Table S1. Studies reviewed and key parameters collected.

Source	Location	Sensor type	Sensor name	R ²	Forest type
[1]	Hawaii, USA (Hawaii Experimental Tropical Forest)	DRL	Custom Optech 3100EA	0.78	Tropical Rainforest
[2]	Hawaii, USA (Hawaii Active Volcanoes Observatory)	DRL	Custom Optech 3100EA	0.92	Evergreen (Firetree, 'ohi'a Iehua)
[3]	Peru (Peruvian Amazon)	DRL	Custom Optech 3100EA	0.85	Tropical wet Forest
[4]	Madagascar (northern and southern)	DRL	Custom Optech 3100EA	0.88	Evergreen humid tropical forest, deciduous "dry" forests/shrubland
[5]	Colombian Amazon (Southern Colombia)	DRL	Custom Optech 3100EA	0.91	Tropical rainforest
[6]	Uganda, Tanzania, the Democratic Republic of Congo, Brazil, Ecuador, Colombia, Bolivia, Vietnam, Indonesia	GLAS	GLAS	0.83	Tropical forest
[7]	Costa Rica (La Selva Biological Station)	DRL	FLI-MAP	0.90	Tropical wet Forest
[8]	Antimary State Forest, Acre State, Western Brazilian Amazon	DRL	Optech ALTM 3100EA	0.72	Dense to open tropical forests, with frequent lianas, palm trees, bamboos
[9]	Costa Rica (La Selva Biological Station)	FRL	LVIS	0.93	Tropical wet Forest
[10]	Panama (Barro Colorado Island)	FRL	LVIS	0.66	Lowland tropical moist forest
[10]	Costa Rica (La Selva Biological Station)	FRL	LVIS	0.89	Tropical wet Forest
[11]	Santarem, Brazil (Tapajos National Forest)	GLAS	GLAS	0.73	Tropical broadleaf
[12]	Injune, Australia (southeast central Queensland)	DRL	Optech ALTM 1020	0.90	White cypress pine, Silver- leaved ironbark, Smooth-barked apple, Brigalow, Poplar box
[13]	Panama (Barro Colorado Island)	DRL	Custom Optech 3100EA	0.85	Tropical moist forest

[14]	Indonesia (Central	LMS	Riegl LMS-	0.75	Tropical peat swamp
	Kalimantan)		Q560 i		
[15]	Brunei Darussalam (Ulu	-	-	0.92	Tropical rain forest
	Temburong National Park)				
[16]	Ghana (southwest)	DRL	Optech Ltd.	0.60-	Moist evergreen and moist
			ALTM GEMINI	0.72	semi-deciduous forest
[17]	French Guiana	GLAS	ICESat	0.54	Tropical forest
[18])	Barro Colorado Island	DRL	Optech ALTM	0.68	Tropical rain forest
	(Panama Canal)		3100		
[19]	Ecuador (Yasuní National	DRL	Optech ALTM	0.94	Lowland Amazonian forest
	Park)		Gemini		

DRL = Aircraft discrete return Lidar; GLAS = Geoscience Laser Altimetry System; FRL= Full return Lidar; LMS= laser measurement systems.

References

1. Asner, G. P.; Flint Hughes, R.; Varga, T. A.; Knapp, D. E.; Kennedy-Bowdoin, T. Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest. *Ecosystems* **2009**, *12*, 261–278, DOI:10.1007/s10021-008-9221-5.

 Asner, G. P.; Martin, R. E.; Knapp, D. E.; Kennedy-Bowdoin, T. Effects of Morella faya tree invasion on aboveground carbon storage in Hawaii. *Biol. Invasions* 2010, *12*, 477–494, DOI:10.1007/s10530-009-9452-1.
Asner, G. P.; Powell, G. V. N.; Mascaro, J.; Knapp, D. E.; Clark, J. K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; Secada, L.; Valqui, M.; Hughes, R. F. High-resolution forest carbon stocks and emissions in the Amazon. *Proc. Natl. Acad. Sci.* 2010, *107*, 16738–16742, DOI:10.1073/pnas.1004875107.

4. Asner, G. P.; Clark, J. K.; Mascaro, J.; Vaudry, R.; Chadwick, K. D.; Vieilledent, G.; Rasamoelina, M.; Balaji, A.; Kennedy-Bowdoin, T.; Maatoug, L.; Colgan, M. S.; Knapp, D. E. Human and environmental controls over aboveground carbon storage in Madagascar. *Carbon Balance Manag.* **2012**, *7*, 2, DOI:10.1186/1750-0680-7-2.

5. Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Phillips Bernal, J. F.; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F. High-resolution mapping of forest carbon stocks in the Colombian Amazon. *Biogeosciences* **2012**, *9*, 2683–2696, DOI:10.5194/bg-9-2683-2012.

6. Baccini, A.; Goetz, S. J.; Walker, W. S.; Laporte, N. T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P. S. A.; Dubayah, R.; Friedl, M. A.; Samanta, S.; Houghton, R. A. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. *Nat. Clim. Change* **2012**, *2*, 182–185, DOI:10.1038/nclimate1354.

7. Clark, M. L.; Roberts, D. A.; Ewel, J. J.; Clark, D. B. Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors. *DESDynl VEG-3D Spec. Issue* **2011**, *115*, 2931–2942, DOI:10.1016/j.rse.2010.08.029.

 d'Oliveira, M. V. N.; Reutebuch, S. E.; McGaughey, R. J.; Andersen, H.-E. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. *Remote Sens. Environ.* 2012, *124*, 479–491, DOI:10.1016/j.rse.2012.05.014.
Drake, J. B.; Dubayah, R. O.; Clark, D. B.; Knox, R. G.; Blair, J. B.; Hofton, M. A.; Chazdon, R. L.; Weishampel, J. F.; Prince, S. Estimation of tropical forest structural characteristics using large-footprint lidar. *Recent Adv. Remote Sens. Biophys. Var.* 2002, *79*, 305–319, DOI:10.1016/S0034-4257(01)00281-4.
Drake, J. B.; Knox, R. G.; Dubayah, R. O.; Clark, D. B.; Condit, R.; Blair, J. B.; Hofton, M. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. *Glob. Ecol. Biogeogr.* 2003, *12*, 147–159, DOI:10.1046/j.1466-822X.2003.00010.x. Lefsky, M. A.; Harding, D. J.; Keller, M.; Cohen, W. B.; Carabajal, C. C.; Del Bom Espirito-Santo, F.; Hunter, M. O.; de Oliveira, R. Estimates of forest canopy height and aboveground biomass using ICESat: ICESAT ESTIMATES OF CANOPY HEIGHT. *Geophys. Res. Lett.* 2005, *32*, n/a-n/a, DOI:10.1029/2005GL023971.
Lucas, R. M.; Lee, A. C.; Bunting, P. J. Retrieving forest biomass through integration of CASI and LiDAR data. *Int. J. Remote Sens.* 2008, *29*, 1553–1577, DOI:10.1080/01431160701736497.

13. Mascaro, J.; Asner, G. P.; Muller-Landau, H. C.; van Breugel, M.; Hall, J.; Dahlin, K. Controls over aboveground forest carbon density on Barro Colorado Island, Panama. *Biogeosciences* **2011**, *8*, 1615–1629, DOI:10.5194/bg-8-1615-2011.

14. Schlund, M.; von Poncet, F.; Kuntz, S.; Boehm, H.-D. V.; Hoekman, D. H.; Schmullius, C. TanDEM-X elevation model data for canopy height and aboveground biomass retrieval in a tropical peat swamp forest. *Int. J. Remote Sens.* **2016**, *37*, 5021–5044, DOI:10.1080/01431161.2016.1226001.

15. Kim, E.; Lee, W.-K.; Yoon, M.; Lee, J.-Y.; Son, Y.; Abu Salim, K. Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei. *Forests* **2016**, *7*, 259, DOI:10.3390/f7110259.

16. Vaglio Laurin, G.; Puletti, N.; Chen, Q.; Corona, P.; Papale, D.; Valentini, R. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. *Int. J. Appl. Earth Obs. Geoinformation* **2016**, *52*, 371–379, DOI:10.1016/j.jag.2016.07.008.

17. Fayad, I.; Baghdadi, N.; Guitet, S.; Bailly, J.-S.; Hérault, B.; Gond, V.; El Hajj, M.; Tong Minh, D. H. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. *Int. J. Appl. Earth Obs. Geoinformation* **2016**, *52*, 502–514, DOI:10.1016/j.jag.2016.07.015.

18. Ferraz, A.; Saatchi, S.; Mallet, C.; Meyer, V. Lidar detection of individual tree size in tropical forests. *Remote Sens. Environ.* **2016**, *183*, 318–333, DOI:10.1016/j.rse.2016.05.028.

19. Molina, P.; Asner, G.; Farjas Abadía, M.; Ojeda Manrique, J.; Sánchez Diez, L.; Valencia, R. Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR. *Remote Sens.* **2015**, *8*, 9, DOI:10.3390/rs8010009.