved 40 m down the slope and walked again following the isohypse. Using this
pattern, we covered the entire stand area and established 30 research plots in total. For central stems,
we selected mature yews with DBH ≥15 cm to ensure that they are of reproductive age and have a
sufficient number of tree-rings for further dendroecological study. For each sampling plot, we recorded
altitude, aspect, slope, intervention type, and additional characteristics such as position within the
slope. Intervention type included three categories: no intervention, moderate intervention, and heavy
intervention. For the no intervention category, we classified the plots with no visible stumps and no
shelterwood cuts in the vicinity of the plot. Plots after the first regeneration cut (seeding cutting) in the
plot and in the plot’s neighbourhood were assigned to the moderate intervention category. The heavy
intervention category was characterised by having an executed first regeneration cut (seeding cutting)
in the plot, as well as an already finished shelterwood cut (final cutting), with no canopy trees in
the plot’s surroundings. On the plots, the positions of all living trees with DBH ≥8 cm, snags, and
stumps were recorded by FieldMap (IFER—Monitoring and Mapping Solutions, Ltd., Jílové u Prahy,
Czech Republic, http://www.fieldmap.cz). For every standing tree, the following characteristics
were recorded: tree species, DBH, height, height of the crown base, four perpendicular crown radii
(x1–x4), and in the case of yew, the sex. For central stems of yew, we calculated additional crown
characteristics (CL—crown length, CR—crown ratio, CPA—crown projection area, CV—crown volume,
and CSA—crown surface area) following the formulae in Table S2 [31]. For the stumps, we recorded
tree species, diameter at the top, height, and degree of decomposition. In the 12 plots that belonged
to the moderate intervention category (six plots with a male and six plots with a female central tree),
natural regeneration of yew was registered on circular subplots within a 3-m radius. In the height
category of <10 cm, we recorded the total density of yew seedlings. For individuals taller than 10 cm,
we registered the height and the last three height increments.

http://www.fieldmap.cz
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For the dendrochronological analysis, we collected increment cores from all 30 central stems and
8 additional mature yews located on sampling plots, for a total of 38 cored yew stems. Two cores
in perpendicular directions were extracted from each tree at 1.3 m above ground, with the aim of
avoiding reaction wood. Cores were mounted on wooden bars, dried, and sanded [32]. Samples were
scanned using the Epson Expression 10,000 XL scanner, and ring widths were measured to the nearest
0.001 mm using the WinDENDRO™ software (Regent Instruments Inc., Québec, Canada). Individual
ring-width series were carefully cross-dated [33] and checked for missing rings and other cross-dating
errors with the COFECHA software (Richard L. Holmes, Tuscon, AZ, USA) [34].

2.3. Climate Records

A time series of selected climate variables were completed for mean monthly temperatures and
precipitation sums, covering the period from 1901 to 2014. Mean monthly observations of updated
CRU TS3.23 (0.5◦ × 0.5◦ grid interpolated points) available at the KNMI Climate Explorer [35] were
used. Course CRU TS3.23 data were employed without corrections [36]. Climate diagrams with mean
monthly precipitation sums (mm) and temperatures (◦C) over the period of 1901–2014 and 1991–2014
for the study area are illustrated in Figure S3.

2.4. Data Analysis

To evaluate the relationship between the growth parameters of parent yew trees and the amount
of naturally regenerated individuals, we used simple linear regression. The differences in the number
of seedlings between male and female trees, as well as the mean tree characteristics of adult female
and male adult yews, were evaluated by t-test. To test whether high resource availability (as expressed
by higher radial growth rate) is positively related to seed production in 2014 and subsequent natural
regeneration, we evaluated the relationship between growth rates during three consecutive years
(2013–2015) and the number of newly regenerated seedlings under mother trees in 2015. To detect
differences in growth rates between males and females in a particular year as attributed to sex-related
differences in response to climate, we used temperature and precipitation data of the current (2014) and
the previous (2013) growing season to interpret the results. Normalised monthly mean temperature
and precipitation values for each month of the selected years (2013 and 2014) were used. Temperature
and precipitation anomalies were calculated as deviations from the long-term mean (1901–2014) and
expressed in standard deviation (SD). Normalised values exceeding the ±1 SD were interpreted as
warm or cold, or dry or wet months. Values exceeding ±2 SD were interpreted as extremely warm or
cold, or extremely dry or wet [37].

To compare inter-annual differences in radial growth between males and females, individual
tree-ring width (TRW) series were combined to develop raw and residual site chronologies. Bi-weight
robust mean was used for computing mean chronologies. Basic descriptive statistics [38] were
calculated for the common interval for each chronology, either from the raw tree-ring width series
(TRW, SD, mean sensitivity of series (MSs), and first-order autocorrelation coefficient (AC1)) or
residual chronologies (mean between trees correlation RBT and expressed population signal, EPS).
MSs measures the relative year-to-year variation, and AC1 reflects the way in which the previous
year’s growth influences the current year’s growth [38]. RBT is a measure of the between-tree signal,
and is the average correlation between tree cores [39]. In addition, the calculation of EPS was to
assure that the chronologies correctly portray the hypothetical perfect chronology [40]. In order to
identify climate factors controlling tree growth, correlations between residual chronology (residual
ring-width index values) and mean monthly weather characteristics were computed for the period
of 1901–2015. The correlations were performed in 16-month windows, from the previous May to the
current September. Climate factors that showed statistically significant correlations with residual
index values were used to examine the sex-related climate response of yew trees. The similarity
of climate–growth relationships between sexes was assessed by testing the differences between the
correlation coefficients and by linear regression of sex-specific correlation coefficient values.
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Mean values of the raw chronologies were additionally computed in a 5-year moving window to
evaluate trends in yew growth, according to the three intervention types: no, moderate, and heavy
intervention. The impact of silvicultural intervention on the radial growth of yew stems was analysed
using the boundary line method [41]. The boundary line is a regression function describing the
relationship between prior growth (PG) and percentage growth change (PGC) values. All registered
PGCs were scaled relative to the boundary line. If a value of scaled PGC was 20% below the boundary
line, no release was detected.

3. Results

3.1. Yew Tree Characteristics

Diameter and height distribution of yew stems were significantly left-skewed, with most stems
growing in the 10–30 cm diameter class and 5–11 m height class. The largest observed yew stem had a
diameter of 52.7 cm, and the highest stem was 16 m high. The stem density of yews (DBH ≥ 8 cm) was
71 trees per hectare, with an average DBH and height of 22.8 cm and 10.7 m, respectively (Table 1).
Although the analysed yew females were slightly older and larger than the males (with the exception
of crown ratio), no significant differences were registered between the female and male yews (Table 1).

Table 1. Description of the sampled European yew trees.

Single Tree Characteristics (n = 38 Trees) Female Male

Min Mean ± SD Max Mean ± SD Mean ± SD

Diameter DBH (cm) 11.9 22.8 ± 8.14 52.7 23.5 ± 7.9 22.6 ± 8.38
Height h (m) 7.0 10.7 ± 2.5 16.0 11.0 ± 2.3 10.3 ± 1.68

Stem basal area g (m2) 0.01 0.05 ± 0.04 0.22 0.05 ± 0.04 0.05 ± 0.04
Stem volume v (m3) 0.03 0.21 ± 0.19 0.96 0.23 ± 0.18 0.20 ± 0.20
Crown length CL (m) 5.1 8.3 ± 2.1 13.0 8.1 ± 2.3 7.4 ± 1.76
Crown ratio CR 0.56 0.73 ± 0.07 0.81 0.76 ± 0.07 * 0.70 ± 0.06

Crown projection area CPA (m2) 10.2 22.0 ± 12.6 49.2 22.4 ± 13.2 21.7 ± 13.1
Crown volume CV (m3) 17.3 62.8 ± 47.9 168.8 66.0 ± 41.5 59.6 ± 57.5

Crown surface area CSA (m2) 30.6 70.2 ± 34.0 140.5 75.7 ± 27.7 64.8 ± 41.4
Age (years) 62 94 ± 13 118 103 ± 12 95 ± 14

Note: * marks significant differences between female and male individuals at p < 0.05.

3.2. Yew Natural Regeneration

The mean yew natural regeneration density in the sample plots reached 12,500 ha−1, and the
greatest density of 11,800 ha−1 was found in the height category of ≤10 cm. Seedlings between 10.1 cm
and 20 cm tall were very rare (690 ha−1), and yew regeneration higher than 20 cm did not occur at all
in the sample plots (Figure 2).

The sex ratio of the 38 evaluated trees (two individuals without determination) was male-biased,
with a value of 1.188, meaning that 47.2% of the yews were females. The mean number of seedlings
under female trees, calculated per crown projection area, was 2.38. Crown projection area was slightly
higher in the group of female trees (Table 1). This difference was most likely age- and size-related.
Selected female trees (n = 6) had slightly older age and larger size compared to male trees (n = 6).
A certain amount of yew seedlings were also detected under male trees at 0.72 per crown projection
area. The difference in the number of seedlings between male and female trees was not significant.

In forest stands, yew trees usually develop rounded or pyramidal irregularly-shaped crowns
with multiple branches spreading. According to crown ratio values (CR) (Table 1), living crowns of
yews represented, on average, nearly 75% of the tree height, with no crown shorter than 56%. From
selected crown parameters, only crown length (CL) was significantly correlated (p < 0.05) with the
number of seedlings corresponding to a mother female tree (RCL = 0.88). All size-related characteristics
of mother trees (DBH, height, basal area, and volume) were significantly and positively correlated
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with the number of corresponding seedlings, with the highest correlation coefficient provided for tree
volume (RV = 0.91).
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Figure 2. Density of yew natural regeneration according to height categories. Vertical bars represent
individual sampling plots.

3.3. Growth–Climate Relationship and Patterns of Yew Radial Growth

In the study area, radial growth of yew trees was temperature- and precipitation-sensitive.
Climate sensitivity of male and female individuals was almost identical, with no significant differences
between the correlations of monthly climatic variables and ring-width residuals (Table 2, Figure S4).
The growth of yew was positively affected by higher precipitation during the summer (June–August)
and September, and by temperature during the previous spring and early summer (May–June), and
during the winter and early spring (December–March). On the other hand, higher temperatures in the
current spring and early summer (May–June) resulted in decreased radial growth.

Table 2. Climate response and basic statistics of yew tree-ring series and residual chronology (common
time span 1935–2015).

Female Male All

Raw series

Time span 1898–2015 1901–2015 1898–2015
Number of sampled trees—Nt 18 20 38

Mean series length—MSL 97 94 96
Mean tree-ring width (mm)—TRW 0.94 1 0.97

Standard deviation—SD 0.46 0.6 0.53
Mean sensitivity of individual series—MSs 0.23 0.25 0.24
First-order autocorrelation coefficient—AC1 0.75 0.77 0.76

Residual
chronology

Between trees correlation—RBT 0.38 0.45 0.44
Expressed population signal—EPS 0.91 0.94 0.96

Climate
response

TMP
May–June—mj 0.26 0.18 0.22

November–March—ndJFM 0.48 0.37 0.39
May–June—MJ −0.2 −0.19 −0.21

PRE
June–August—JJA 0.26 0.34 0.37

September–S 0.22 0.23 0.19

TMP—mean monthly temperature sums, PRE—monthly precipitation sums, statistically significant correlations of
ring-width residual indices with monthly and seasonal TMP and PRE values: mj, ndJFM, MJ, JJA, and S; capital
letters refer to months of the current year, small letters to months of the previous year. Note: no statistically
significant differences between females and males in response to climate.



Forests 2017, 8, 289 8 of 18

Deviations of temperature and precipitation from the long-term normal in the years 2013 and
2014 are illustrated in Figure 3. Long-term mean monthly temperature and precipitation sums over the
period of 1901 to 2014 are shown in the climate diagrams (Figure S3). In 2013, weather conditions were
characterized by an extremely wet winter, an extremely warm summer, and a dry July. This resulted in
a pronounced decrease in the radial increment of yew trees, regardless of sex. On the contrary, in 2014,
an extremely warm winter and early spring (January–March), and an extremely wet July and August,
had a positive effect on yew growth, resulting in above-average radial growth and significantly higher
growth rates of males compared to females (Figure 6 and Figure S5). Differences were detected in
radial growth between male and female individuals in 2014, as well as between the analysed years of
2013 and 2014 for both males and females, were significant (p < 0.01).
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Figure 3. Temperature and precipitation anomalies standardised with respect to the 1901–2014 mean
and expressed in standard deviation units, where P is the monthly precipitation sum, and T is the mean
monthly temperature).

The year 2014 was reported as a heavy seed (masting) year for yew in the studied locality, most
likely due to the weather in the previous year. The majority of seedlings recorded in the vicinity of yew
trees that germinated in 2015 likely originated from the seed crop in 2014. In the period of 2013 to 2015,
annual growth rates of mother trees were positively associated with the density of yew seedlings, and
therefore, seed crop (Figure 4). In the year prior to seed formation (Figure 4a), we found the strongest
relationship between radial growth and seedling density. In 2014, in the season of seed formation, the
relationship was distinctively weaker (Figure 4b); however, it was restored again in the following year
(Figure 4c).
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At the stand level, a significant increase in the tree-ring width of yews was observed after the
beginning of stand regeneration via shelterwood cutting in 2000, for both males and females (Figure 5).
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Moreover, in this period, a significant difference in the radial growth of females and males was recorded
for the first time (Figure 6). It is therefore possible to align detected growth differences with higher
fructification in females.
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In general, radial growth of yews first gradually decreased and reached a minimum in the 1960s
and 1970s. Following the 1970s, radial growth first slightly increased and then markedly since 2000
(Figure 7). After 2000, we observed clearly different patterns of radial growth, according to the
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type of intervention (Figure 7 and Figure S6). Yews growing in sample plots classified as heavy
intervention revealed permanent improvement of radial growth lasting up to the time of sampling
in 2015 (Figure 7a). Trees in the moderate intervention plots also revealed enhanced growth, but the
reaction to the release of crown space, visible in the tree-ring series persisted for about seven years
(Figure 7b). The trees with no intervention revealed no enhancement of radial growth, which remained
below average for the whole study period (Figure 7c). Average growth corresponded to a mean growth
rate of 0.97 mm (Table 2).
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average values (solid line); the dashed line indicates the mean growth rate of all sampled yew trees.

4. Discussion

In the studied forest stand, light was one of the most important limiting factors for yew growth.
Whenever access to light was provided, yew responded with accelerated growth, with corresponding
central trees showing releases from suppression. Improved light conditions resulted in higher growth
rates of both male and female yews, and in significant differences in radial growth between female
and male individuals after the beginning of regeneration cuttings. Lower radial growth rates of female
yews were likely the result of their higher reproductive costs, indicating a possible trade-off between
reproduction and growth. The size and growth rate of mother trees positively affected the amount of
newly regenerated seedlings. Their amount probably also depended indirectly on the intra-annual
weather variation during the current and previous growing season. No statistical differences in the
radial growth response to climate variability between female and male trees were detected.

4.1. Stand Structure

Our study showed that with limited or no stand tending, beech and maple formed dense canopy
closure in the stand overstory and growth performance of yew trees remained rather poor and below
the mean growth rate. In the study, sampled yew trees were growing on limestone bedrock covered
by fresh soil, in the middle and upper parts of the southeast-southwest exposed slopes. As already
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shown [42], dense stands with a canopy closure of 2.2 to 3.8, and less suitable site conditions—especially
north-facing slopes—did not provide an environment favourable for yew growth and reproduction.
In such conditions, yew was reported to experience high mortality rates, even among adult trees (e.g.,
the National Nature Reserve Horný Harmanec). Canopy closure below 1.6 was confirmed to markedly
improve yew growth performance, and yew showed good potential for regeneration processes under
canopy closure of 1.6 to 1.7.

In temperate forests, the weak competitive abilities of yew restrict its distribution to habitats with
the absence of faster-growing tree species [5,43]. To maintain healthy populations, yew trees require the
reduction of canopy density and light competition [3]. Continuous selective thinning with a removal of
30% of the stocking volume was recommended to reduce the competition of beech [4,44]. Most likely
due to the cuttings, the Danish population of yew increased from no more than 200 individuals in
1925 to above 2000 in 1998; regular selective cuttings of large beech trees have been applied since
the area was protected in 1993 [45]. In comparison to the “do nothing” strategy in natural reserves,
the probability of yew survival was reported to increase by 75 to 95% when using the alternative
conservation strategy combining selective thinning, protection measures, and game control with public
relation activities [10]. Our results showed that with under-designed irregular shelterwood cuttings,
the increase in yew growth as a response to a removal of 15 to 20% of growing stock, persisted for
about seven to eight years after the first intervention in 2000. This time interval likely corresponds to
the closing of canopy gaps after the selective cutting of trees from the overstory.

4.2. Yew Natural Regeneration

In our study, improved light conditions caused higher fructification rates in adult females since
the beginning of regeneration cut. The high number of established seedlings in the vicinity of adult
yew trees indicated good conditions for their initial development. Similar results regarding the yew
regeneration density were observed in populations in Poland and Austria [46,47]. On the other
hand, some studies from Western Europe (Denmark, England, and Ireland) reported very poor
natural regeneration of yew, reaching less than 2000 individuals per hectare [45,48,49]. Nevertheless,
having some specific problems which are unknown in Central Europe (e.g., yew seed herbivory by
rodents) means that these regions are not directly comparable. Similar to the results of Svenning and
Magård [45], our results showed that growth of yew, its regeneration, cone production, and seedling
recruitment were favoured by an open canopy. In a study from Poland [50], the most favourable
development of five-year-old yew saplings planted under the canopy of older forest stands occurred
at 30% canopy openness, whereas an insufficient amount of light resulted in a low height increment
and an extended period of direct competition of yews with herbaceous species. Another study also
revealed that the biomass of seedlings was highest under a light intensity of 30% out of the four levels
of light intensity tested [51]. In our stand, a recent study [42] confirmed a rather low average level
of relative light (below 20% of full solar radiation) was required. The main limitation of successful
regeneration was that seedlings 10.1 to 20 cm tall were very rare, and taller seedlings and saplings
did not occur under any adult yew individual. The Starohorská yew population was assigned to the
category with the most damaged stems by wild ungulates, which in Slovakia involves bark-stripping
mostly by red deer [52]. Wherever the game had access, every individual tree was damaged. Based on
previous studies in the area, browsing pressure in the stand was enormous, and even lethal to natural
regeneration. Established new seedlings were almost completely grazed by the wild game [30]. As a
study from Germany confirmed [7], the presence of predators such as bears may positively influence
the occurrence and dispersion of yew due to deer elimination and endozoochoric seed dispersion to
new areas. Despite the increasing density of predators reported in Slovakia since the 1970s [53], the
ungulate density has been increasing as well [54]. Our results, along with those of Iszkuło et al. [55],
indicate that yew requires protection against animals for successful development. Browsing by game
and insufficient light conditions were the most critical limiting factors not only to the growth of adults,
but also to the natural regeneration of yew in the selected study area [8,9].
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4.3. Regeneration in Relation to Mother Trees

In general, a yew seedling is usually two-to-eight cm tall at the end of its first season, with
subsequent annual growth of often less than 2.5 cm [43]. Our results showed that the number of such
seedlings was associated with the size of the mother trees. In contrast to the crown characteristics, stem
parameters—namely stem volume—were confirmed as better predictors of the number of regenerated
individuals. This is likely due to the use of the usual crown parameters that were not specific enough
to capture the variable and irregularly-shaped crowns of understory yews. In this case, a future study
would be needed to find some more specific variables suitable for characterizing yew crowns.

In Eastern Europe, reproduction of yew starts at the age of 70 to 120 years, and good seed crops
occur every two to three years because of ceased fruit production in temperate, closed-canopy, mixed
beech forests, and less optimal site conditions [56]. We showed that variation in the number of seedlings
and the seed production was strongly correlated with resource availability. Based on the positive
relationship between release cuttings and seed crop [57], higher resource availability—in our case
expressed by higher radial growth rates—was related to higher seed production. Increasing the amount
of light was likely to directly favour growth of yew—a species very sensitive to variations in solar
radiation. The higher the growth rate, the more carbon resources could be allocated to reproduction
and fruiting in a particular year, as documented by the positive relationship between radial growth
rate and the number of regenerated seedlings in the vicinity of mother trees.

We also recorded a certain number of seedlings under male central stems. This could be consistent
with the foraging behaviour of avian seed dispersers that preferentially select nearby male yew
trees for the protection provided by their tree canopy. In a study from Spain, it was shown that
microhabitats under target yew trees—both females and males—received 98.8% of dispersed seeds,
80% of which were under yew females, despite quantitative differences in total seed densities between
sites and years [58]. The spatial arrangement of yew trees was important to seed dispersal processes.
The variation in seed and seedling density across the landscape was spatially restricted, and was more
a reflection of the differences in yew proportion among the sites [59–61].

A recent study from Ireland confirmed that the density and canopy cover of yew adults were
negatively related to the recruitment of yew juveniles [49]. This is in line with some other studies
suggesting that adult yew trees may have inhibited the establishment of new regeneration underneath
them [12,62,63]. However, results of a study from the Central Apennines, Italy [1] showed that
regarding the spatial scale, this relationship was more complex. Considering the landscape scale, yew
regeneration was positively related to the basal area of yew. Nevertheless, at stand, a high density
of yew trees can become the factor limiting yew regeneration. In this case, more suitable conditions
for yew regeneration represented yews scattered across the stand, or just an increasing distance from
dense yew patches. Similarly, management operations concentrated on regeneration around the edges
of yew woodlands were suggested as a suitable way to preserve yew stands [49]. In our study, the
majority of yew seedlings regenerated in the vicinity of adult yews, confirming the low dispersal
ability of yew seeds. A limited number of seeds were able to escape from mother trees, which points to
the necessity of adjusting ecological conditions in the vicinity of mother trees to become favourable for
yew recruitment.

4.4. Sex-Related Patterns of Radial Growth and Climate Sensitivity

The results of this study showed the positive effect of regeneration cuttings on yew radial growth,
and a significant difference in growth between male and female yews following the cuttings. In our
case, increased radial growth was likely related to cutting operations, based on releases identified in
later life stages rather than on species-specific yew auto-ecology or climate change. Before beginning
of the regeneration cuttings, female and male individuals displayed similar growth rates. Following
the start of regeneration cuttings, significant sex-related differences in growth variability appeared.
Better growth performance of the males could be attributed to the reproductive process, where the
males invest less carbon resources than females. Besides flowering and pollination, in the case of
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males, females continue to invest during the whole growing season into seed and fruit production
and their subsequent dispersal [16]. In temperate forests, the reproduction cycle for a yew female
lasts about six months, beginning with pollination in April and finishing with seed dispersion in
September. The formation of flower buds is accomplished during the second half of the summer in
the previous vegetation season [43]. The reproductive effort of males is much lower, confined to late
summer of the previous season for flower bud formation and ending with pollination in April of the
current season. The higher resource investment of females [22] could be the cause of growth differences
recorded in our study site since 2000. Variation in the number of seedlings was strongly correlated
with resource availability. In the study, females switched resources to seed production to produce seed
crops, leading to a lower correlation between number of seedlings and growth rate in the year of seed
formation and in the subsequent year. Costly seed production shows the favouring of reproduction
at the expense of growth in female trees [14]. It is therefore possible that there is a trade-off between
reproduction and growth [64], which, as expected, is particularly obvious in dioecious plants due to
sexual dimorphism resulting from gender-specific functional traits of individuals. In other tree species,
a negative relationship between fruit production and radial growth was shown (e.g., in beech) [65,66].
On the contrary, radial growth in the year of seed formation and the year after did not differ between
trees with low and high seed crops for rowan [67].

However, carbon resources are not the only factor that controls the reproduction process in
plants [19]. Inter-annual environmental variability is another main driver [68]. Unfortunately, no
time series records on annual seed production were available to compare the long-term variability in
seed production with fluctuations in climate variables. For reproduction, variations in precipitation
and water availability seem to be more influential than temperature [18,24]. A study on oaks in
California [69] showed that the response of reproduction (in terms of acorn production) to annual
weather conditions was inversed to that of growth (radial increment). This seems to confirm growth
and reproduction could be independent of each other, and negative relationships suggesting trade-offs
could be determined by correlated environmental factors rather than being causal [69,70]. For example,
higher precipitation amounts stimulating radial growth in early spring could inhibit flowering and
anemophilous pollen dispersion of males, finally resulting in decreased seed production in females.
Likewise, water deficits in the vegetation period inhibiting radial growth could favour flower buds’
formation in the end of the growing season [19].

As shown in our results, there might be a lagged relationship between seed production and
climate, which is responsible for the production of larger seed crops of yew following the drought
season. Apparent drought-induced reduction in aboveground net primary production is often the
result of shifts in carbon allocation toward fruit production triggered by warm and dry weather in
the previous summer [71]. In European beech, a trade-off between growth and reproduction in years
with heavy seed production could have been responsible for the observed lagged correlations between
growth and water availability in the previous growing season [72].

In temperate forest zones, climate is generally less influential on the growth of trees than in arctic
or semi-arid regions, resulting in a rather lower correlation with climate variables [32]. With respect to
higher RBT, EPS, and MSs values of tree-ring chronologies, moderate climate–growth relationships
in the study could be partly attributed to the source of climate data used. In fact, Fagetum dealpinum
represents a particular niche in the ecology of European yew, where the climate only moderately
modulates the growth of trees, where a mixed, rather than strong temperature in high elevations or
precipitation in the lowlands, climate signal is expected. However, calcareous bedrock on often steep
slopes could represent a water-limited environment that influences the growth of yew.

Our results showed that sensitivity of tree-ring variability to climate did not appear to be
sex-dependent. In a study from Western Poland, unlike the male trees, the growth of European
yew female trees was negatively correlated with temperature during the previous year, and positively
with precipitation in the current year [73]. However, in our study, no significant differences in response
to climate were found between the sexes. We assume that the lacking difference in sex-specific response
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of radial growth to climate was due to the relatively short time since the vivid regeneration of females
was induced by cuttings, which did not allow the different climate sensitivity to become apparent.

Sex-specific life histories can bias the sex ratio in dioecious species, and therefore the resource
heterogeneity in terms of varying light intensity [74]. In this study, the yew population in a secondary
managed forest of relatively young age of about 90 to 120 years had an equally biased sex ratio. In the
later life stage or eventually in old-growth forests, sex-differing growth traits, stem diameters, sex
ratios, stem densities, and even spatial distribution patterns could be expected [75]. This should
eventually result in sex-specific differences in growth sensitivity to climate variability. On the contrary,
in the future, in an environment that is less water-limited, the differences in climate responsivity may
remain uniform.

5. Conclusions and Conservation Management Strategy Suggestions

Preserving tree species threatened by climate change remains a great challenge for forest
management decision-making. To assure the long-term existence of yew, the presence of old-growth
beech forests with incorporated yew patches appears to be important [1]. Admitting that yew
requires stable ecological conditions for its existence, increasing frequency and intensity of large-scale
disturbances under climate change present a serious issue to the long-term growth of yew. In recent
decades, not only coniferous, but also more stable deciduous forest stands have been heavily damaged.
For example, in Slovakia, 44% of the salvage felling volume was made up of deciduous forest stands,
damaged by the large storm Žofia in 2014.

Another issue is the enhanced tree growth, higher standing stocks of trees, and density of
forest stands in relation to changes in climate, nitrogen deposition, and forest land management.
As suggested in some studies [76,77], the forest canopies have grown denser across much of Europe
over recent decades. On the other hand, a study by Pretzsch et al. [78] showed that accelerated growth
resulted in faster ageing, whereas the maximum tree density did not change. Nevertheless, in regions
where an actual increase in forest canopy density was observed, the actions to balance ecological
conditions in favour of successful yew growth would be appropriate. Overall, stand competition
might determine how European yew will cope with a changing climate. Our results indicate that local
populations of European yew might decrease in areas with forest succession, leading to the dominance
of faster growing shade-tolerant tree species. We found that continuous crown thinning—overstory
thinning (positive selection) with an intensity of 15% applied once per decade, respectively once every
seven to eight years, with consequent irregular shelterwood cutting with the intensity of 15 to 20%
in the recovery phase of the stand—could form the basis of a conservation management strategy for
maintaining the viability of yew. Since European yew is a sensitive species with a narrow ecological
range, without such management interventions its chances of extinction may dramatically increase in
many areas within its range [2].

Nevertheless, higher growth rates and investment in regeneration could lead to higher
susceptibility of yew trees to environmental stress, such as extreme drought episodes. Due to the
higher energy costs, females in later life stages may be shorter in height and smaller in diameter and
subsequently exhibit higher mortality rates under stress conditions [64], resulting in male-biased sex
ratios [12]. Accordingly, our findings suggest that females under increased density of the surrounding
stand would have a higher mortality risk than males because of reduced growth that would eventually
lead to carbon starvation. This may be a factor in increasing the risk of extinction of dioecious
species [73]. Males can likely maintain themselves better than females, which emphasises the
importance of making silvicultural treatments for females a priority. Adjusting the thinning and
release cuttings to higher intensities—up to 30% of growing stock removal, thus keeping canopy
closure at the values favourable to yew growth below 1.6—could be recommended for the female trees
and their surroundings. Such interventions could possibly favour subsequent natural regeneration,
allowing seeds to germinate and seedlings to grow outside the crown of mother trees. Either reduced
access to light in the understory or open habitats along with frosts are the direct reasons for the high
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mortality of newly germinated seedlings, while light conditions at 30% of full solar radiation are
optimal for seedling growth [51].

However, the suggested conservation measures can succeed only with consistent elimination
of browsing and bark-stripping by deer. Ungulates are significantly involved in the reduction of
adult yew trees in the understory. The unequivocal effect of fencing in the protection of natural yew
recruitment surveyed during the eight years was clearly confirmed. Yew recruitment age categories
above five years old were present only inside the fenced area.

Rainy summers, early autumns, and warm winters enhance the radial growth of yew, which could
direct the timing of regeneration cuttings to seasons following such climatic conditions to support
the effect of the release cut. Still, further studies on sex-related differences in response to climate
and extreme events may allow the improvement of designed conservation and management actions
regarding the viability of yew trees under climate change.

Overall, we found that release cuttings increased the performance of the rare and mostly
understory tree species T. baccata in terms of stem growth and seed production. Such measures could
counteract the ongoing decrease in the growth performance and increase the viability of populations,
so as to preserve the unique biodiversity of calcareous beech-dominated forests. Continuous thinning
and cutting operations seem to be an effective conservation management approach to ensure the
persistence of rare tree species growing in the understory, if their existence is inhibited by forest
succession of faster growing and shade tolerant trees.
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22. Iszkuło, G.; Boratyński, A. Initial period of sexual maturity determines the greater growth rate of male over

female in the dioecious tree Juniperus communis subsp. communis. Acta Oecologica 2011, 37, 99–102. [CrossRef]
23. Garbarino, M.; Weisberg, P.J.; Bagnara, L.; Urbinati, C. Sex-related spatial segregation along environmental

gradients in the dioecious conifer, Taxus baccata. For. Ecol. Manag. 2015, 358, 122–129. [CrossRef]
24. Rozas, V.; DeSoto, L.; Olano, J.M. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the

dioecious tree Juniperus thurifera. New Phytol. 2009, 182, 687–697. [CrossRef] [PubMed]
25. Rovere, A.E.; Aizen, M.A.; Kitzberger, T. Growth and climatic response of male and female trees of

Austrocedrus chilensis, a dioecious conifer from the temperate forests of southern South America. Ecoscience
2003, 10, 195–203. [CrossRef]

26. Farjon, A. Taxus baccata. The IUCN Red List of Threatened Species 2013. Available online: http://dx.doi.
org/10.2305/IUCN.UK.2013-1.RLTS.T42546A2986660.en (accessed on 24 April 2017).

27. Svoboda, P. The largest occurrence of yew in Central Europe (in Czech). Ochr. Přír. 1947, 2, 65–70.
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46. Iszkuło, G.; Boratyński, A. Different age and spatial structure of two spontaneous subpopulations of

Taxus baccata as a result of various intensity of colonization process. Flora 2005, 200, 195–206. [CrossRef]
47. Dhar, A.; Ruprecht, H.; Klumpp, R.; Vacik, H. Comparison of ecological condition and conservation status of

English yew population in two Austrian gene conservation forests. J. For. Res. 2007, 18, 181–186. [CrossRef]
48. Hulme, P.E. Natural regeneration of yew (Taxus baccata L.): Microsite, seed or herbivore limitation? J. Ecol.

1996, 84, 853–861. [CrossRef]
49. Devaney, J.L.; Jansen, M.A.K.; Whelan, P.M. Spatial patterns of natural regeneration in stands of English yew

(Taxus baccata L.); negative neighbourhood effects. For. Ecol. Manag. 2014, 321, 52–60. [CrossRef]
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