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Abstract: With the development of national-scale forest biomass monitoring work, accurate
estimation of forest biomass on a large scale is becoming an important research topic in forestry.
In this study, the stem wood, branches, stem bark, needles, roots and total biomass models for larch
were developed at the regional level, using a general allometric equation, a dummy variable model,
a mixed effects model, and a Bayesian hierarchical model, to select the most effective method for
predicting large-scale forest biomass. Results showed total biomass of trees with the same diameter
gradually decreased from southern to northern regions in China, except in the Hebei province.
We found that the stem wood, branch, stem bark, needle, root, and total biomass model relationships
were statistically significant (p-values < 0.01) for the general allometric equation, linear mixed model,
dummy variable model, and Bayesian hierarchical model, but the linear mixed, dummy variable,
and Bayesian hierarchical models showed better performance than the general allometric equation.
An F-test also showed significant differences between the models. The R2 average values of the
linear mixed model, dummy variable model, and Bayesian hierarchical model were higher than
those of the general allometric equation by 0.007, 0.018, 0.015, 0.004, 0.09, and 0.117 for the total
tree, root, stem wood, stem bark, branch, and needle models respectively. However, there were
no significant differences between the linear mixed model, dummy variable model, and Bayesian
hierarchical model. When the number of categories was increased, the linear mixed model and
Bayesian hierarchical model were more flexible and applicable than the dummy variable model for
the construction of regional biomass models.
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1. Introduction

Forest biomass plays an important role in regulating global carbon balance to help mitigate the
effects of climate change. With the development of large regional-scale biomass monitoring work,
developing a biomass model for large-scale application has become an important job. In recent
years, many researchers have explored biomass models at national, regional, and global levels [1–4].
Allometric equations were often used to estimate forest biomass in these studies [1,5–8]. The allometric
equations usually had good fit performance and high values of R2, and the variables for prediction of
aboveground biomass, such as tree diameter and height, are easy to measure in the field. However, a
main drawback of these equations is that they produce different results when applied to sites outside
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the geographic allocation where the equations were originally developed [6,9,10]. Several authors
have noted that the problem with the scaling coefficient in allometric equations is variation, which
is dependent on species, tree stage, and site [7,9,11–13]. Case and Hall [3] also found that there was
an increase in prediction error when using allometric equations to estimate tree biomass at different
geographical scales. The crucial problem is how to make biomass models have a wider range of
applicability, and not only meet the accuracy requirements for large-scale biomass estimates, but also
improve local biomass prediction accuracy. The three models for estimating forest biomass, including
the dummy variable model, the mixed effects model, and the Bayesian hierarchical model, provide
possible solutions to this problem.

The mixed effects model is an improvement on the practical statistical techniques when estimating
fixed effect and random effect parameters to reflect the difference between tree and plot, and to improve
the precision of the prediction model [14]. In recent years, the mixed effects model has been widely
used in the field of forestry. Fang and Bailey [15] applied a modified Richards growth function with
nonlinear mixed effects for modeling slash pine dominant height growth with different silvicultural
treatments. Daniel and Michael [16] developed a multilevel nonlinear mixed effects model system for
describing dominant height, basal area, stand density, and volume. Zhang and Borders [17] used the
mixed effects model to improve the precision of tree biomass estimation in the intensively managed
loblolly pine plantations. Trincado and Burkhart (2006) [18] explored a nonlinear mixed effects model to
describe stem taper, which showed that the method increased their prediction flexibility and efficiency.
Fehrmann et al. [19] compared the mixed model with k-nearest neighbor methods in the establishment
of Norway spruce and Scots pine tree biomass models in Finland. The relative root mean square
errors of linear mixed models and k-nearest neighbor methods estimates are slightly lower than those
of an ordinary least squares regression model. The results show that nonparametric methods are
suitable in the context of single-tree biomass estimation. Derek et al. [20] applied the mixed effects
model to develop branch models for white spruce with hierarchical structure data. In short, mixed
effects models have become important tools for modeling tree height, stem taper, branch diameter,
crown, and tree biomass. The Bayesian method is usually used to evaluate ecological models [4,21].
The results of Bayesian analyses with non-informative priors were similar to using parameters and
statistics to fit allometric biomass equations with a classic statistical approach, however, the Bayesian
method with informative priors performed better than the non-informative priors and the classic
statistical approach [22–25]. In recent years, the Bayesian method has been widely used in forestry, for
applications such as diameter distribution [26,27], tree growth [28], individual tree mortality [29,30],
and stand-level height and volume growth models [11]. Zapata-Cuartas et al. [31] used Bayesian
methods to estimate aboveground tree biomass, and obtained a reliable result. Zhang et al. [25]
applied Bayesian methods to estimate Chinese fir tree biomass. When Bayesian methods are applied
to quantify the forest biomass of a geographical location, the problems that occur often involve
variation between different locations, which instead quantifies the hierarchical characteristics of
the source data. The Bayesian hierarchical approach can resolve the problems in fitting the data.
Zapata-Cuartas et al. [31] also concluded that the Bayesian hierarchical model may be an effective
approach to improve biological estimation at a large regional scale.

In regression analysis, the dummy variable was considered as a virtual variable, which usually
takes the values 0 or one [32]. The dummy variable method is commonly used to deal with indicator
or categorical variables, which are involved in all quantitative methods (Tang et al., 2008; Fu et al.,
2012) [33,34]. When the generalized model for a large-scale range is established, the dummy variable
model is also a reliable model. Wang et al. [35] applied the mixed effects model and the dummy
variable method to establish the dominant height model, and concluded that the two methods could be
used to establish a specific parameter and obtained similar results. Fu et al. [34] used the linear mixed
effects model and the dummy variable model to construct compatible single-tree biomass equations at
different scales for Masson pine (Pinus massoniana) in southern China, and found that there were no
significant differences between the results obtained from the two models.



Forests 2017, 8, 268 3 of 19

Larch (Larix spp.), a fast-growing deciduous coniferous tree, is one of the main tree species
used for timber production in China. Because it has a straight stem, better quality timber, and high
commercial value, the planting area and volume for larch plantations in China are approximately
3.14 million ha, 18.4 million m3, respectively [36]. Currently, the larch plantations, not only provide a
large volume of commercial timber, but also play an important role in forest carbon fixation. Therefore,
the goal of this research was to build larch stem wood, branches, stem bark, needle, root, and total
biomass models at the regional level, using a general allometric equation, the dummy variable model,
the mixed effects model, and the Bayesian hierarchical model, to select the most effective method for
predicting large-scale tree biomass.

2. Materials and Methods

2.1. Site Description

The data were collected from six main growth regions of larch plantations in China (Table 1,
Figure 1). The experiment sites in this study covered the main timber production regions of larch
plantations in China.
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Figure 1. The regions where the stem wood, branch, needle, stem bark, root, and total biomass data
were collected. Black dots represent specific locations for data collection, S1 in Hubei Province (30◦48′ N,
110◦02′ E), S2 in Gansu Province (34◦09′ N, 105◦52′ E). S3 in Hebei Province (41◦43′ N, 118◦7′ E). S4 in
Liaoning Province (42◦21′ N, 124◦52′ E). S5 in Heilongjiang Province (46◦32′ N, 129◦10′ E). S6 in Inner
Mongolia (49◦34′ N, 121◦25′ E).
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Table 1. The code and basic featuresof study regions.

Code Site Province Latitude and
Longitude

Climate
Zone

Annual Average
Temperature

(◦C)

Annual
Precipitation

(mm)

Larch
Species

S1 Changlinggang
farm Hubei province 30.48◦ N,

110.02◦ E Subtropics 11.7 1884 Larix
kaempferi

S2 Tianshui city Gansu province 34.09◦ N,
105.52◦ E

Warm
temperate 11 800 Larix

kaempferi

S3 Weichang
county Hebei province 41.43◦ N,

118.7◦ E Temperate 3.3 445 Larix principis-
rupprechtii

S4 Dagujia farm Liaoning
province

42.21◦ N,
124.52◦ E Temperate 6 806 Larix

kaempferi

S5 Mengjiagang
farm

Heilongjiang
province

46.32◦ N,
129.10◦ E

Cold
temperate 2.7 550 Larix olgensis

S6 Wuerqihan
Forestry bureau

Inner Mongolia
province

49.34◦ N,
121.25◦ E

Cold
temperate 2.6 560 Larix gmelinii

2.2. Biomass Data

The biomass data of 360 sample trees from 209 plots were used in this study, which were collected
via destructive sampling from Larch plantations in China between 2009 and 2013. The sample plots
were located in Hubei, Gansu, Hebei, Liaoning, and Heilongjiang provinces and the Inner Mongolia
autonomous region (Figure 1). The data covered the complete period of stand development for timber
production, with stand age ranging from 3 to 45 years. The stem diameter at breast height (DBH),
total height (HT), height to crown base (HCB), and crown width (CW) were recorded for each tree
within the plots. The sample trees were chosen according to the dominant, average, and inferior tree
outside the plot in the stand. Then the sample trees were felled as carefully as possible to minimize
damage to their crowns. The tree height, live crown length, and height of lowest living branch of
the trees were recorded, and subsequently the trees were stripped of their branches. The live crown
was divided into three parts: top, middle, and bottom. From each part, two branches were selected
for further sub-sampling in order to determine fresh and oven-dried biomass ratio. For about half
of the sub-samples, shoots were further sub-sampled by removing all needles from the branches in
order to determine needle to branch biomass ratio. All of the branches were removed and the tree
length was recorded. Each stem was then divided into 1m sections. The fresh weight of each stem
section was measured. From each section, a stem disc (2 cm wide) was taken as a sub-sample in order
to determine the fresh to oven-dried biomass ratio for each stem section. The bark of each stem disc
was removed and the bark to wood mass ratio was determined in the lab. The whole roots were
manually excavated, and were then sorted into root stump, large roots (≥5 cm), medium roots (2–5 cm)
and small roots (≤2 cm). The aboveground stumps that remained after tree felling were included in
the root stump biomass. The fresh biomass of each root diameter class was determined in the field.
Sub-samples of each class were taken and their fresh biomass was determined with an electronic
balance. All sub-samples of branches, needles, stem wood, stem bark, and roots were oven-dried at
80 ◦C until a constant weight was reached (usually within 24–48 h). According to the ratios of fresh to
oven-dried biomass, the total branch, needle, stem wood, stem bark, and root biomass were calculated.
The biomass data of each component in different regions was summarized in Table 2.
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Table 2. Biomass of each larch component (kg tree−1) in six regions in China.

Region Sample Trees Biomass Component Min–Max Mean(S.D.) Region Sample Trees Biomass Component Min–Max Mean(S.D.)

S1 60

branch 0.81–16.97 10.66(0.84)

S4 60

branch 1.88–25.99 10.93(1.09)
needle 0.46–5.7 3.31(0.20) needle 0.77–11.12 3.78(0.53)
stem 1.34–158.47 87.11(9.23) stem 0.82–181.25 68.96(9.78)
bark 0.28–16.97 9.49(0.84) bark 0.26–31.90 9.92(1.41)
root 0.63–42.57 20.46(2.35) root 2.32–50.28 23.59(2.25)
total 3.52–236.53 131.23(13.27) total 7.00–270.73 117.17(14.54)

S2 60

branch 0.92–25.94 8.44(1.03)

S5 60

branch 0.4–26.09 6.28(1.13)
needle 0.47–13.58 3.54(0.4) needle 0.06–7.07 1.64(0.26)
stem 2.42–306.17 78.41(12.24) stem 0.7–236.42 55.96(10.30)
bark 0.66–29.20 8.52(1.09) bark 0.35–22.96 6.47(1.06)
root 0.95–82.85 18.35(2.96) root 0.33–76.23 20.32(3.56)
total 5.44–457.74 117.25(17.25) total 2.2–362.41 90.68(16.07)

S3 60

branch 0.48–27.39 7.01(0.96)

S6 60

branch 0.58–58.13 13.23(2.01)
needle 0.2–8.7 2.28(0.31) needle 0.13–14.65 3.37(0.51)
stem 0.56–204.79 38.75(6.56) stem 1.53–144.4 35.14(5.00)
bark 0.22–20.19 5.65(0.83) bark 0.47–20.68 5.28(0.73)
root 0.23–76.79 13.20(2.33) root 0.41–59.34 11.23(1.81)
total 1.80–337.45 66.89(10.65) total 4.07–276.64 68.25(9.84)
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2.3. Statistical Analysis

2.3.1. General Model

Allometric equations were widely used for estimating biomass [1,2,5,7]. The form of the equation
provides a good balance between accurate predictions and low data requirements by using the most
commonly and easily measured variable, which is DBH. We also used the following allometric equation
as a base model to construct different biomass equations in this study:

Y = aDBHbδ (1)

where Y is the oven-dry weight of the biomass component of a tree, DBH is the diameter at breast
height in cm, δ represents the multiplicative error term, and a and b are parameters.

Equation (1) can be changed into the following linear form by logarithmic transformation:

y = a0 + bx + ε (2)

where: y = lnY, x = lnDBH, a0 = lna, ε = ln δ.

2.3.2. Dummy Variable Model

The general form of the dummy variable model based on Equation (2) is expressed as follows:

y = a0 + ∑ aizi + bx + ε i = 1, . . . . . . , m (3)

where zi is the dummy variable, ai is the corresponding specific parameter of region i, other parameters
are the same as in Equation (2).

2.3.3. Linear Mixed Effects Model

The general form of the linear mixed effects model is as follows [14,32,33]:

yi = Xiβ + Ziui + εi i = 1, . . . . . . , m (4)

where yi is the ni-dimensional response vector for the ith region; β is the p-dimensional parameter
vector for fixed-effects; Xi is the ni × p design matrix for fixed-effects variables; ui is the q-dimensional
region-specific vector of parameters for random effects (only one random effect); Zi is the ni × q
design matrix for random-effect variables (random effect of the ith region); εi is the ni-dimensional
error vector. It is assumed that: E(εi) = E(ui) = 0, Var(εi) = Ri, Var(ui) = Di, Cov(εi, ui) = 0.
Further, it is common to assume that εi and ui are normally distributed and thus: εi ∼ N(0, Ri) and
ui ∼ N(0, Di).

2.3.4. Bayesian Hierarchical Model

Equation (2) could be changed into the following form when the Bayesian hierarchical approach
is used:

yi = (a0 + u0i) + (b + u1i)x + εi (5)

where u0i, u1i are cluster-specific random variables to be predicted and assumed to be N
(
0, σ2

0
)
, and

N
(
0, σ2

1
)
, respectively. εi is assumed to be N

(
0, σ2). Variance, σ2

0 or σ2
1 , measures the between-subject

variability, while σ2 accounts for the within-subject variability for all the regions.
The relevant prior knowledge about the data can be incorporated into Bayesian analyses, which

contrast the classical statistical approach [37]. In the study, we need to choose appropriate prior
distributions for all parameters, including a and b. The prior distributions of a and b (total tree, root,
stem wood, stem bark, branch, and needle) were obtained for 36 biomass equations from six Chinese
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larch publications (Appendix A Table A1) [38–43]. We assume the parameters a and b are distributed as
a bivariate normal distribution. The Bayesian hierarchical model was fitted using the MCMC method
in the R package R2WinBUGS [44].

2.3.5. Model Fitting and Evaluating

The general model, dummy variable model, linear mixed model, and Bayesian hierarchical
approach were used to establish the stem wood, stem bark, branch, needle, root, and total biomass
models. All the models were fitted using the “R3.2.1” software. The following statistics were calculated
to compare the effect of the region-level biomass for larch plantations: prediction determination
coefficient (R2), root mean square error (RMSE), and absolute bias (MAB).

R2 = 1−
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − y)2 (6)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n− 1
(7)

MAB =

n
∑

i=1
|yi − ŷi|

n
(8)

where yi is the observed biomass values, is the arithmetic mean of all observed biomass values, ŷi is
the estimated biomass values based on models, and n is the sample number.

3. Results

In this study, the general biomass model, Equation (2), the dummy variable model, Equation (3),
linear mixed effects model, Equation (4), and the Bayesian hierarchical model, Equation (5), were
used to fit the biomass data on 360 sample larch trees from six regions (S1, S2, S3, S4, S5, S6) in
China, developing the model of total tree, root, stem wood, stem bark, branch, and needle biomass
respectively. Parameter estimates of the models, Equations (2)–(5) are presented in Tables 3–6. The
parameters of each model were statistically significant (p < 0.01), and the parameters of the dummy
variable model, linear mixed effects model, and Bayesian hierarchical model may predict the biomass
of different regions. The residual distributions of the dummy variable model, linear mixed effects
model, and Bayesian hierarchical model were better than the general biomass model, and they were
more uniform and had no obvious residual trends (Figure 2). The special and random parameters
of region type indicate that the biomass component of a tree in six regions are obviously different.
In addition, the biomass of a tree with the same diameter gradually decreased from southern to
northern regions in China, except in region S3, Weichang County in Hebei Province, in a temperate
region. However, the differences were not statistically significant. For example, when the tree
diameter at breast height was 25 cm, the total biomass of single tree was 356 kg on the Changlinggang
farm in Hubei (S1) in the northern subtropical region; 333 kg in Tianshui City in Gansu (S2) in the
warm–temperate region; 293 kg on the Dagujia farm in Liaoning (S4) in a temperate region; 286 kg
on the Mengjiagang farm in Heilongjiang (S5) and 256 kg in the Wuerqihan Forestry Bureau in the
Inner Mongolia autonomous region (S6), which are both located in a cold–temperate region; and
239 kg in Hebei (S3) (Figure 3). In terms of the three fit statistics (R2, MAB and RMSE) for the general
biomass model (Equation (2)), the dummy variable model (Equation (3)), the linear mixed effects
model (Equation (4)) and the Bayesian hierarchical model (Equation (5)) are presented in Table 7. It
was found that the R2 values of Equations (3)–(5) were larger than Equation (2), and MAB and RMSE
were lower than Equation (2), when they were used to estimate stem wood, stem bark, branch, needle,
root, and total biomass. This indicated that the dummy variable model, mixed effect model, and
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Bayesian hierarchical model were better in the prediction of biomass than the general biomass model.
Additionally, the fitting optimization index of the F-test also verified the results (Table 7). However,
there were no significant differences among the results of fitting for the mixed effect model, dummy
variable model, and Bayesian hierarchical model. In other words, the accuracy of prediction of biomass
using the mixed effects model, dummy variable model, and Bayesian hierarchical model were similar.
For the three models, the Bayesian hierarchical model was slightly better for predicting stem wood
biomass. The predicted results of the biomass component indicated that the generalized R2 is highest
for stem wood, bark, root, total biomass, and lowest for needle and branch biomass. This may be
due to the difficulties with available sample crown. In short, in this study, each component biomass
model and total biomass model were well developed in different regions. Based on RMSE, MAB,
and R2 values, it could be concluded that the mixed model, dummy variable model, and Bayesian
hierarchical model performed better than the general model, and the results of the three methods were
approximate in their ability to describing the fit of the data.

Table 3. Parameter estimates of the general biomass model (Equation (2)).

Biomass Component Parameter Estimate S.D. p-Value

Branch
a −2.6813 0.1489 <0.01
b 1.7831 0.0583 <0.01

Needle
a −3.2790 0.1748 <0.01
b 1.5779 0.0685 <0.01

Stemwood
a −3.5205 0.0811 <0.01
b 2.7278 0.0318 <0.01

Stembark
a −3.9267 0.0924 <0.01
b 2.1516 0.0362 <0.01

Root
a −3.9618 0.0912 <0.01
b 2.4586 0.0357 <0.01

Total
a −2.1166 0.0537 <0.01
b 2.4199 0.0210 <0.01
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Figure 2. Residual boxplots of the biomass component of all models (A–D) represent the general biomass model, linear mixed effects model, the dummy variable
model, and the Bayesian hierarchical model respectively).
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Table 4. Parameter estimates of the dummy variable model(Equation (3)).

Region Biomass
Component Parameter Estimate S.D. Region Biomass

Component Parameter Estimate S.D.

S1

Stem wood
a −2.903 0.427

S4

Stem wood
a −2.489 0.411

b 2.473 0.326 b 2.473 0.326

Stem bark
a −3.541 0.449

Stem bark
a −3.499 0.405

b 2.049 0.167 b 2.049 0.167

Branch
a −4.026 0.507

Branch
a −4.027 0.582

b 2.195 0.198 b 2.195 0.198

Needle
a −4.288 0.656

Needle
a −4.214 0.633

b 1.954 0.207 b 1.954 0.207

Root
a −3.793 0.482

Root
a −3.621 0.407

b 2.396 0.150 b 2.396 0.150

Total
biomass

a −2.084 0.221 Total
biomass

a −1.780 0.207
b 2.419 0.105 b 2.419 0.105

S2

Stem wood
a −2.924 0.455

S5

Stem wood
a −2.667 0.458

b 2.473 0.326 b 2.473 0.326

Stem bark
a −3.637 0.602

Stem bark
a −3.651 0.423

b 2.049 0.167 b 2.049 0.167

Branch
a −3.905 0.519

Branch
a −3.997 0.566

b 2.195 0.196 b 2.195 0.206

Needle
a −4.332 0.639

Needle
a −4.510 0.701

b 1.954 0.207 b 1.954 0.207

Root
a −3.698 0.356

Root
a −3.783 0.408

b 2.396 0.150 b 2.396 0.150

Total
biomass

a −2.078 0.233 Total
biomass

a −1.943 0.208
b 2.419 0.105 b 2.419 0.105

S3

Stem wood
a −2.924 0.398

S6

Stem wood
a −2.728 0.410

b 2.473 0.326 b 2.473 0.326

Stem bark
a −3.571 0.308

Stem bark
a −3.643 0.305

b 2.049 0.167 b 2.049 0.167

Branch
a −2.983 0.592

Branch
a −4.097 0.444

b 2.195 0.198 b 2.195 0.198

Needle
a −3.683 0.621

Needle
a −4.793 0.655

b 1.954 0.207 b 1.954 0.207

Root
a −3.641 0.396

Root
a −3.451 0.428

b 2.396 0.150 b 2.396 0.150

Total
biomass

a −1.864 0.207 Total
biomass

a −1.931 0.197
b 2.419 0.105 b 2.419 0.105

Table 5. Parameter estimates of the mixed effects model (Equation (4)).

Biomass Component Parameter Estimate Values S.D. T-Value p-Value

Stem wood

a −3.684 0.284 12.983 <0.01
b 2.783 0.102 27.233 <0.01

σa 0.068
σb 0.008
σab −0.024
ε 0.223

Stem bark

a −3.971 0.145 27.256 <0.01
b 2.166 0.053 40.534 <0.01

σa 0.068
σb 0.008
σab −0.024
ε 0.304

Branch

a −2.668 0.314 8.485 <0.01
b 1.783 0.141 12.662 <0.01

σa 0.491
σb 0.104
σab −0.207
ε 0.384
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Table 5. Cont.

Biomass Component Parameter Estimate Values S.D. T-Value p-Value

Needle

a −3.091 0.553 5.592 <0.01
b 1.515 0.207 7.331 <0.01

σa 1.673
σb 0.233
σab −0.604
ε 0.475

Root

a −3.484 0.433 8.509 <0.01
b 2.370 0.150 15.820 <0.01

σa 1.079
σb 0.128
σab −0.370
ε 0.247

Total

a −2.110 0.206 10.225 <0.01
b 2.419 0.079 30.455 <0.01

σa 0.241
σb 0.189
σab −0.091
ε 0.142

Table 6. Parameter estimates of the Bayesian hierarchical model (Equation (5)).

Region Biomass
Component Parameter Estimate

Value S.D. Region Biomass
Component Parameter Estimate

Value S.D.

S1

Stem wood
a −4.284 0.210

S4

Stem wood
a −3.843 0.153

b 3.061 0.080 b 2.836 0.061

Stem bark
a −3.916 0.118

Stem bark
a −3.965 0.111

b 2.166 0.046 b 2.142 0.043

Branch
a −2.354 0.322

Branch
a −3.277 0.255

b 1.605 0.123 b 1.835 0.101

Needle
a −2.274 0.421

Needle
a −4.225 0.339

b 1.263 0.161 b 1.717 0.135

Root
a −4.412 0.222

Root
a −4.030 0.186

b 2.600 0.084 b 2.551 0.074

Total
biomass

a −2.650 0.137 Total
biomass

a −2.540 0.104
b 2.649 0.052 b 2.554 0.041

S2

Stem wood
a −3.356 0.152

S5

Stem wood
a −3.007 0.195

b 2.671 0.063 b 2.597 0.071

Stem bark
a −3.904 0.106

Stem bark
a −3.897 0.115

b 2.150 0.043 b 2.153 0.042

Branch
a −3.387 0.282

Branch
a −1.989 0.343

b 2.287 0.118 b 1.543 0.125

Needle
a −4.702 0.337

Needle
a −1.659 0.422

b 2.268 0.141 b 1.020 0.154

Root
a −4.653 0.170

Root
a −3.135 0.219

b 2.705 0.071 b 2.138 0.080

Total
biomass

a −2.298 0.095 Total
biomass

a −1.451 0.134
b 2.519 0.040 b 2.208 0.049

S3

Stem wood
a −3.114 0.122

S6

Stem wood
a −4.394 0.25

b 2.525 0.051 b 2.971 0.091

Stem bark
a −3.927 0.102

Stem bark
a −3.971 0.134

b 2.146 0.042 b 2.151 0.048

Branch
a −2.757 0.192

Branch
a −2.374 0.381

b 1.794 0.081 b 1.673 0.138

Needle
a −2.958 0.258

Needle
a −2.867 0.477

b 1.429 0.108 b 1.434 0.173
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Table 6. Cont.

Region Biomass
Component Parameter Estimate

Value S.D. Region Biomass
Component Parameter Estimate

Value S.D.

Root
a −3.929 0.133

Root
a −2.041 0.314

b 2.434 0.056 b 1.829 0.114

Total
biomass

a −1.849 0.076 Total
biomass

a −1.878 0.159
b 2.277 0.032 b 2.307 0.058

Table 7. Evaluation statistics of the general model, dummy variable model, mixed effects model, and
Bayesian hierarchical model for biomass modeling.

Model Biomass
Component R2 MAB RMSE F-Value p-Value

General model

Stem wood

0.967 0.213 0.275
Dummy variable model 0.977 0.169 0.230 18.610 <0.01

Mixed effect model 0.979 0.165 0.222 12.733 <0.01
Bayesian hierarchical model 0.987 0.166 0.219 11.532 <0.01

General model

Stem bark

0.934 0.224 0.313
Dummy variable model 0.935 0.217 0.310 2.955 <0.01

Mixed effect model 0.938 0.213 0.305 1.339 <0.01
Bayesian hierarchical model 0.937 0.217 0.303 1.256 <0.01

General model

Branch

0.790 0.361 0.505
Dummy variable model 0.857 0.279 0.392 25.911 <0.01

Mixed effect model 0.880 0.269 0.382 17.713 <0.01
Bayesian hierarchical model 0.879 0.272 0.378 16.321 <0.01

General model

Needle

0.682 0.456 0.592
Dummy variable model 0.776 0.372 0.487 20.019 <0.01

Mixed effect model 0.799 0.355 0.471 13.713 <0.01
Bayesian hierarchical model 0.798 0.356 0.465 12.722 <0.01

General model

Root

0.950 0.236 0.309
Dummy variable model 0.967 0.186 0.247 20.237 <0.01

Mixed effect model 0.968 0.184 0.246 13.785 <0.01
Bayesian hierarchical model 0.968 0.185 0.242 12.695 <0.01

General model
Total

biomass

0.982 0.140 0.182
Dummy variable model 0.988 0.106 0.141 23.388 <0.01

Mixed effect model 0.989 0.105 0.141 16.056 <0.01
Bayesian hierarchical model 0.989 0.105 0.139 15.472 <0.01
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4. Discussion

Larch is one of the most important afforestation tree species in China. The accurate estimation of
larch biomass and carbon stock is critical. Allometric equations have been widely used to estimate
forest biomass in many studies, but the use of allometric equations in regions outside the area in
which they were developed or for different species, has been strongly debated in forestry literature.
Some authors have even recommended using general allometric equations [12,13]. In this study, the
scaling coefficient in allometric equations was varied in different biomass components (stem wood,
branches, stem bark, needle, root and total biomass), and across different larch species and regions.
Although it is generally known that the scaling exponent b is between two and three [12], it is also
usually realized as a species-specific equation, with different coefficients a and b, because trees may
differ in architecture as well as wood density [6,45]. West et al. [46] applied a process-based model
which is called the WBE model, to estimate values of scaling exponents using a functional relationship;
it indicated that the aboveground biomass of a tree species should scale against stem diameter with
b = 8/3 (2.67), regardless of species, site, and age. However, Zianis and Mencuccini [12] estimated
another empirical exponent (b = 2.36) based on a worldwide list of 279 biomass allometric equations,
which is different from the scaling exponent (b ≈ 2.67). They indicated that the ratio of biomass and
DBH for trees growing in different environmental conditions cannot be constant. In the study, the
average value of parameter b was 2.42 for the total biomass model, and it did not differ from the
theoretical value (2.67) and empirical value (2.36), because the scaling exponent (b = 2.67 or 2.36) is the
average of all species. For larch plantation, the b value (2.42) may be more appropriate.

The larch data was collected from the six main ecological regions in China for larch plantation
distribution and growth. The biomass equations suitable for application to regional forest biomass
prediction are the linear mixed model, dummy variable model, and Bayesian hierarchical model.
Based on the three evaluation statistics (R2, RMSE, MAB), the four models were compared: the general
biomass model (Equation (2)), the dummy variable model (Equation (3)), the linear mixed model
(Equation (4)), and the Bayesian hierarchical model (Equation (5)). There were no significant differences
among the three statistics of fit in the dummy variable model, linear mixed model, and Bayesian
hierarchical model. However, when compared with the general biomass model, dummy variable
model, linear mixed model, and Bayesian hierarchical were significantly better; F-test and residual
plots also verified the significant differences.

Some studies only compared the dummy variable model with the mixed effect model in solving
large-scale forestry biomass and growth estimation accuracy problems [34,35]. In this study, an
alternative method, the Bayesian hierarchical model, was used to model the large-scale tree biomass.
Bayesian inference has been developed in forest biomass estimates [25,31]. The main difference
between Bayesian and classical approaches is how to define their prior knowledge of the sample
data. The classical approach assumes the parameters are a fixed and unknown constant, whereas the
Bayesian approach assumes that the parameters follow some statistical distribution, especially for a
bivariate normal distribution [25,31]. Due to known prior data, the Bayesian method has advantages
in the prediction of small sample data. Zapata-Cuartas et al. [31] built the biomass model using the
Bayesian and the classical approach to compare model precision of different sample sizes of 6, 10, 20,
30, 40, 50 and 60, and found that model efficiency (RMSE) of two approaches was almost similar when
the sample size was larger than 60, otherwise the Bayesian approach was superior. Huang et al. [47]
also indicated that the fitted precision for tree biomass using the Bayesian approach was better than the
classical approach when the sample size was smaller than 50. Thus, using the Bayesian method, with
small sample data to estimate forest biomass will significantly reduce the time and costs of sampling.
The emphasis of this study is mainly on methodology. Choosing between the dummy model and mixed
model for prediction of forest biomass has been a hot research topic with the aim of improving the
accuracy of models for application in large regional scales [34,35]. For practical applications, the choice
of model depends on a number of categories (i.e., regions) and the sample number in each category.
If the number of categories is small (less than 10), the dummy model is preferred; if the number of
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categories is large, the mixed model is more appropriate [35]. However, the Bayesian hierarchical
method has advantages in the prediction of small sample data (numbers < 60) [31,47]. In this paper,
we defined the categories by the six geographical regions, and the number of samples per region was
equal to 60. Furthermore, the sample trees from each region came from various larch plantations which
covered different site conditions, stand ages, and stand densities. Thus, it is necessary to analyze
the random effects, taking the specific region’s variables as random parameters in the mixed model.
Because the sample number is equal to 60, the effect of the Bayesian hierarchical model is the same
as the linear mixed model. Based on this knowledge, we tend to recommend the mixed model and
the Bayesian hierarchical model for developing larch stem wood, branch, stem bark, needle, root, and
total biomass models.

The three methods (dummy variable model, linear mixed model, and Bayesian hierarchical model)
have no differences in regional biomass estimation ability. The modeling results showed that the total
biomass of a tree with the same diameter gradually decreased from the southern to northern regions
in China, except in Hebei Province (S3) (Figure 3). This may be because the water and heat conditions
in the southeastern region are better and the trees have enough growing space, but from south to
north, the water and heat conditions worsen, which impacts the growth and development of the trees.
In addition, the sample plots in Hebei Province (S3) were located in a plateau region with high winds,
sandy soil, and limited recipitation. The climate conditions may have resulted in larch having the
lowest biomass in this region (S3).

5. Conclusions

Based on the biomass data for larch plantations in China, the generalized single tree biomass
model suitable for regional scale forest biomass estimation was developed using the dummy variable
model, linear mixed model, and Bayesian hierarchical model, which solved the problem of forest
biomass estimate accuracy amongst different geographical scales. Our results indicate that using the
mixed model, dummy variable model, and Bayesian hierarchical model improved the model-fitting
results, providing an effective method for estimating larch biomass at the regional scale. Note that
if the model fitting process accounts for differences in species and origins as a nested factor based
on regional differences, the model fitting results should improve, and the mixed model, dummy
variable model, and Bayesian hierarchical model would be more effective than the general allometric
equations. The choice of the dummy variable model, mixed model, or Bayesian hierarchical model
mainly depends on number of categories and samples. If the number of categories is larger, the mixed
model and Bayesian hierarchical model should be the better choices. When the sample numbers are
less than 60, the Bayesian hierarchical model may be more appropriate. In general, the mixed model
and Bayesian hierarchical model are more flexible and applicable. The modeling results showed that
the total biomass of a tree with the same diameter gradually decreased from southern to northern
regions in China, except in Hebei Province (S3).
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Appendix A

Table A1. a and b values of 36 biomass equations(total, root, stem wood, stem bark, branch, and foliage biomass) in six reports for larch in China.

No.
Total Root Stem wood Stem Bark Branch Foliage Reference

a b a b a b a b a b a b

1 −1.378 0.760 −0.929 0.368 −2.957 0.911 −4.962 0.913 −1.448 0.307 −4.017 −1.378 (Wang, 2010) [38]
2 −1.952 0.844 −4.075 0.915 −2.797 0.888 −3.352 0.670 −2.957 0.633 −3.817 −1.952 (Shen et al, 2011) [39]
3 −2.087 0.892 −4.510 0.981 −2.465 0.849 −3.381 0.684 −4.423 0.990 −5.521 −2.087 (Liu, 2012) [40]
4 −2.079 0.901 −4.510 0.982 −2.659 0.927 −3.352 0.694 −3.037 0.628 −3.058 −2.079 (Zhang, 2010) [41]
5 −1.091 0.735 −5.116 1.024 −1.845 0.789 −1.917 0.389 −1.514 0.318 −0.942 −1.091 (Min, 2010) [42]
6 −2.419 0.929 −3.474 0.866 −3.170 0.960 −4.269 0.813 −5.298 0.972 −4.962 −2.419 (Li, 2013) [43]
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