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Abstract: This study develops a modeling framework for utilizing the large footprint LiDAR
waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud,
and Land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-Radiometer (MODIS)
imagery, meteorological data, and forest measurements for monitoring stocks of total biomass
(including aboveground biomass and root biomass). The forest tree height models were separately
used according to the artificial neural network (ANN) and the allometric scaling and resource
limitation (ASRL) tree height models which can both combine the climate data and satellite data to
predict forest tree heights. Based on the allometric approach, the forest aboveground biomass model
was developed from the field measured aboveground biomass data and the tree heights derived
from two tree height models. Then, the root biomass should scale with the aboveground biomass.
To investigate whether this approach is efficient for estimating forest total biomass, we used Northeast
China as the object of study. Our results generally proved that the method proposed in this study
could be meaningful for forest total biomass estimation (R2 = 0.699, RMSE = 55.86).

Keywords: forest aboveground biomass; root biomass; tree heights; GLAS; artificial neural network;
allometric scaling and resource limitation

1. Introduction

As the principal part of terrestrial ecosystems, forest ecosystems hold approximately 80% of
the terrestrial aboveground and below-ground biomass, and play very important roles in the global
carbon cycle and climate change [1–3]. Since the temperate and boreal forests play a crucial role as
atmospheric CO2 sinks, more attention has been paid to climatic warming in mid-and high-latitudes
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than in low-latitudes [4–6]. Many studies have shown that the lack of accurate forest biomass maps
has generated a large uncertainty in forest carbon stocks of temperate and boreal forest regions [7–9].
The accurate estimation of forest biomass is not only necessary for improving the estimation of carbon
pools, but also very important for forest management and understanding the response to climate
change [10–13]. At the same time, the estimation of root biomass is suggested to be helpful for
improving the estimation of terrestrial carbon stocks [14–16]. A large number of biomass estimation
methods that involve extrapolation of biomass measurements in sufficient number of field sample
plots can achieve very good estimation results for small forest areas [17,18]. However, there are
some problems related to obtaining reliable forest biomass estimation results in large scale studies,
because of the lack of field data, inconsistency of data collection methods, and less consideration of
root biomass [19]. The forest biomass estimation based on satellite remote sensing is considered as a
fairly advantageous approach in large scale studies because of wide and synoptic data [4,20,21]. As
there is no remote sensing instrument developed to have the capacity of measuring biomass directly,
the ground inventory data is required for building relationships between remote sensing parameters
and biomass. Although passive optical satellite data can be used for biomass estimation across a
variety of spatial and temporal scales due to its inexpensive technology, the low saturation level of
vegetation spectral bands has had a serious effect on biomass estimation [22–24]. LiDAR is often more
accurate in predicting forest structural parameters because its signal does not saturate in high-biomass
forests [25,26]. Especially, airborne LiDAR can obtain the forest biomass estimation results with
high precision. However, the high acquisition costs of large observation data bring limitations of its
application at large scale region [27,28]. The Geoscience Laser Altimeter System (GLAS), onboard the
Ice, Cloud, and land Elevation Satellite (ICESat), is a spaceborne LiDAR system which can provide
the global recording of full waveforms over large footprints [29,30]. The GLAS data can be used for
estimating forest tree heights and biomass by associating field plot data, because it has the capability
of obtaining the vertical structural information. However, relatively sparse GLAS footprints could not
provide the continuous forest biomass distribution image without the help of other remote sensing
datasets [30–32]. Therefore, it is necessary that multi-sensor datasets synergy is considered to estimate
forest biomass at the regional scale.

The northeast part of China (NE China) is the most important forest region in China. NE China
possesses the largest contiguous forest land area in China, accounting for 40% of total country forest
biomass [33,34]. The forest of NE China was exploited much later than eastern and southern parts of
the country. It has experienced drastic climatic warming since the 1980s, which brought a significant
growth rate in forest biomass and productivity [35,36]. These changes also suggested that it is necessary
to obtain the accurate forest biomass estimation.

In this study, we explored the capabilities of satellite remote sensing for mapping forest biomass in
NE China region. The forest tree heights were estimated using artificial neural network (ANN) method
and the allometric scaling and resource limitation (ASRL) approach by combining the climate data
and satellite data, including ICESat/GLAS data, MODIS land surface products, and some ancillary
datasets [37,38]. The potential information on root-shoot biomass allocation was studied using the
field biomass measurements, and the best forest biomass estimation model was established.

2. Materials and Methods

2.1. StudyArea

The research area of this study is NE China, which is defined here to extend longitudinally from
115◦37′ E to 135◦05′ E and latitudinally from 38◦43′ N to 53◦34′ N, with a total area of 1.66 × 106 km2

(Figure 1). NE China in this study mainly includes Liaoning (LN), Jilin (JL), and Heilongjiang (HLJ)
provinces and four leagues (an administrative division) in Eastern Inner Mongolia Autonomous region
(IMA) [16].
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The study area encompasses all the major forest types in Northeast Asia. The major forest
types mainly include cold temperate coniferous forest, temperate coniferous and broad-leaved forests.
The forested land area in NE China is about of 50.5 million ha, accounting for the largest area of
natural forests in the country. The elevation in most part of NE China is below 400 m (Figure 1).
The DaXing’anling Mountain, Xing’anling Mountain and Changbai Mountain have relatively high
elevation. The precipitation in NE China generally ranges from 300 mm to1000 mm because of the
monsoon climate of medium latitudes. The annual mean temperature ranged from −4 to 11.5 ◦C.

Three forest zones are covered from south to north in NE China, including warm temperate
deciduous broadleaf forest zone, temperate coniferous and broadleaf mixed forest zone, and boreal
forest zone [16,39].
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Figure 1. The study area and the biomass data collected in this study. These data are distributed well
across the forest regions of the study area.

2.2. Datasets

2.2.1. Climate Data

The climatic variables used as the inputs of the two tree heights models in this study
include precipitation, temperature, relative humidity, wind speed, and incoming solar radiation.
The precipitation and temperature were the inputs of ANN tree heights model. These five climatic
variables which determine the available and evaporative flow rate of trees were inputs of ASRL model.
All these climate data were obtained from the China Meteorological Data Sharing Service System
(CMDSSS) which provides the annual meteorological records [40,41].

In this study area, the observations spanning over recent 30 years (1978–2007) from total 118
meteorological stations were collected, comprised of annual total precipitation, average temperature,
relative humidity, wind speed, and solar radiation time. We further interpolated these climatic
variables to generate the continuous gridded maps of annual average climatic variables at 1km spatial
resolution by using ordinary kriging [42].Then, we averaged the continuous gridded maps of annual
average precipitation and temperature from 2004 to 2006 in order to obtain mean precipitation and
temperature maps during 2004–2006 as inputs of ANN tree heights model, respectively. Similarly, the
mean values of five annual average climatic variables during 1978–2007 were obtained to be the inputs
of ASRL model.
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2.2.2. Land Surface Reflectance

The MODIS nadir bidirectional reflectance distribution function adjusted reflectance (NBAR)
product which is named as MCD43B4 provides the land surface reflectance data at a spatial resolution
of 1 km [43]. The NBAR product represents the best characterization of surface reflectance over a
16-day period. In this study, we selected the seven spectral bands of MCD43B4 data in growing season
from 2004 to 2006 as the inputs of ANN tree heights model. The seven bands of MCD43B4 data used in
this study include three visible bands (460, 555, and 659 nm) and four near-infrared bands (865, 1240,
1640, and 2130 nm). The MCD43B4 product can cover the study region by selecting the images with
the scene orbiter h25v03, h25v04, h26v03, h26v04, h27v04, and h27v05.

2.2.3. Ancillary Data

In this study, there are two types of ancillary data. The first set of ancillary data was used as
the inputs of ASRL-based tree height model, and consisted of the Advanced Space borne Thermal
Emission and Reflection Radiometer (ASTER) Global DEM (GDEM V2, spatial resolution of 30 m),
and the eight-day composites of the post-processed Moderate Resolution Imaging Spectro radiometer
(MODIS) leaf area index (LAI) products (1 km spatial resolution) [43]. We further calculated the mean
value of LAI in summer (June to August, the approximate growing season) for the time period from
2003 to 2006.The mean value of LAI was calculated by using the Equation (1):

LAIavg =
∑n

i = 1 ∑m
j = 1 LAI8 − day,i,j

m × n
(1)

Here, LAIavg is the average LAI (June to August months from 2003 to 2006) and LAI8−day,i,j is the
eight-day LAI product for jth week (m = 12) of ith year (n = 4).

In addition, the second set of ancillary data was used to identify forested lands, and consisted
of land cover (LC) and vegetation continuous field (VCF) [44]. We selected the International
Geosphere-Biosphere Programme (IGBP) of LC product (MCD12Q1, 500 m grid) and tree cover
percent of VCF product (MOD44B, 250 m grid) of NE China for the year 2005 [45]. The land cover
belonging to one of the five forest classes per the IGBP, and consisting of more than 50% tree cover per
the VCF product were defined as forest land.

2.2.4. Tree Height and Biomass Measurements

GLAS-Derived Tree Heights

GLAS-Derived Tree Heights were used as the standard forest tree heights for training the ANN
model and optimizing the parameters of ASRL based tree height model in this study.

The ICESat/GLAS is designed to obtain characteristics of the earth surface structures in three
dimensions with high accuracy [26,38].

The Release-33 of GLAS laser altimetry data available from the National Snow and Ice Data
Center [46] was used in this study. GLAS waveform data provide information on land elevation and
vegetation cover within its ellipsoidal footprints about 72 diameters at about 170 m interval along the
sub-satellite track [47,48]. National Snow and Ice Data Center released 15 GLAS products.

Amongst various altimetry products of the Release-33, we selected GLA14 product (GLAS Level-2
Land Surface Altimetry product, National Snow and Ice Data Center (NSIDC), Boulder, CO, USA) for
the maximum tree height retrieval from May to October (2003–2006).

The GLAS waveform data are generally affected by the following factors: atmospheric forward
scattering, signal saturation, background noise (low cloud), and the topographic slope gradient effects.
In order to obtain the best GLAS data waveform for deriving accurate tree heights, the GLAS footprints
screening is needed. At the same time, GLAS footprints over non-forest should be filtered. The GLAS
footprints processing steps for selecting valid GLAS waveforms can be depicted as follows [37,38,47,48].
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Firstly, the GLAS data of the approximate growing season from 2003 to 2006 were considered. Then,
the GLAS data were further screened by applying the atmospheric forward scattering filters, signal
saturation filters, background noise level correction filters, land cover mask conditions filters, and
topographic slope gradient filter. Based on the procedure of GLAS footprints filtering, the best GLAS
data waveform was selected.

In order to obtain the most accurate GLAS tree heights, the topographic correction approach of
GLAS-derived tree heights was used according to the Equation (2) [37,38,41,47–50]:

HGLAS =
(

DSigBegO f f − DgpCntRngO f f

)
− dGLAS × tanθ

2
(2)

where HGLAS is the GLAS-derived tree heights, DSigBegO f f represents the location the GLAS
full-waveformbeginning signal, and DgpCntRngO f f represents the location of the ground peak, dGLAS is
the GLAS footprint size, and θ is the topographic slope [40,48–52].

Field-Measured Tree Biomass

In this study, 515 field measured tree biomass measurement plots were compiled from NE China
region. All these plots were compiled from literature by Wang [16]. For each plot, the total tree biomass,
shoot (stem, branch and leaf) biomass and root biomass were calculated.

In these plots, 85 plots were sampled by Wang [16]. The shoot and root biomass for the plots
were estimated with DBH (and tree height) using allometric relation-ships developed by Zhu [53].
In addition, there were 161 plots obtained from the data base of Luo [54], and the rest of other plots
were collected from 59 sources [16]. Since there are different numbers of effective records on the total
biomass, shoot biomass and root biomass in Wang’s database, the plots which include all the useful
records on the total biomass, shoot biomass, and root biomass were considered. Finally, 432 effective
plots with valuable information of total biomass, shoot biomass and root biomass, were selected from
the 515 plots to build and validate the biomass model. The detailed statistics information of these
records is shown in Table 1.

Table 1. The statistical information of the field-measured biomass.

Statistics Shoot Biomass(t/ha) Root Biomass(t/ha) Total Biomass (t/ha)

Maximum Value 369.1 106 432.4
Minimum Value 8.8 1.9 10.7

Mean Value 113.1044715 26.62682927 139.7052846
Variance 6088.720266 389.2960119 9226.870054

2.3. Methodology

We developed the approach of estimating forest biomass by combining multisource satellite data,
meteorological data and field measured forest plot data.

Our analysis consisted of two main parts, (a) predicting the tree heights by using two tree heights
models; (b) developing the biomass model for estimating forest biomass in study region (Figure 2).
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This section describes tree height estimation methods used in this study and forest
biomass modeling.

2.3.1. Tree Height Estimation Methods

Artificial Neural Network (ANN) Tree Heights Model Approach

The artificial neural network (ANN) tree heights model was proposed by Ni [38] for mapping the
forest tree heights over China continent. We employed the ANN tree height model to obtain the tree
heights in NE China. The inputs of ANN tree heights model consisted of 11 parameters, including
climate variables (temperature, precipitation), ancillary data (land cover class, vegetation cover
fraction), and seven multispectral bands of MODIS NBAR data. With the help of back-propagation
(BP) process algorithm, the ANN tree height models was trained by using the GLAS-derived tree
heights. The training and validation data pairs for each pixel of study region were selected according
to the most similar climatic condition factor discipline according to described by Ni [38]. For each
target pixel, one ANN-based tree heights model was trained by using 15 pairs of training data, while
five pairs of validation data were used to prevent the over-fitting of the model. When the ANN-based
tree heights model was trained well, it was used for estimating the forest canopy height over the
target pixel.

Allometric Scaling and Resource Limitations (ASRL) Model Approach

We employed the ASRL model approach developed by Sungho et al. [41] to obtain the tree heights
in NE China. The ASRL is a mechanism model based on a combination of the allometric scaling
laws and local resource availability [41]. It can predict the potential maximum tree heights. A key
hypothesis of the ASRL model is that a tree maintains its evaporative flow by collecting sufficient
resources (water and light) while satisfying its basal metabolic needs, in turn, limiting maximum
growth. The mechanism has a quantitative expression by the simple inequality (Q_p ≥ Q_e ≥ Q_0).
Here, the Q_p means the available flow rate, Q_e refers to the actual flow rate of a tree, and Q_0
represents the basic or required metabolic flow rate of a tree. Shi et al. [55] and Sungho et al. [41]
proposed the parametric optimization methods of the ASRL model in order to obtain the actual tree
heights. Shi et al. [55] recommend a parametric optimization, which can iteratively adjust three ASRL
parameters to minimize disparities between the reference and modeled heights, and help improving
the overall prediction accuracy. In this study, we applied the same processes to optimize ASRL model
and obtain the actual tree heights in NE China.
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2.3.2. Forest Biomass Modeling

Zianis and Mencuccini [56] developed an allometric approach to estimate aboveground forest
biomass (M) by regarding M and corresponding tree diameter at breast height (DBH). The method can
be described from the following allometric equation [34] (Equation (3)):

M = a× DBHb (3)

where a is the allometric intercept and b is the allometric exponent. Based on the scale relationship
between tree height (H) and DBH, the aboveground treebiomass estimation equation can be rewritten
as Equation (4):

M = a× Hb + c (4)

where c is a constant, a is the allometric intercept and b is the allometric exponent.
In this study, we have used the field measured biomass data and forest tree heights which were

calculated by averaging the ANN-derived tree heights and ASRL tree heights to build the least-square
regression model to obtain the coefficients of Equation (4).

In order to obtain the forest root biomass and the total biomass, we developed the allometric
relationship equation based on the field-measured tree aboveground biomass and root biomass.
Figure 3 shows the fitted allometric relationship equations described in Equations (3) and (4).
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3. Results

3.1. Canopy Heights Mapping in NE China by Two Tree Height Methods

Following the artificial neural network (ANN) tree height model, a contiguous map of canopy
heights with a spatial resolution of 1 km in NE China region was generated. Figure 4a shows the tree
height map derived from the ANN model in NE China.

Similarly, a contiguous map of the tree heights over NE China was generated from the optimized
ASRL mode by using the gridded climate and ancillary data mentioned in Section 2.2. This map
(Figure 4b) closely represents the spatial distribution of tree heights(mean = 24.37, SD = 9.35) in NE
China regionwith the spatial resolution of 1 km, showing a high correspondence to the spatial pattern
of ANN tree heights (mean = 26.66 m, SD = 10.13).In order to investigate the accuracy of the two tree
heights maps, we tested the tree heights by comparing with the GLAS-derived tree heights according
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to the validation methods from Ni [37] and Ni [38], respectively. The validation results (R2 = 0.811,
RMSE = 4.79; R2 = 0.664, RMSE = 5.24) demonstrate the effectiveness of the ANN- and ASRL-based
tree heights models.

From the estimation result of the ANN and ASRL tree heights in NE China, we can see that
relatively tall trees were growing in the eastern research areas. The trees distributed in Northwestern
China show obviously lower heights than those in eastern regions.Forests 2017, 8, 288 8 of 13 
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3.2. Forest Biomass Estimation

We firstly estimated the forest aboveground biomass by using the allometric approach described
in Section 2.3.2. Based on the forest aboveground biomass model described in Figure 3a, a contiguous
map of forest aboveground biomass at a spatial resolution of 1 km was generated (Figure 5a).

In addition, the forest root biomass was estimated according to the relationship equation described
as Figure 3b. The total biomass was calculated by summing the forest aboveground biomass and root
biomass. The root biomass and total biomass map can be seen from the Figure 5c,e.

The estimation result shows that the forest aboveground biomass, root biomass, and total biomass
have the same density distribution trend in the research region. The forests in the eastern research
region have relatively large forest biomass density. The low biomass density was distributed in
northwestern research region. The parts of the southeastern NE China (Eastern Liaoning Province)
show the largest biomass density in the research area.
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4. Discussion

A method to assess the forest biomass in NE China forests region was developed by combining
satellite LiDAR data, optical remote sensing data, and field measurements. Due to the great difficulties
in measuring root biomass for forest total biomass estimation, it is the primary method for estimating
root biomass by building the allomeric relationship with aboveground biomass [54].
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Based on the field measured forest aboveground biomass and root biomass, we obtained a
relatively good allometric model for predicting root biomass (R2 = 0.761) in the study area. However,
there are some factors that influence the precision of root biomass prediction from forest aboveground
biomass, including climate factors, and forest types. Especially at large scale, varying climate factors
and forest types might cause the different allometric relationships between aboveground biomass and
root biomass. Similarly, allometric models of aboveground biomass estimation from tree heights are
also influenced by the climate factors and forest types.

In this case, different allometric models are necessary in the ecological zones which differ
according to the climate factors and forest types. Generally, these allometric models would be
optimized in these ecological zones. Due to the lack enough fields measured forest biomass and
low resolution forest types data, in this study, we just used the united model which ignored the climate
factors and forest types.

As shown in Figure 5, most of predicted and field biomass has good linear relationship, while there
is a small quantity of points scattered out across the isoline. Although the validation result of forest
biomass shows that our allometric metrics are efficient, some uncertainties occurred in the validation
(Figure 5). The scattered points might be caused from the combination of several influenced factors,
such as forest biomes, different measurement rules of field biomass data from various studies, and the
propagation of errors from tree heights and biomass estimation models. The following points could be
improved for higher precision of the forest biomass estimation in the future. Firstly, more effective
geostatistics interpolation methods should be used for obtaining finer climate factor raster data,
especially in the mountain areas which lack enough meteorological stations. Secondly, it is necessary
to collect more field measured forest plots data, including the tree heights, aboveground biomass, root
biomass, and total biomass. Finally, the allometric models for estimating aboveground biomass from
tree heights and predicting root biomass from aboveground biomass should be respectively developed
in the ecological zones which are divided based on the climate data and the forest type data.

5. Conclusions

We used two tree height models to obtain the forest tree heights map of NE China by combining
GLAS data, meteorological data and optical remote sensing data. Based on the collected field measured
forest plots data, we developed the allometric models for predicting the aboveground biomass and
root biomass. Then, the forest total biomass map was generated by summing the aboveground biomass
and root biomass.

The assessment of the three forest biomass map using field measured forest plots data was
performed separately. At the forest sites level, high correlation appeared in the estimation results of
aboveground biomass and total biomass (R2 = 0.695, RMSE = 50.94; R2 = 0.699, RMSE = 55.86).
The estimation results of root biomass showed, relatively, a slightly lower correlation with the
field measured data (R2 = 0.695, RMSE = 12.22). In summary, this study demonstrated that forest
aboveground biomass and root biomass can be estimated with relatively high precision by combining
satellite LiDar data, MODIS data, and climate data in regional scale.

This study highlights the potential to estimate forest total biomass in conjunction with novel and
efficient methods, such as ANN tree heights metrics, ASRL-based tree height models and allometric
scaling relationships among tree heights, forest aboveground biomass, and root biomass. Combinations
of these techniques were able to quantify the forest structure parameters and biomass. Application of
the approach proposed in this study at the national scale would provide an opportunity to understand
carbon sinks of all forest land in China. These relatively fine-scaled, spatially-explicit forest biomass
maps can provide critical information for forest carbon cycle studies and forest resource management.
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