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Abstract: Reducing emissions from forests—generating carbon credits—in return for REDD+ (Reducing
Emissions from Deforestation and forest Degradation) payments represents a primary objective
of forestry and development projects worldwide. Setting reference levels (RLs), establishing a
target for emission reductions from avoided deforestation and degradation, and implementing an
efficient monitoring system underlie effective REDD+ projects, as they are key factors that affect
the generation of carbon credits. We analyzed the interdependencies among these factors and their
respective weights in generating carbon credits. Our findings show that the amounts of avoided
emissions under a REDD+ scheme mainly vary according to the monitoring technique adopted;
nevertheless, RLs have a nearly equal influence. The target for reduction of emissions showed a
relatively minor impact on the generation of carbon credits, particularly when coupled with low RLs.
Uncertainties in forest monitoring can severely undermine the derived allocation of benefits, such as
the REDD+ results-based payments to developing countries. Combining statistically-sound sampling
designs with Lidar data provides a means to reduce uncertainties and likewise increases the amount
of accountable carbon credits that can be claimed. This combined approach requires large financial
resources; we found that results-based payments can potentially pay-off the necessary investment
in technologies that would enable accurate and precise estimates of activity data and emission
factors. Conceiving of measurement, reporting and verification (MRV) systems as investments
is an opportunity for tropical countries in particular to implement well-defined, long-term forest
monitoring strategies.

Keywords: reducing emissions from deforestation and forest degradation; MRYV; Lidar; remote
sensing; carbon accounting systems; reference emission level; uncertainty; sensitivity analysis

1. Introduction

Since the first REDD-style project (the Noel Kempff Mercado Climate Action Project) initiated in
1997, the focus of REDD+ has broadened from the avoidance of deforestation as the “single largest
opportunity for cost-effective and immediate reductions of carbon emissions” [1] to a holistic concept
for sustainable development. Protecting biodiversity, enhancing local livelihoods, strengthening local
people’s rights, and improving forest governance are some of the widely discussed co-benefits that
are embedded in REDD+ activities. However, the primary focus of REDD+ remains the reduction
of carbon emissions associated with deforestation and forest degradation. For countries adopting a
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REDD+-regime, the most significant asset is to receive financial rewards for reducing emissions and
enhancing carbon sinks. Results-based payments—also known as “carbon benefits”—constitute a key
element that distinguishes REDD+ from other initiatives [2]. To generate payments, for any national or
sub-national REDD+ initiative, the associated emission reductions have to be assessed. This includes
the assessment of both changes of forest area (activity data) and changes of forest carbon stocks
(emission factors). Activity data and emission factors have to be estimated by countries participating
in REDD+ through the implementation of reliable measurement, reporting and verification (MRV)
systems [3,4].

MRYV systems have to be implemented in a challenging environment of reliable estimates on the
one hand and of adequate assessment costs on the other. The reliability of any MRV system is driven
by the quality of remotely sensed data, the intensity of in-situ assessments (i.e., sample size) and the
soundness of models utilized, and is, thus, directly linked to cost. Consequently, increasing reliability
is necessarily associated with increasing cost. Thus, the development and implementation of any MRV
system can be considered as an optimization problem: which MRV-design results in the highest level
of reliability for a given cost, or in the lowest cost for a desired level of reliability.

The Warsaw framework for REDD+ requires a country to implement a combined assessment
approach that utilizes remote sensing data and in-situ assessments [4]. Associating field data and
remote sensing provides an efficient solution to monitor the state and changes of forest carbon
stocks [5,6]. Remote sensing of forest biomass involves different sensor types (e.g., Lidar, optical and
radar), platforms (air- and space-borne), and processing techniques (e.g., unsupervised, supervised,
and hybrid classification approaches) which substantially differ with respect to costs and performances.
Even though these techniques gradually become more accessible, their implementation is still not
viable, especially in vast tropical forest areas, due to poor investments in capacity building [7]. Overall,
countries participating in REDD+ are developing their forest monitoring capacities, however, national
forest inventories still need to be further improved [7,8]. The critical lack of funding in the REDD+
system restricts the possibilities to build capacities and to utilize high-resolution remote sensing
sensors [9]. Although monitoring costs may be relatively small with respect to other categories of costs,
they directly affect the success of REDD+ mechanisms; an effective monitoring system will reduce
uncertainties and, as a result, eventually generate larger results-based payments [10].

From this perspective, a country may consider REDD+ as an investment providing long-term
benefits and that will produce returns, and thus, exploit the opportunity that would allow a country
to establish a monitoring system. Investing in sound, recurrent MRV systems critically determines
a country’s potential to generate results-based payments. Moreover, such investments can support
forest policies reforms and promote sustainable forest management. REDD+ can be an opportunity
for tropical countries to establish a better forest-related institutional framework and to improve
management of forests at different levels [11,12].

Besides uncertainties in carbon estimates, other variables affect the amount of accountable
carbon credits. A decisive role is played by the reference levels (RLs) and the planned reduction
of business-as-usual emissions as a result of REDD+ activities. The reduction of past emissions rates
results from the implementation on the ground of the five REDD+ mitigation actions (reduction of
emissions from deforestation and forest degradation, conservation of forest carbon stocks, sustainable
management of forests and enhancement of forest carbon stocks). A country should establish a target
of emissions reduction according to its capacity to plan and execute the REDD+ activities and to the
national RL [3]. The reduction of emissions actually determines the real removal of CO; from the
atmosphere; however, payments depend on the generation of measurable, monitored, and verified
tons of CO, emissions and removals.

The RLs, which are used as business-as-usual baselines, benchmark the quantity of emission
reductions and removals—-due to REDD+ activities-that can be estimated to evaluate progress of
countries participating in REDD+. Therefore, the quantity of avoided emissions against the agreed RL
stipulates the total amount of accountable carbon credits. Establishing reliable RLs (used throughout



Forests 2017, 8, 271 30f18

this paper as synonym for “REDD baselines”) is crucial and challenging. Commonly used methods for
establishing RLs include:

e historical rates of deforestation, degradation and emission factors, also using adjustment factors
to allow inclusion of social and economic variables (named “national circumstances”) [13], and

e  projected deforestation and forest degradation rates using land-use-change models [14,15].

The debate on the implications of different methods is intense; the common view is that the
selected RL method shapes the success of REDD+ and it should be selected according to the local
circumstances, e.g., specific capabilities and data availability [16,17].

This paper analyzes the links between financial resources invested in MRV systems, the achievable
reliability and the resulting amount of accountable carbon credits. Furthermore, in a simulation study,
we investigated implications of different (i) reference levels, (ii) emission reductions due to REDD+
and (iii) uncertainties in emissions estimates, on the generation of carbon credits and the consequent
potential financial benefits from alternative MRV systems. In addition, we studied investments in
Lidar-based monitoring systems as a cost-efficient option for REDD+ projects.

1.1. State of the Art

1.1.1. Model-Assisted Design-Based AGB Estimation Using Remote Sensing

Integrating ground-based observations with remotely sensed data is the most cost-efficient way
to monitor the national state of forests [5]. Remotely sensed data—calibrated over field measurements—
contribute to improve precision and to provide spatially explicit information [18]. When remote
sensing data are used as auxiliary information, and are incorporated in a design-based framework by
using a model, the resulting approach is called design-based model-assisted, or simply model-assisted
approach [19]. In model-assisted approaches, auxiliary data from remote sensing are incorporated
in the estimation process through regression models; this reduces the design variance of the field
sample-based estimator of the population’s total aboveground biomass (AGB). When auxiliary data are
highly correlated with AGB, the cost-efficiency of the estimation could be improved [6]. Particularly,
for large-scale monitoring activities (e.g., at national and sub-national levels), the combined approach
(i.e., remote sensing and field measurements) reduces costs while ensuring accuracy and reliability [20].
Optical sensors, Radar, and Lidar remote sensing techniques are the main sources of remotely sensed
data used to extract information for forest biomass [21,22]. Depending on circumstances and needs,
one sensor type can be more suitable than another: there is no “one-sensor-fits-all” approach [23].
However, Lidar performance is significantly better than passive optical or Radar sensor used alone [21].
The coefficient of determination, R?, provides a measure of (linear) regression performance, indicating
the amount of variance explained by the model, and expressing the correlation between the auxiliary
variable(s) and the variable(s) of interest. Therefore, the R? is also a measure of the contribution of
remotely sensed data to forest biomass estimation, i.e., it is related to the reduction of standard error
achievable by linking remotely sensed data to pure in-situ based estimation. A higher R? value means
better precision of biomass estimation.

1.1.2. Cost-Efficiency of Lidar-Based Methods

It is widely accepted that a combined Lidar and field-campaign approach provides precise estimates
of AGB. However, the actual cost-effectiveness of such an approach is still intensively discussed. Due to
its substantial cost, Lidar is still considered a hard alternative for large-scale forest monitoring in most
tropical countries [24]. The application for large-scale assessments at successive occasions in tropical
regions is apparently still far from being operational, and many countries may see the associated cost
as a major obstacle for a routine application. However, only few studies have analyzed the actual
trade-offs between efficiency and costs associated with the use of Lidar in carbon estimation [25,26].
There is uncertainty whether large investment in monitoring activities will result in higher returns
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through REDD+ results-based payments. Assessing the cost-effectiveness of model-assisted estimation
of AGB using alternative remotely sensed data as auxiliary data will help to understand the actual
feasibility and the major constraints for the design and implementation of targeted MRV systems.

1.1.3. Addressing Uncertainties in REDD+: the Reliable Minimum Estimate

Quantifying uncertainties is of primary importance in the context of REDD+. The Intergovernmental
Panel on Climate Change (IPCC) suggests the use of the reliable minimum estimate (RME) to quantify
uncertainties in the estimates of emission factors and activity data [27]. Adopting the principle
of conservativeness in REDD+ estimates was proposed by Grassi et al. [28] in order to “address
the potential incompleteness and high uncertainties of REDD estimates, and thus to increase their
credibility”. The RME reduces the risk of overestimating the emissions reduction derived by a REDD+
project, which could lead to an overcompensation of emission reduction. The RME is defined as the
difference between the lower limit of the confidence interval at the reference period (time 1) and
the upper limit of the confidence interval at the commitment period (time 2) (Figure 1). The RME is
the minimum quantity to be expected with a given probability and is a conservative way to handle
uncertainties, related to all error types (e.g., sampling errors, measurement errors and modeling errors).
While on the one hand the RME supports the credibility of estimates, its efficacious application depends
on several factors, such as baseline emissions and the method used to set such baselines [29,30].

(a)

Net emission reduction

L T2 Time

(b)

Carbon stock

..+ Debit: no emission reduction

RME — =%
T1 T2 Time

Figure 1. Projections of carbon emission under a business-as-usual baseline and a REDD+ scenario;
In the upper figure (a) a positive reduction of emissions is shown; In (b) the projected REDD+ scenario
emission reduction is smaller and the magnitude of the total error is larger; this condition leads to no
improvement over the business-as-usual scenario. RME is reliable minimum estimate.

2. Materials and Methods

In the first part of the study, we estimated the aboveground carbon based on field-plot data from
the national forest inventory of Puerto Rico. Starting from the forest inventory data, we simulated the
integration of remotely sensed auxiliary data by adopting a model-assisted approach and a stratified
sampling with optical data. In the second part of the study, we evaluated and compared a set of
hypothetical scenarios, which differ for RLs, emission reductions, monitoring accuracy—derived from
the first part—and costs. Finally, we analyzed implications of the various scenarios on the amount of
carbon credits generated from reducing forest carbon emissions.

2.1. Data Used

Two main sources of data were used: (i) forest inventory data from Puerto Rico and (ii) qualitative
and quantitative data on the use of Lidar and passive optical sensors for biomass estimation extracted
from peer-reviewed articles (Table S1).
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2.1.1. Field Data

The field plot data were collected during the third forest inventory of Puerto Rico [31,32].
The forested life zones in Puerto Rico are classified as subtropical dry, subtropical moist, subtropical
wet and rain, subtropical lower montane wet, and subtropical lower montane rain. Totally 956
plots were sampled in the whole country, of which 288 were located within forested areas. In this
study, we only considered plots located in moist forests and in wet and rain forests, which were
141 and 82, respectively (Table 1). These two forested life zones would be the most suitable target
areas for local REDD+ projects, as they are the most important in terms of area covered and carbon
content. The permanent sampling unit installed is a cluster of four subplots, within which all trees
with DBH > 2.5 cm were measured [31]. Each subplot has a radius of 7.3 m, resulting in a sample
plot area of 0.067 ha. We did not carry out any biomass and carbon assessment for each individual
tree. For the simulations, we utilized aggregated plot level information, as reported in the forest
inventory. Accordingly, the sample mean of the aboveground biomass (Equation (1)), the sample
variance (Equation (2)), and the relative standard error (Equation (3)) were estimated as follows:

g= Lot <1>

o(p) = Z?—(l,f’f o A @
SEj = (W) % 100 3)
SD; = Z?:1|Zi—]?| n

where y; is an observation on field plot, n is the sample size and SD is the standard deviation. Table 1
summarizes key statistics of interest for this study.

Table 1. Summary statistics for carbon stock in aboveground biomass of living trees with DBH > 2.5 cm.

Forest Type Plot (n) Mean (tC ha™1) Standard Error
Moist forests 141 56.84 4.77
Wet and rain forests 82 82.35 7.52
Total 223 66.22 4.17

Data are from third forest inventory of Puerto Rico. Measurement and model error are not considered. DBH:
diameter at breast height.

2.1.2. Lidar Data Extraction

Field estimates of aboveground carbon density were used as a ground reference dataset to assess
the potential gain in precision through the adoption of Lidar. The reduction in variance achievable
with the integration of the regression estimator was assessed estimating the variance of the regression
estimator:

Burs(freg) = S3(1 - R?) ()

freg is the regression estimator of Y, 05 is the design variance estimator of freg under the simple random
sampling, and S; is the variance of 7.

No Lidar flight was conducted for the purpose of this study. We surveyed twenty refereed papers
that used AGB estimation with Lidar sensors in tropical and subtropical rainforest biomes. We did not
aim to provide a comprehensive review of Lidar applications in tropical forests; rather we collected
sufficient information to provide our analysis with realistic and reliable estimates. For each paper we
recorded, inter alia, the coefficient of determination (R?), and used it to evaluate the contribution of
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remote sensing techniques to forest AGB and carbon densities prediction. The surveyed papers are
listed in Table S1. The R? values for the reviewed studies range from 0.54 to 0.94, with an approximate
mean of 0.8 and standard deviation of 0.11 [33-51]. This means that Lidar-based auxiliary variables
correlate well with the field-based data. Firstly, we estimated the aboveground carbon stock based on
field measurements alone and the variance (as in Equation (2)); secondly, we simulated the potential
improvement in precision gained by using Lidar, assuming an R? of 0.8 by applying Equation (5).

2.1.3. Cost of Carbon Monitoring

Trying to approximate the exact cost of Lidar is a difficult task: it varies according to several
factors. Moreover, most studies do not report costs in forestry applications. Lidar acquisition cost
mainly depends on the type of platform used, area coverage and pulse density (also called pulses,
points, returns, and echoes) [52]. Flight speed determines pulse density, which affects the accuracy of
the forest structure metrics detected. Therefore, pulse density—i.e., speed and time of the flight—and
accuracy are tightly related. The relationship between these two is not linear: they increase constantly,
and beyond a certain pulse density level, accuracy remains nearly the same [52,53]. Published studies
have demonstrated that a relatively modest reduction of laser pulse density had no effect on the
precision of stem volume estimates [54,55]. Also in tropical areas, studies using pulse densities varying
from 25 pulses/m? [40] to approximately 1.5 pulses/m? [20] reached similar results in terms of biomass
prediction performance; however, several other factors can affect prediction performance, e.g., forest
structure, terrain morphology, and models used. Overall, high pulse densities may not be necessary
for estimation of forest biomass. Thus, relatively low-cost Lidar-data acquisition campaigns can lead
to acceptable levels of accuracy for carbon stock estimates, and adopting low-pulse-density airborne
laser scanner data for estimation of forest attributes at stand level could be cost efficient in forest
inventorying [56]. Finally, a great impact on per unit area cost is attributable to economies of scales:
the per-hectare costs decrease as the spatial extent of the flight increases.

We collected cost estimates from five studies and established accordingly two sets of costs to
use in our study (Table 2). To show the effect of costs on aboveground carbon density monitoring in
REDD+ context, we considered two plausible alternative costs of monitoring. In the first alternative,
we assumed a smaller area inventory, typical for a REDD+ project. As this scenario implies higher
costs per unit area, we selected expenses of $5000 ha~! for field-based sampling and $8 ha~! for Lidar.
In the second scenario we assume a large forested area as in regional or national REDD+ monitoring;
in this case, considering the associated benefits from economies of scale, the per hectare costs are set to
$500 and $0.5 ha~!, for field-based sampling and Lidar, respectively.

Table 2. Lidar acquisition and processing costs for forest monitoring.

Source Spatial Resolution or Lidar Coverage or Acquisition and Processing
Pulse Density Project Area (ha) Costs (in US$)
Hummel et al. [57] 6.3 points/ m? (mean pulse density) 12,650 5.6-9.3 US$ ha~!
-1
Patenaude etal. [58] - 2,800,000 415US$ ha” " (only

acquisition costs)

90 cm (average horizontal distance 1
Wulder etal. [59] between Lidar returns) 5CND$ ha

4-5US$ ha~! (plus additional

Bottcher et al. [60] - 13,600 160 h processing time)
Asner et al. [20] 4 points/m? (mean pulse density) i\;;;ll;))nal—scale 0.01 US$ ha—1
Asneretal. 2011 [61]  -0_/0 KHz (pulse repetition 253,744 0.16 US$ ha!

frequency)

GOFC-GOLD [62] - - 0.5-1%$ha~!
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2.2. Simulation Approach

We tested the adoption of two different approaches for MRV: the first approach assumes the use
of Lidar data and the adoption of a model-assisted technique; the second approach utilizes stratified
sampling with passive optical data. We evaluated costs-error implications of both approaches in
accounting avoided emissions from deforestation and forest degradation in a REDD+ context under
several potential scenarios. This resulted in three main methodological approaches and associated
research questions:

(1)  We created a series of subsamples from the 223 plots via bootstrapping. We simulated sampling
with replacement for each sample size with 1000 iterations, starting from a sample size of 20 plots
and increasing the size by one unit at a time, up to 223 plots. This resulted in a total of 204 different
sample sizes and 204,000 iterations. Subsequently, the variance and the relative standard error
of the estimate of aboveground carbon density (i.e.,  in Equation (1)) were calculated for each
iteration. Finally, the relationship between the relative standard error and the number of field
plots was assessed.

(2) Weinvestigated, by a scenario approach, how uncertainties expressed by the relative standard
error obtained in step 1 determine the accountable avoided emissions. Each scenario is
characterized by a different combination of (i) the accuracy of carbon monitoring (expressed
by the relative standard error), (ii) the baseline carbon emissions from deforestation and forest
degradation (i.e., RLs), and (iii) target for emission reductions as a result of REDD+ activities.
The errors associated with the estimation of carbon stock changes were linked to the potential
generation of carbon credits. Table 3 presents details of the scenarios implemented.

(3) Finally, the results of steps 1 and 2 were combined with a set of realistic monitoring costs.
For the alternative monitoring systems, as presented in step 2, different levels of uncertainty and
cost frameworks were realized and the achievable amounts of accountable avoided emissions
calculated. This allows to study the cost-efficiency of alternative MRV-designs.

The above-described three steps were considered for two alternative monitoring approaches:
(i) model-assisted estimation with Lidar remote sensing and (ii) stratified sampling with passive optical
remote sensing. For each approach, the effect on the accountable generation of carbon credits was
studied. In the model-assisted simulation, we assumed the availability of an error-free land-cover
map, which allowed stratifying total land area in forest and non-forest. The estimate of the area of a
certain forest type was based on the proportional number of sample plots located on that forest type.
We simulated the integration of the field data and Lidar data through a model-assisted regression
estimator, assuming an 7 of 0.8. Lidar strips were assumed to be the same extension of the field plots.

Table 3. The defined set of values for the variables affecting the avoided emissions in the simulation
study of Puerto Rico forestry data.

Relative Standard Baseline Emission Rate (or Emission Reduction Under
Error (%) Reference Level) (%) REDD+ (%)

1.2-4 1 30

7-28 3 50
5 75
8
10
20

The relative standard error values are based on the results of the simulation study (see Figure 2).

In the simulation of stratified sampling, we assumed a combination of field assessments and
remotely sensed optical data, which were assumed to be available wall-to-wall, providing auxiliary
information for stratification. The alternatives are in line with Dec 14/CP 15 [63], as they utilize a
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combination of remote sensing for activity data and in-situ assessments for emission factors. The effect
of the inclusion of different types of passive optical data on the accountable avoided emissions was
evaluated considering two levels of classification errors: 3% and 20%. For combining uncorrelated
uncertainties in area change and in carbon stock deriving from classification and sampling error,

respectively, Equation (6) was used [64]:
Etot = \/E3 + E3 (6)

where E; is the classification error and E; is the sampling error.

2.3. Sensitivity Analysis

Using results from the simulation study, the three variables affecting the avoided emissions were
ranked according to their impact on the generation of carbon credits. In the sensitivity analysis, the
“net avoided emission” is our variable of interest—i.e., the dependent variable—and is included as
a function of three independent variables: standard error, RL, and target for emission reductions
as a result of REDD+ activities. To describe and quantitatively assess the relationships between
independent and dependent variables, we performed the Partial Rank Correlation Coefficient [65]
using the sensitivity package of R, version 3.2.1 [66]. The Partial Rank Correlation Coefficient is based
on regression analysis and measures the strength of the correlation between an input and an output
variable, after removing any effect due to correlation of the other input variables. It ranges from —1 to
1, where —1 indicates a strong negative, 1 a strong positive, and 0 no correlation.

3. Results

The forest biomass carbon stock estimated from the 223 sample field-plots in the Puerto Rico
forest dataset is 66.54 tons C ha~!. We used this amount as reference measure to conduct the analysis.
Relative standard errors of carbon density estimates decrease with increasing sample size. The relative
standard error achievable with the model-assisted method and with the stratified sampling and passive
remote sensing ranges from 1.5% to 4% and from 7% to 28%, respectively. The introduction of auxiliary
data correlated with the response variable (r? = 0.8) in a model-assisted estimation significantly reduces
the relative standard error (Figure 2).

% o —— Stratified sampling — 20% classification error
5 = —&—  Stratified sampling — 3% classification error
5 g | === Model-assisted (I’ = 0.8)
T T
B o | & R —
@ o~
®
2 o s
= N
8 o T
T T T T
50 100 150 200

Sample plots (n)

Figure 2. Percent standard error versus number of field sample plots in carbon estimates. The black
lines show the error distribution for the estimation based on stratified sampling with passive optical
remote sensing. The red dashed line shows the standard error attainable with a model-assisted
estimation, assuming the adoption of a regression model with a coefficient of determination (12) of 0.8.

Combining the set of values assigned to the three variables that affect the generation of carbon
credits (Table 3), 468 scenarios—i.e., possible permutations—were derived. However, only 52 out of
468 possible permutations had positive net avoided emissions at time 2 using the RME—i.e., generated
carbon credits at the commitment period. It means that for the remaining 416 scenarios, the accountable
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emissions reduction produced by a REDD+ regime is smaller than or equal to the business-as-usual
emission; therefore, they do not generate any carbon credit.

Figure 3 compares the relative standard error versus the accountable emissions reduction using
Lidar data (Figure 3a) and passive optical data (Figure 3b,c). Results in Figure 3 are reported per
hectare as this is the commonly adopted reference area used by scientists, field managers, and
land-management professionals for carbon assessments [67]. The amounts of avoided emissions
under a REDD+ scheme—which can be converted into accountable carbon credits—vary according to
the MRV system adopted. Differences between Figure 3a—c demonstrate the effect of incorporating
optical and Lidar-based auxiliary data in AGB estimation: the low relative standard error achieved
under a model-assisted approach (Figure 3a) allows generating larger amounts of accountable avoided
emissions. For example, under a model-assisted approach, credits can be generated even if the baseline
emission rate is relatively low (e.g., 3%); conversely, using passive remote sensing, the minimum
emission rate that would allow carbon credits generation is 20% (Figure 3b).

Larger amounts of credits are generated for larger quantities of baseline emission rates and
emission reductions. Common to all scenarios is that when the baseline emission rate is 1% no carbon
credit is generated (for that reason it is not displayed either in Figures 3 and 4). For low RLs (e.g., <10%),
the accountable avoided emissions slightly vary as a function of emissions reduction. However, as the
baseline emission rate increases, the accountable avoided emissions vary to a larger extent as emissions
reduction change. This, concurring with findings from the sensitivity analysis (see last paragraph
of Section 3), this demonstrates that the emission reduction has a relatively minor impact on the
generation of carbon credits, particularly when the baseline emission rates are low.

While Figure 3 shows per-hectare estimates, Figure 4 shows results for forested life zones
considered in the study, i.e., Puerto Rico’s moist forests, and wet and rain forests. Figure 4, which
displays only the results of the model-assisted simulation, compares the cost of carbon monitoring
and the accountable emission reductions generated for the respective costs. We did not include the
simulation of stratified sampling with optical data in the analysis comparing monitoring costs and
total avoided emissions, since there is no generation of carbon credits under such an approach, unless
the classification error is 3% and the emission rate is above 20%. In fact, the simulation of stratified
sampling with optical data that assumes a low classification error (3%) facilitates the generation of
carbon credits only for emission rates above 20% (Figure 3b), while, under high classification error
(i.e., 20%) (Figure 3c) no carbon credits would be generated in any of the assumed circumstances.

Figure 4 indicates that large amounts of avoided emissions are reached in all scenarios even
with relatively low monitoring costs, i.e., when the monitoring costs are about $20,000 and $200,000,
for low- and high-monitoring cost, respectively. The latter costs can be considered a turning point:
beyond that, the avoided emissions do not increase significantly. For example, when the emission
rate is 8% and the emissions reduction 50% (green line in the top right graph of Figure 4a), about
560 k tC can be accounted with an approximate cost of $225,000; considering the same circumstance,
increasing the costs by 80% would only increase the accountable carbon by 25%. This trend is common
to all the considered scenarios. It suggests that beyond that turning point, greater investment in
monitoring activities produces a minor reduction of the uncertainties, which does not result in an
efficient generation of carbon credits.

In order to evaluate the viability of an MRV system as an effective investment, we calculated
a fictive carbon-market price for a single ton of carbon that is needed to pay off at least the MRV
costs (Table 4). We divided the total estimated cost of monitoring activities of the Puerto Rico’s forest
biomes considered in this study by the number of accountable avoided emissions (in tons of carbon)
generated in any scenario. It allowed us to estimate the cost spent to monitor each ton of carbon and
thus determine under which settings an MRV-system would be a useful investment. If the market price
for a ton of carbon is higher than the costs reported in the fourth and fifth column, an MRV system
would qualify as a useful investment for the given alternatives.
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Figure 3. Comparison between the accountable avoided emissions versus the relative standard error

achievable adopting three monitoring systems: (a) model-assisted approach with Lidar; (b) stratified

sampling with passive remote sensing considering a 3% classification error; and (c) stratified sampling

with passive remote sensing considering a 20% classification error. The figure shows the monitoring

performances under different baseline emission rates (3%, 5%, 8%, 10% and 20%) and targets of
emission reduction (30%, 50% and 75%). The three values of emission reductions are considered as
percentage of emission reduction with respect to the reference levels. Negative values of avoided

emissions indicate that emissions at t2 (commitment period) are larger than those at t1 (reference

period), taking into consideration the principle of RME.
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Figure 4. Total avoided emissions versus monitoring costs adopting a model-assisted technique.

The figure shows how many tons of carbon can be generated for each alternative scenario and at what

cost in case of high- (a) and low-cost (b) alternative.

Table 4. Price paid for monitoring a single ton of carbon under different emission rates and monitoring

scenarios.
Emission Relative  Emission Cost of Monitoring a Cost of Monitoring a
Rate Standard Reduction  Single Ton of Carbon ($): Single Ton of Carbon ($):
(%) Error (%) (%) Small Area Monitoring Large Area Monitoring

1.25 50 5.6 0.56

3 1.25 75 1.4 0.14

2 75 3.22 0.32

1.25 30 5.6 0.56

1.25 50 1.12 0.11

5 1.25 75 0.56 0.06

2 50 1.61 0.16

2 75 0.46 0.05

3 75 0.41 0.04
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Table 4. Cont.

Emission Relative  Emission Cost of Monitoring a Cost of Monitoring a
Rate Standard Reduction  Single Ton of Carbon ($): Single Ton of Carbon ($):
(%) Error (%) (%) Small Area Monitoring Large Area Monitoring
1.25 30 1.22 0.12
1.25 50 0.51 0.05
1.25 75 0.29 0.03
2 30 2.01 0.2
8 2 50 0.4 0.04
2 75 0.2 0.02
3 50 0.3 0.03
3 75 0.1 0.01
4 75 0.08 0.01
1.25 30 0.8 0.08
1.25 50 0.37 0.04
1.25 75 0.22 0.02
2 30 0.81 0.08
2 50 0.27 0.03
10 2 75 0.15 0.01
3 50 0.15 0.02
3 75 0.07 0.01
4 50 0.17 0.02
4 75 0.05 >0.01
1.25 30 0.29 0.03
1.25 50 0.16 0.02
1.25 75 0.1 0.01
2 30 0.2 0.02
2 50 0.1 0.01
20 2 75 0.06 0.01
3 30 0.1 0.01
3 50 0.04 >0.01
3 75 0.03 >0.01
4 30 0.08 0.01
4 50 0.03 >0.01
4 75 0.02 >0.01

The reported costs also indicate the minimum price that should be paid per each ton of carbon sold in the carbon
market, to cover at least the MRV system costs. The table shows the findings for the model-assisted simulation of
monitoring Puerto Rico’s moist forests, and wet and rain forests with Lidar remote sensing.

The sensitivity analysis allowed assessing the sensitivity of carbon credits generation with respect
to factors’ variation. The generation of carbon credits mostly varies as a function of errors. It confirms
that the reduction of the standard error provides a decisive contribution in generating carbon credits;
the RL has also a significant impact on the final avoided emissions. It is important to note that the
amount of emissions reduction is the element with the smallest impact on the outcome.

4. Discussion

Based on field plot data, derived from the third forest inventory of Puerto Rico, we made a
set of realistic assumptions to investigate the relationships between emission reductions under a
REDD+ regime and some variables affecting such emission reductions. Setting reference levels (RLs),
supplying emission reduction from avoided deforestation and degradation, and implementing an
efficient monitoring system underlie effective REDD+ projects, because these factors determine the
accountable emission reductions, and thus the carbon credits generation. We ranked these factors by
conducting a sensitivity analysis and found that uncertainties in forest monitoring represent the factor
that mainly affects carbon credits generation. Findings highlight the fundamental role of Lidar sensors
in forest carbon monitoring, particularly in REDD+; combining statistical features of forest sampling
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with Lidar data enables a significant generation of carbon credits. Investing in MRV systems based
on statistically-sound sampling designs, with quantifiable precision, and remote-sensing techniques
contributes to reduce uncertainties and to increase the amount of accountable carbon credits that can
be claimed.

Uncertainties in carbon estimates represent the factor that mainly affects the quantification of
accountable emissions reduction and, therefore, can undermine the derived flow of benefits, such as
the results-based payments to developing countries for avoiding deforestation [29,68]. The reduced
uncertainties shown in the model-assisted simulation point out the potential contribution that Lidar
data can give to REDD+ initiatives. Combining space- or air-borne imagery and field assessments
offers an efficient way to monitor and map carbon stock, especially if large areas are considered [69,70].
This combination can have a twofold implication on REDD+ efficiency: for its lower costs of
implementation—particularly in large-scale projects—and for the reduced uncertainties, which have
a positive effect on the generation of measurable tons of reductions in CO, emissions. However,
the efficiency and success of a national monitoring program rely on many elements, which can
be grouped in four general areas of investigation: (i) measurement techniques and data collection;
(ii) data compilation, analysis and processing; (iii) remote sensing techniques; and (iv) information
management techniques [71]. Therefore, planning statistically rigorous sampling designs aimed at
supporting field-measurement campaigns integrated with remote sensing data, is fundamental in
forest inventory, as well as in MRV.

Even though we applied a conservative approach to estimate uncertainties of carbon stock change,
monitoring avoided emissions through a model-assisted technique would enable generation of carbon
credits under relatively low RLs as well. In fact, applying a conservativeness principle for MRV of
carbon emissions—to not overestimate the reduction of emissions—can critically reduce the accountable
amount of carbon credits that can be claimed [29,30]. We used the Reliable Minimum Estimate (RME)
as a method to discount uncertainties, however, the presented results could have been significantly
different if uncertainties were addressed using another method. Pelletier et al. [72] showed that the
degree of conservativeness applied can strongly influence the overall creditable emission reductions,
and stated that downstream discounts (i.e., conservative approaches) should only be applied if the
uncertainties exceed a certain threshold. We used the RME method and did not test other ones
(e.g., the FCPF Carbon Fund Approach, the KP Conservativeness Factors and the CDM Draft Proposal):
comparing alternative approaches to address uncertainties and evaluating the effects on the potential
carbon credits goes beyond the scope of this study but is an important subject for future studies.
Additionally, at present, no internationally standardized regulations exist for the management of
uncertainties in this field.

The relationship between monitoring costs and generation of carbon credits is not linear:
increasing monitoring activities—and so the accuracy-beyond a certain threshold yields slightly larger
generation of carbon credits. In this study, this threshold corresponds to a relative standard error of 2%.
The relatively low error of carbon estimates assumed in this study depends, inter alia, on the biome
homogeneity and the large sample size. However, the error trend simulated under the model-assisted
approach is plausible [33,49]. We provided realistic figures of carbon monitoring costs according
to data reported by the available literature. Clearly, these costs must be considered as indicative
and should be interpreted with care because they might vary substantially from country to country;
case-specific cost-benefit assessments are always essential.

Another critical aspect affecting the successful implementation of REDD+ projects is the method
used to set the RLs. RLs have a larger influence than the actual reduction of emissions on the generation
of carbon credits, and the impact of RLs is almost as important as the approach used to monitor forest
carbon. Findings highlight the crucial role of RLs, and bring a new insight on their effect on the
accountable emissions reduction. The necessity of establishing RLs has been a key issue in the political
agenda. While politicians and scientists have been mostly focusing on evaluating and investigating
feasible, sound and effective methods to setting RLs [17,73,74], the extent to which RLs affect the
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performance of REDD+ projects remains uncertain. What is known is that incorrectly-determined RLs
can generate under- or over-compensation, which would reduce both cost-efficiency and incentive to
reduce emissions through the five REDD+ activities [75]. Sheng et al. [76] presented one of the few
studies (to the best of our knowledge) that analyzes “how rate of carbon emissions from deforestation
and degradation is influenced by underreported emissions caused by asymmetric information and
RLs”. They claim that RLs are essential in the implementation of REDD+ and that overestimating RLs
leads to an increase in actual emissions.

Whether the REDD+ program will support forest carbon as a climate change mitigation strategy
or not will depend on a number of aspects, which differ nationally and regionally. We only considered
some factors that contribute to a successful implementation of REDD+ projects; we are fully aware that
several other variables also have large impacts on the generation of carbon credits and deserve careful
consideration. Our study does not take into consideration all the social, economic and policy aspects,
which may often be of greater importance than technical and scientific matters. Nevertheless, our
findings can represent a basic guidance for countries willing to design an MRV system, and provide
new insights and a better understanding of some key elements that affect carbon credits generation,
and thus results-based payments.

5. Conclusions

We analyzed some key factors underlying effective REDD+ projects and assessed, under various
realistic circumstances, the potential generation of carbon credits. Three key factors mainly involved
in the generation of carbon credits were investigated: defining reference levels, supplying emission
reductions due to REDD+ and designing effective MRV systems. Carbon credit generation significantly
depends on the MRV-system adopted to assess aboveground carbon density, and applying a
model-assisted technique strongly influences the potential generation of carbon credits.

Conceiving of an MRV system as an investment can encourage the implementation of well-defined,
long-term monitoring strategies. Concurring with Pelletier et al. [72] we believe that the results-based
payments could pay-off the necessary investment in technology that would enable an accurate estimate
of activity data and emission factors. However, several barriers hinder fast progress. For example,
finding stable, long-term sources of REDD+ finance remains a key outstanding issue.

In conclusion, we believe that to understand MRV systems as an investment for generating
carbon benefits, a REDD+ market-based architecture is necessary. This architecture would promote
the reduction of emissions and gather the finances necessary to do so [77]. However, concerns
over measurement and monitoring of forest-related activities prevent REDD+ carbon credits to be
exchanged in compliance markets. To address these concerns and create favorable conditions for
a market-based approach, transparent, robust, and consistent carbon accounting rules have to be
established. To achieve low uncertainties in carbon estimates, like those reported in this study,
important investments in MRV should be incentivized. In this connection, knowledge and technology
transfer—such as statistical sampling methods and Lidar—from developed to developing countries
should occur more widely and faster, and international programs (such as REDD+) could effectively
boost innovative monitoring techniques in forest-rich countries [78].

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/8/271/s1,
Table S1: Studies reviewed and key parameters collected.
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