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Abstract: Biodiesel produced from woody oil plants is a promising form of renewable energy but a
combination of tree plantations’ long cultivation time and rapid climate change may put large-scale
production at risk. If plantations are located in future-unsuitable places, plantations may fail or yield
may be poor, then significant financial, labor, and land resources invested in planting programs will be
wasted. Incorporating climate change information into the planning and management of forest-based
biodiesel production therefore can increase its chances of success. However, species distribution
models, the main tool used to predict the influence of future climate—species distribution modeling,
often contain considerable uncertainties. In this study we evaluated how these uncertainties could
affect the assessment of climate suitability of the long-term development plans for forest-based
biodiesel in China by using Sapindus mukorossi Gaertn as an example. The results showed that only
between 59% and 75% of the planned growing areas were projected suitable habitats for the species,
depending on the set-up of simulation. Our results showed the necessity for explicitly addressing the
uncertainty of species distribution modeling when using it to inform forest-based bioenergy planning.
We also recommend the growing area specified in China’s national development plan be modified to
lower the risk associated with climate change.

Keywords: MaxEnt; uncertainty; forest-based bioenergy; climate change; biodiesel; development
plan

1. Introduction

Rapid deployment of renewable energy has been proposed as a way to meet the obligation of
greenhouse gas reduction stated in the Paris Agreement [1,2]. Forest-based bioenergy is a promising
form of renewable energy because it is capable of providing multiple co-benefits [3]. Well planned and
managed forest-based bioenergy production can help to enhance energy and food security, create job
opportunities, and reduce environmental degradation [4-7]. Forest-based bioenergy has, therefore,
been given increased attention in many countries and regions, such as the United States [8], Europe [9],
and China [10].

Among the different forms of forest-based bioenergy, biodiesel produced from woody oil plants
is especially attractive because it can serve as a substitute for fossil oil [11]. Biodiesel can be used
directly in modified diesel engines or blended with conventional diesel [12]. Development of biodiesel
production based on woody oil plants at a large scale needs careful planning. Growers are generally
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advised to match species and cultivars to local climates and site conditions but the possible impact of
mid- to long-term climate change was seldom considered in the development plan [10]. Nevertheless,
significant climate changes including warming and shifted precipitation patterns have been projected
for the 21st century [13]. Woody oil plants normally need 6 to 20 years to start producing fruit
and will stay productive for several decades, e.g., the species Xanthoceras sorbifolia Bunge reaches
full-production age around 20 years old and has a productive life of over 100 years [14]. Jatropha curcas L.
can be productive for more than 30 years [15]. This long production time means any new energy tree
plantations planted according to a long-term development plan will be subjected to the impact of rapid
climate change. If plantations are located in places where future climate is unsuitable for the planted
species, plantations may fail or the yield may be poor. As a consequence, the significant financial, labor,
and land resources invested in the planting programs will either be wasted or not have the expected
biodiesel yield.

A few studies have already shown the potential impact of climate change on woody oil plants.
For example, the area suitable for growing Millettia pinnata (L.) Panigrahi would extend southward into
the subtropics in Australia [16]. Global warming was predicted to affect suitable areas for three woody
oil plants (Sapium sebiferum (L.) Roxb., Vernicia fordii (Hemsl.), X. sorbifolia) in China negatively by
2080 under the IPCC scenario A2a [17]. Seed yield of Jatropha was predicted to decrease in the Sahel,
Eastern Brazil, and Northern Australia due to climate changes [18]. While these studies all provided
useful information, the incorporation of climate change information into the policy making process of
forest-based bioenergy needs more attention on an important issue, i.e., the uncertainty in projections
of suitable habitats for woody oil plants. Species distribution modeling (SDM) is the primary tool used
to predict how species’ distribution ranges will change in the wake of future global climate change [19].
It is well known that variability of data quality, modeling methods, general circulation models (GCMs),
emission scenarios, thresholds, and dispersal ability can influence the magnitude, direction, and rates
of change in projections of suitable climate space of the modeled organism and influence the outcome
of targeted management [20-23]. These sources of uncertainty and their influences on projections have
not been addressed adequately. A relevant issue is how to incorporate the variability of projections
into the planning of biodiesel production form woody oil plants. Currently, this issue was handled
in various ways in forest planning, from rejecting the usefulness of the SDMs for informing policy
planning [24], to finding consensus projections [25], and to adopting adaptive forest management
programs that consider the range of possible trends and uncertainties [26,27]. Studies on these issues
are urgently needed in order to prepare forest-based bioenergy production for future climate change.

China holds great potential to develop forest-based biodiesel. A total of 154 woody oil plant
species with fruits or seeds containing more than 40% fat content, have been identified in China
thus far [28]. Along with the abundant plant species, China has more than 43.75 million ha of
marginal lands that can potentially be used for growing energy tree plantations [29]. The State Forestry
Administration (SFA) of China issued the Mid-term Development Plan for Forest-based Bioenergy
to guide the development of forest-based bioenergy in China between 2012 and 2020 [30]. In this
plan, the total area allocated for woody oil plant plantations would be increased from 1.35 million ha
to 4.22 million ha and the potential yield of biodiesel would reach 580 million tons of standard coal
equivalents by 2020. In order to meet these targets, the SFA planned to construct large production
bases containing tree plantations and processing facilities in specified regions. An examination of
the climate suitability of China’s development plan will not only inform policy makers in China but
also can provide lessons for other countries where large-scale production of forest-based biodiesel is
under consideration.

Six woody oil plant species including X. sorbifolia, Elaeis guineensis Jacq., Pistacia chinensis Bunge,
J. curcas, Swida wilsoniana (Wanger.) Sojak, and Sapindus mukorossi Gaertn have been chosen for
large-scale planting in China’s development plan. In this study we focused on S. mukorossi (soapberry),
for which we have conducted extensive field surveys on its distribution in China. We wanted to
find out how predictions of the distribution range of S. mukorossi varied when different aspects of
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uncertainty (GCMs, emission scenarios, and dispersal ability) of SDM were addressed. We also wanted
to demonstrate how the climate suitability of China’s development plan would be affected by the
variability of projections.

2. Methods

2.1. Compilation of Occurrence Data

Occurrences of S. mukorossi were compiled from various floras, books, and herbarium records.
A list of sources used in this study can be found in the supplementary materials (Table S1).
The compiled occurrence data can be divided into two types: (1) records with names of places
and geodetic coordinates where the species were identified; and (2) records with names of places
but no geodetic coordinates. For the second type of records, the center coordinates of the smallest
administrative units corresponding to the names of places were used as the coordinates of the
record. Occurrence records of species often contain spatial bias that can affect the accuracy of model
predictions [31,32]. In this study a spatial filtering approach was used to reduce spatial bias by merging
all occurrence records in the same grid (size = 10 km) as one occurrence. In total, 734 out of 924
occurrence records were kept after filtering.

We developed an independent dataset of occurrences using citizen science data and data we
collected in field surveys. The citizen science data were extracted from Plant Photo Bank of China
(PPBC), a web-based system to collect, collate and preserve plant photographs, slides, and digital
images taken by researchers as well as botany enthusiasts. All images included in the system have
been validated by botanists from the Institute of Botany, the Chinese Academy of Sciences [33]. Data in
PPBC included observations made from 2008 to the present. We conducted field surveys in the main
distribution region of S. mukorossi in China from July 2011 to November 2013. Coordinates of places
where trees of S. mukorossi were found in natural habitats were recorded using handheld GPS units.
A total of 76 and 50 records were obtained from PPBC and our field surveys, respectively.

2.2. Climatic and Environmental Inputs

Climatic variables including both the base and projected climate data sets were acquired from
the online database, WorldClim [34]. The base set is the representative climate from 1950 to 2000.
The projected set are projections for future climate between 2041 and 2060 (2050s) from 18 general
circulation models (GCMs) included in Coupled model intercomparison project phase 5 (CMIP5).
The names of the GCMs used in this study and their producers can be found in the supplementary files
(Table S2). The 2050s was selected as the targeted period because S. mukorossi tree plantations planted
according to China’s development plan will reach the stage of full production by that time. Two
representative concentration pathways, RCP2.6 and RCP8.5, were considered in this study. RCP8.5 has
the highest radiative forcing values (8.5 W/m?) while RCP2.6 has the lowest radiative forcing values
(2.6 W/m?) by 2100. Together they can provide a range of future climate change scenarios. Both base
and projected data sets contained 19 bioclimatic variables.

Four biophysical variables including altitudes, slopes, aspects, and soil classifications were
extracted from the Harmonized World Soil Database [35]. Existing studies showed they had significant
effects on predicting distributions of plant species at the regional and continental scale [36,37].
The selected bioclimatic and biophysical variables were converted to Raster ASCII grid format with a
resolution of 5-arc min.

2.3. Model Simulation

The MaxEnt version 3.3.3k software [38] was used to predict the distribution ranges of S. mukorossi.
MaxEnt requires only species occurrence data and environmental variables and has performed well in
recent comparative studies [39,40].
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The extent of the study area encompassed 16 provinces and one municipality in eastern China.
This extent was used for modeling the potential distribution of S. mukorossi because all occurrence
records fell within this region. The 10 provinces and one municipality where large-scale plantations
have been planned by the SFA were also located in this study area (Figure 1). The SFA planned to add
0.25 million ha of new plantations of S. mukorossi by 2020 [30].
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Figure 1. Map of the study area. The locations of Sapindus mukorossi observances are shown as dots.

To predict the current potential distribution of S. mukorossi, the compiled occurrence data were
randomly split into 70% for training model and 30% for validating model results. To reduce the
collinearity of variables, pre-model runs were conducted using all variables, and highly cross-correlated
variables were removed following the method used by Garcia et al. [41].

The area under curve (AUC) was used to assess the accuracy of the model. AUC values > 0.7
are considered to produce "useful” model outputs with good discriminatory power [42,43]. The
continuous predictive values were converted into binary data sets by using threshold selection
techniques. Two methods were tested, including maximizing the sum of sensitivity and specificity
(MSS) and equalizing the sensitivity and specificity (ESS) [44]. Predicted probabilities greater than the
threshold value were assigned the value of one, representing moderate to high suitability of habitats
(hereafter suitable habitats). Prediction values less than the threshold value were assigned the value
of zero, representing low to unsuitable habitats (hereafter unsuitable habitats). The percentages of
independent observations that have been correctly predicted were used to judge the accuracy of
potential current distribution maps and select the thresholding method used for further analysis.

The future distribution of S. mukorossi was predicted using all occurrence records (compiled
records + independent data) and future climate projections. Because relying on only one or few
arbitrarily-selected climate projections can increase the likelihood of producing biased projections [45],
simulations were conducted in two different ways: (1) averaged bioclimatic variables retrieved from
the outputs of 18 GCMs were used in simulations; and (2) the output of each GCM was used in
separate simulations and the results of multiple individual projections were combined to generate
a consensus projection map [25]. Two assumptions on species dispersal, i.e., full dispersal and no
dispersal, were used [46]. Eight projections were produced at the end (two ways of using outputs
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of GCMs x two climate scenarios x two assumptions of dispersal). For projections using averaged
GCM outputs, the projected probability maps were converted to binary distribution maps by using
the selected thresholding method. For projections using outputs of individual GCMs, the consensus
distribution maps were generated using a majority voting approach. After converting each projected
probability map into the binary suitable/unsuitable map, the grid cell was assigned to the suitable (or
unsuitable) category if more than 50% of the individual projections were the same.

All simulations were implemented using a cross-validation approach included in MaxEnt with
ten replicates. The entire modeling process is depicted in the following flowchart (Figure 2).
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Figure 2. The modeling process for generating future potential distribution of Sapindus mukorossi in
China (based on MaxEnt).

2.4. Analysis of Model Outputs

In order to assess the impact of climate change on the distribution of S. mukorossi, the predictions
of current potential distribution were compared with the predicted future distribution maps (2050s).
The loss and gain of areas suitable for the species were determined through comparisons.

To determine the difference among future projections caused by different set-ups of the model,
the predicted distribution maps were compared using Kappa coefficient of agreement, an indicator
used for comparing two maps [47]. The values of Kappa range from 1 to —1 with —1 representing
no overlap between two maps and 1 representing perfect overlap between the two maps. The value
zero represents the special case where the agreement is equal to the agreement that can be expected by
chance [47].

Finally, the predicted suitable areas from various models were compared with the planned
growing areas of S. mukorossi specified in the SFA’s development plan. Percentages of overlapped
areas to the total planned growing areas were calculated to indicate the agreement between projected
habitats and planned growing areas.

3. Results

3.1. Selection of Model Variables and the Modeling Accuracy

Based on their contributions to model output calculated in the pre-model run and the correlation
values, six bioclimatic variables were used in MaxEnt, i.e., minimum temperature of the coldest
month, isothermality, temperature seasonality, maximum temperature in the warmest month, annual
precipitation, and precipitation seasonality. All four biophysical variables (previously mentioned)
were kept for further analysis.

The values of AUC of all model projections were higher than 0.7 (Table 1), indicating acceptable
accuracy of modeling.
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Table 1. The AUC scores for MaxEnt output, in various modeled projections of Sapindus mukorossi

distribution in China.

Current Future
Set-Up of the Model — —
Test AUC  Training AUC Test AUC Training AUC
Full dispersal + average GCMs + RCP2.6 0.74 0.79 0.72 0.78
Full dispersal + average GCMs + RCP8.5 0.72 0.79 0.72 0.78
Full dispersal + consensus GCMs + RCP2.6 0.72 0.78 0.72 0.78
Full dispersal + consensus GCMs + RCP8.5 0.72 0.79 0.72 0.78
No dispersal + average GCMs + RCP2.6 0.74 0.79 0.72 0.78
No dispersal + average GCMs + RCP8.5 0.72 0.79 0.72 0.78
No dispersal + consensus GCMs + RCP2.6 0.72 0.78 0.72 0.78
No dispersal + consensus GCMs + RCP8.5 0.72 0.79 0.72 0.78

3.2. Current Potential Distributions of S. mukorossi

Using the independent data as the validation data, we obtained an accuracy rate of 73% for the
binary distribution map produced using MSS method and 61% for that produced using ESS. We kept
the map produced using MSS as the current potential distribution map of S. mukorossi and used MSS
as the thresholding method in future projections.

The current potential distribution of S. mukorossi displayed a southeast-to-northwest gradient
(Figure 3a). The potential habitats for the species were most abundant in southeast China, including
Guangdong Province, Guangxi Province, Fujian Province, and Zhejiang Province. The distribution
of the species decreased when moving north and west. Sporadic distribution occurred in Sichuan
province, Shaanxi Province, Henan Province, Shandong Province and Chongqing.

(@)

% A 8
l:l Unsuitable areas
- Current potential distribution

B .
.

0 525 1050

2100

km

A

Figure 3. Projected changes of the distribution range of Sapindus mukorossi in China under different

modeling set-ups: (a) current potential distribution; (b) full dispersal x average GCMs x RCP2.6;
(c) full dispersal x average GCMs x RCP8.5; (d) full dispersal x consensus GCMs x RCP2.6; (e) full
dispersal x consensus GCMs x RCP8.5; (f) no dispersal x average GCMs x RCP2.6; (g) no dispersal
x average GCMs x RCP8.5; (h) no dispersal x consensus GCMs x RCP2.6; and (i) no dispersal x

consensus GCMs x RCP8.5.
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3.3. Future Distribution of S. mukorossi

The projections showed that, under the assumption of full dispersal, the distribution range
of S. mukorossi would expand under both climate scenarios (Figure 3b—e). The largest expansion,
33.6%, was projected for the RCP8.5 scenario by using the consensus projection method (Figure 3e).
The smallest expansion, 14.5%, was projected for the RCP 2.6 scenario by using the average GCMs
method (Figure 3b). The expansion was the net result of loss and gain of suitable habitats (Table 2).

Table 2. Predicted range shifts of suitable habitats in 2050s (2041-2060) relative to the current potential
distribution (1950-2000) for Sapindus mukorossi in China.

Di 1 Lost Remain Gain Net
ispersa Emission
Ability GCMs Scenario Area % Area o, Area o, o,
(km?) (km?) (km?)
Consensus RCP2.6 24982 —1.99 1233473 98.01 241925  19.22 17.23
GCMs
Full C"é‘éel\r/}sus RCP85 11,829 —094 1246626 99.06 434513 3453 33.59
dispersal Aver S
verage RCP26 47,724  —379 1210731 9621 230,123 1829 14.50
GCMs
Average RCPS.5 36301 —2.88 1,222,154 9712 453559  36.04 33.16
GCMs
Consensus RCP2.6 24982 —1.99 1233473 98.01 0 0.00 ~1.99
GCMs
No C‘g‘éel\r/}sus RCP85 11,829  —094 1246626  99.06 0 0.00 ~0.94
dispersal S
Average
RCP26 47724  —379 1210731 9621 0 0.00 379
GCMs
Average RCP85 36301 —2.88 1222154 97.12 0 0.00 288
GCMs

Under the assumption of no dispersal, the distribution range of S. mukorossi would shrink under
both climate scenarios (Figure 3f-i). The largest shrinkage, 3.8%, was predicted under the RCP 2.6
scenario using the average GCMs method (Figure 3f).

In order to reveal the difference in projection results, we further compared the eight projected
future distribution maps. Agreement among these maps varied between 68% and 99% (Table 3).
The projection with the assumption of full dispersal, high emission scenarios, and average GCMs
method in general had low agreement with other projections.

3.4. Comparison between the SFA’s Plan and Future Distributions

In the SFA’s plan, 10 provinces and one municipality were listed as areas for developing plantations of
S. mukorossi. We found that the overlap rates among the planned growing areas and projected suitable
habitats for the species varied between 59% and 75% (Table 4). Provinces in southeast China had
high overlap rates under all modeling set-ups. The province at the northwest corner of the planned
growing area, i.e., Shaanxi Province, had the lowest overlap rate. In general, the overlap rates among
the planned growing areas and projected suitable areas were higher under the assumption of full
dispersal than those under the assumption of no dispersal if other conditions were the same. Similarly
the overlap rates were higher under the high emission scenario under the full dispersal scenario. Inside
each province, the overlapped area varied spatially (Figure 4a-h).
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Table 3. Values of Kappa coefficients between different projection maps of future potential distribution of Sapindus mukorossi in China.

8 of 16

Full Dispersal + Full Dispersal +  Full Dispersal + Full Dispersal +  No Dispersal + No Dispersal + No Dispersal + No Dispersal +
Set-Up of the Model Average GCMs  Average GCMs Consensus Consensus Average GCMs  Average GCMs Consensus Consensus
+ RCP2.6 + RCP8.5 GCMs + RCP2.6  GCMs + RCP8.5 + RCP2.6 + RCP8.5 GCMs + RCP2.6  GCMs + RCP8.5
Full dispersal + average
GCMs + RCP2.6 1.00 0.76 0.85 0.76 0.85 0.81 0.82 0.82
Full dispersal + average
GCMs + RCP8.5 - 1.00 0.81 0.86 0.68 0.71 0.69 0.69
Full dispersal + consensus
GCMs + RCP2.6 - - 1.00 0.85 0.81 0.82 0.84 0.83
Full dispersal + consensus
GCMs + RCP8.5 - - - 1.00 0.69 0.71 0.71 0.73
No dispersal + average
GCMs + RCP2.6 - - - - 1.00 0.96 0.97 0.97
No dispersal + average
GCMs + RCP8.5 - - - - - 1.00 0.98 0.98
No dispersal + consensus
GCMs + RCP2.6 - ; ; ; ; - 100 099
No dispersal + consensus } ) ) ) ) ; ) 1.00

GCMs + RCP8.5
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Table 4. Overlaps between the projected suitable habitats and the areas of provinces selected for growing Sapindus mukorossi in China.

Set-Up of the Model Zhejiang Anhui Fujian  Jiangxi Hubei Hunan Guangdong Guangxi  Chongqing Guizhou Shaanxi Total
F“Hgicsf/fsriai{zg‘z’fgage 87.19 76.57 98.84 97.37 46.73 87.01 99.71 94.03 10.87 36.64 0.00 68.38
F““gicslf\’fsrialgzg‘é_e;age 85.74 94.23 99.22 97.05 68.13 91.67 99.86 94.77 48.84 4151 0.75 74.75

Full Cgilﬁ:il I:CCITZ“S;“S“S 92.41 85.64 98.84 97.51 54.92 88.26 99.43 91.41 21.03 22.08 0.00 68.96
Full "gsé’l\e/[rssil I:C“ggf;“sus 96.48 96.94 99.52 99.16 68.95 93.24 99.81 93.55 46.66 32.88 0.04 74.82
No ‘gé‘ﬁﬁgg;’fage 77.52 59.05 94.15 85.89 31.38 71.48 98.17 89.00 0.62 19.29 0.00 58.70
No ggﬁfﬁ%@‘gage 75.64 58.51 94.28 85.27 3425 72.90 98.22 89.16 0.71 19.26 0.00 59.00
No dggﬁzai Eg{j;g“sus 81.02 59.07 94.35 86.15 33.46 73.24 98.22 89.20 0.71 17.79 0.00 59.23
No dispersal + consensus 81.96 60.24 94.35 86.19 34.34 73.66 98.22 89.36 0.71 19.33 0.00 59.69

GCMs + RCP8.5
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Figure 4. Overlap between planned growing areas and predicted suitable habitats of Sapindus mukorossi
in China based on various modeling set-ups: (a) full dispersal x average GCMs x RCP2.6; (b) full
dispersal x average GCMs x RCP8.5; (c) full dispersal x consensus GCMs x RCP2.6; (d) full dispersal
x consensus GCMs x RCP8.5; (e) no dispersal x average GCMs x RCP2.6; (f) no dispersal x average
GCMs x RCP8.5; (g) no dispersal x consensus GCMs x RCP2.6; and (h) no dispersal x consensus
GCMs x RCP8.5.

4. Discussion

4.1. Changes of the Distribution Range of S. mukorossi

Our result showed that, under the full dispersal scenario, habitats of S. mukorossi would expand
northwest. The northwest shift found in this study was in agreement with the general observation that
distributions of plant species would shift towards the poles under global warming [48,49]. Our results
were similar to findings of several studies on the effects of climate change on distribution of woody
oil plants, such as Sapium sebiferum in the United States [50], Olea europaea L. in the Mediterranean
basin [51,52], and Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg. in China [53] and in India [54].

If no dispersal was assumed, the net change of distribution range would be negative. This may be
due to the biology of S. mukorossi, which likes full sun and can tolerate drought but not waterlogging [55,56].
This was affirmed by analyzing the contribution of bioclimatic variables to the distribution. Among all
bioclimatic variables, minimum temperature of coldest month had the largest (18-27%) and annual
precipitation the second largest (12-22%) contribution to the distribution of S. mukorossi. The climate
of our study area was projected to become warmer and more humid by 2050s. The rise of temperature
would make more regions suitable for the species and the distribution range of the species would
expand. Our projections showed that the expansion would mainly occur in east Sichuan, west
Chonggqing, southeast Henan, and North Anhui, mostly mountainous areas. In the wild, S. mukorossi
were often found to form large tree groves on slopes [57]. The temperature rise in those mountainous
areas would, therefore, add new habitats to the species. On the other hand, increased precipitation
may make some current habitats no longer suitable, especially in places where soil drainage is an issue.
Poor growth, diseases and even death has been reported for trees of S. mukorossi planted on sites with
poor drainage or waterlogging [58].
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4.2. Uncertainties in Projections

Paired comparisons of eight future distribution maps had results ranging from nearly identical
(99%) to largely the same (68%) among these projections, demonstrating the uncertainty associated with
using the SDM to project climate change impact on tree species. The divergent projections confirmed
the need to pay more attention to uncertainty associated with species distribution models [26,59].
Underestimation or overestimation of climate change impact could occur if the uncertainties are not
explicitly addressed. For example, if we only modeled the future distribution of S. mukorossi under the
full-dispersal assumption, high emission scenario, using the consensus method, half of Chongqing
would be considered suitable for growing plantations of the species. However, when the other sources
of uncertainty are considered, we would exclude the region from the growing plan.

The divergence also showed the need to accommodate uncertainty when using SDM in forest
management. We have paid particular attention to the source of uncertainty in this study. Unlike
other studies, we did not choose the entire country as our study area [17,60] because MaxEnt results
were significantly affected by the landscape used for the background sample [40,61]. We used spatial
filtering to address the spatial bias associated with the occurrence records compiled from literature
and herbarium specimens [62]. We used an independent data set to help tune the model and select
the thresholding method to transform continuous distribution of species into binary predictions
of presence/absence, which is often the least explored source of uncertainty in SDMs [63]. Also,
the use of data collected from well-planned surveys will reduce the uncertainty in projections
significantly [64]. To address the uncertainties associated with the climate model predictions [65]
and emission scenarios [66], we tried two different ways to use GCM output in MaxEnt and two
emission scenarios. Our results clearly show the infeasibility of reaching one single projection with
high certainty at this stage. The range of possible trends must be accommodated in the planning and
policy-making process.

4.3. Implications for Forest-Based Bioenergy Planning

Predictions of potential future species distributions normally contain considerable uncertainties.
So the question is how forestry administrations can be informed by these divergent results. First
of all, as pointed out by Wiens et al. [59], ignoring the future is not an option for management
practices and decisions despite the uncertainty associated with SDM. Secondly, the uncertainty could
be incorporated into the decision-making process by following the principle of “prepare for the worst”
and accommodating the range of possible trends and uncertainties [26,27].

Using China as an example, the current SFA’s development plan for forest-based bioenergy
ignored future climate change entirely and thus carries a huge risk. The results showed that in some
regions, i.e., Shaanxi Province, Guizhou Province, and Chongging, percentages of predicted suitable
areas were consistently low using different modeling set-ups. Four provinces including Guangdong,
Guangxi, Fujian, and Jiangxi were consistently predicted as suitable for growing S. mukorossi. Other
provinces fell in between these two groups. Under the principle of “prepare for the worst”, it would
be prudent to reconsider the plan to develop plantations of S. mukorossi in Shaanxi, Guizhou, and
Chongging as these regions were consistently predicted to be less suitable to the species than other
provinces under future climate. More consideration should be given to the four provinces that were
predicted to be suitable for the species. In the remaining provinces, plantations of S. mukorossi should
be developed in predicted suitable regions and with climate adaptation measures in place, such as
equipping sites with well-designed drainage systems.

4.4. Limitations of the Current Study

Although we tried to address the multi-source uncertainty associated with SDMs and explored
a way to incorporate uncertainty into forest-based biodiesel planning and management in China,
we did not exhaust all sources of uncertainties. For example, some studies have reported the species
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distribution model itself was a factor contributing to uncertainty [21,22,63]. We did not compare the
MaxEnt model to other species distribution models. We also did not quantify the relative contribution
of different sources of uncertainty, which has been proposed as a strategy to improve robustness of
planning and decision-making [21,22]. We also did not consider factors that can affect the realization
of projected ranges of plans on the ground [67], e.g., the competition for lands with other uses and
markets for biodiesel. However, since our main purpose was to provide a comparison between planned
growing areas specified in the government plan and projected suitable habitats for S. mukorossi, and
the comparison results clearly showed the divergence, the method used in this study could satisfy that
purpose. Our results clearly demonstrated that China’s current development plan carries risks under
the future climate and needs amendments.

5. Conclusions

Taking climate into consideration in forest planning and management has long been proposed
by researchers as well as forestry organizations [68-71]. However, the proposal was rarely applied
in the field, especially in less-developed countries. Through this study, we developed the procedure
for using species distribution modeling (SDM) to assess the national development plan for producing
forest-based biodiesel in China. We paid special attention to sources of model uncertainties, including
the data quality, GCMs, emission scenarios, thresholding method and dispersal ability. Using
S. mukorossi as an example, we showed that the mismatch between the future likely distribution of the
species and the planned growing areas can be as high as 41% of the total area of the planned growing
areas. Although projections were divergent, the results still provided useful information. They showed
that the current development plan, which does not consider climate change, carried possible risks
such as failure of plantations and poor return on investment, under the future climate. This result can
serve as a wake-up call for countries where the development of large-scale forest-based bioenergy is
planned. Our study also showed that in order to use SDM to incorporate climate change information
into forest management its uncertainties must be explicitly addressed to avoid misinformation.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1999-4907/8/6/207/s1,
Table S1: Sources of species occurrence records; Table S2: General Circulation Models (GCMs) used in this study;
Dataset S1: Sapindus mukorossi presence data and independent testing data. The “Sapindus presence data.csv”
file includes the location of S. mukorossi from the online database and published books. The “TestData.csv” file
includes 127 locations of S. mukorossi from field surveys (the former 47 records in the table) and the Database of
Plant Photo Bank of China (PPBC) (the remaining 80 records), which are independent to the records of “Sapindus
presence data”.

Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant
number 31570458, 2016) and the Ministry of Education of China (Grant number 20120014130001, 2012).

Author Contributions: ]J.Y. conceived and designed the experiments; G.D. and C.S. performed the experiments;
G.D. and C.H. analyzed the data; G.D., L.M. and L.J. contributed reagents/materials/analysis tools; G.D. and J.Y.
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tambo, E; Wang, D.Q.; Zhou, X.N. Tackling air pollution and extreme climate changes in china: Implementing
the paris climate change agreement. Environ. Int. 2016, 95, 152-156. [CrossRef] [PubMed]

2. Wagner, L.; Ross, I; Foster, J.; Hankamer, B. Trading off global fuel supply, co, emissions and sustainable
development. PLoS ONE 2016, 11, e0149406. [CrossRef] [PubMed]

3. Repo, A; Tuovinen, ].-P,; Liski, J. Can we produce carbon and climate neutral forest bioenergy? GCB Bioenergy
2015, 7, 253-262. [CrossRef]

4. Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.;
Somerville, C.; et al. Beneficial biofuels—the food, energy, and environment trilemma. Science 2009, 325,
270-271. [CrossRef] [PubMed]


http://www.mdpi.com/1999-4907/8/6/207/s1
http://dx.doi.org/10.1016/j.envint.2016.04.010
http://www.ncbi.nlm.nih.gov/pubmed/27107974
http://dx.doi.org/10.1371/journal.pone.0149406
http://www.ncbi.nlm.nih.gov/pubmed/26959977
http://dx.doi.org/10.1111/gcbb.12134
http://dx.doi.org/10.1126/science.1177970
http://www.ncbi.nlm.nih.gov/pubmed/19608900

Forests 2017, 8, 207 13 of 16

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Rowe, R.L.; Hanley, M.E.; Goulson, D.; Clarke, D.J.; Doncaster, C.P.; Taylor, G. Potential benefits of commercial
willow short rotation coppice (src) for farm-scale plant and invertebrate communities in the agri-environment.
Biomass Bioenergy 2011, 35, 325-336. [CrossRef]

Zhang, J.; Chen, G.; Xu, K,; Li, Z. Developing forest bioenergy and pushing up degraded lands amelioration
in china. Energy Educ. Sci. Technol. Part A 2012, 30, 1089-1094.

Kumar, V.; Kant, P. Biodiesel: Beneficial for environment and human health. Pet. Coal 2013, 55, 207-215.
Sundstrom, S.; Nielsen-Pincus, M.; Moseley, C.; McCaffery, S. Woody biomass use trends, barriers, and
strategies: Perspectives of us forest service managers. J. For. 2012, 110, 16-24. [CrossRef]

Moiseyev, A.; Solberg, B.; Kallio, A.M.I.; Lindner, M. An economic analysis of the potential contribution
of forest biomass to the eu res target and its implications for the eu forest industries. J. For. Econ. 2011, 17,
197-213. [CrossRef]

Yang, J.; Dai, G.; Ma, L,; Jia, L.; Wu, J.; Wang, X. Forest-based bioenergy in china: Status, opportunities, and
challenges. Renew. Sustain. Energy Rev. 2013, 18, 478-485. [CrossRef]

Yin, ES.; Teah, Y.K. Status of bio-diesel industry in china. Deterg. Cosmet. 2008, 31, 1-3.

Yang, C.Y.; Fang, Z.; Li, B.; Long, Y.F. Review and prospects of jatropha biodiesel industry in china.
Renew. Sustain. Energy Rev. 2012, 16, 2178-2190. [CrossRef]

Stocker, T.F,; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.;
Cubasch, U.; Emori, S.; et al. Technical summary. In Climate Change 2013: The Physical Science Basis:
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Stocker, T.F.,, Qin, D., Plattner, G.-K., Tignor, M., Allen, SK., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
Midgley, PM., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33-115.
Yao, Z.Y.; Qi, ].H.; Yin, L.M. Biodiesel production from xanthoceras sorbifolia in china: Opportunities and
challenges. Renew. Sustain. Energy Rev. 2013, 24, 57-65. [CrossRef]

Francis, G.; Edinger, R.; Becker, K. A concept for simultaneous wasteland reclamation, fuel production,
and socio-economic development in degraded areas in india: Need, potential and perspectives of jatropha
plantations. Nat. Resour. Forum 2005, 29, 12-24. [CrossRef]

Kriticos, D.J.; Murphy, H.T.; Jovanovic, T.; Taylor, J.; Herr, A.; Raison, J.; O’Connell, D. Balancing bioenergy
and biosecurity policies: Estimating current and future climate suitability patterns for a bioenergy crop.
GCB Bioenergy 2014, 6, 587-598. [CrossRef]

Wang, W.G.; Tang, X.Y.; Zhu, Q.L,; Pan, K,; Hu, Q.C.; He, M.X; Li, ].T. Predicting the impacts of climate
change on the potential distribution of major native non-food bioenergy plants in china. PLoS ONE 2014,
9, €111587. [CrossRef] [PubMed]

Trabucco, A.; Achten, WM.].; Bowe, C.; Aerts, R.; Van Orshoven, ].; Norgrove, L.; Muys, B. Global mapping
of jatropha curcas yield based on response of fitness to present and future climate. GCB Bioenergy 2010, 2,
139-151. [CrossRef]

Thuiller, W.; Lavergne, S.; Roquet, C.; Boulangeat, I.; Lafourcade, B.; Araujo, M.B. Consequences of climate
change on the tree of life in Europe. Nature 2011, 470, 531-534. [CrossRef] [PubMed]

Aratjo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42—-47.
[CrossRef] [PubMed]

Diniz-Filho, J.A ; Bini, L.M.; Rangel, T.F; Loyola, R.D.; Hof, C.; Nogués-Bravo, D.; Aratjo, M.B. Partitioning
and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography
2009, 32, 897-906. [CrossRef]

Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillet, G. Uncertainty in ensemble forecasting of species
distribution. Glob. Chang. Biol. 2010, 16, 1145-1157. [CrossRef]

Elith, J.; Graham, C.H. Do they? How do they? Why do they differ? On finding reasons for differing
performances of species distribution models. Ecography 2009, 32, 66-77. [CrossRef]

Real, R.; Marquez, A.L.; Olivero, J.; Estrada, A. Species distribution models in climate change scenarios are
still not useful for informing policy planning: An uncertainty assessment using fuzzy logic. Ecography 2010,
33, 304-314. [CrossRef]

Wang, T.; Campbell, EM.; O’Neill, G.A.; Aitken, S.N. Projecting future distributions of ecosystem climate
niches: Uncertainties and management applications. For. Ecol. Manag. 2012, 279, 128-140. [CrossRef]
Wright, A.N.; Hijmans, R.J.; Schwartz, M.W.; Shaffer, H.B. Multiple sources of uncertainty affect metrics for
ranking conservation risk under climate change. Divers. Distrib. 2015, 21, 111-122. [CrossRef]


http://dx.doi.org/10.1016/j.biombioe.2010.08.046
http://dx.doi.org/10.5849/jof.10-114
http://dx.doi.org/10.1016/j.jfe.2011.02.010
http://dx.doi.org/10.1016/j.rser.2012.10.044
http://dx.doi.org/10.1016/j.rser.2012.01.043
http://dx.doi.org/10.1016/j.rser.2013.03.047
http://dx.doi.org/10.1111/j.1477-8947.2005.00109.x
http://dx.doi.org/10.1111/gcbb.12068
http://dx.doi.org/10.1371/journal.pone.0111587
http://www.ncbi.nlm.nih.gov/pubmed/25365425
http://dx.doi.org/10.1111/j.1757-1707.2010.01049.x
http://dx.doi.org/10.1038/nature09705
http://www.ncbi.nlm.nih.gov/pubmed/21326204
http://dx.doi.org/10.1016/j.tree.2006.09.010
http://www.ncbi.nlm.nih.gov/pubmed/17011070
http://dx.doi.org/10.1111/j.1600-0587.2009.06196.x
http://dx.doi.org/10.1111/j.1365-2486.2009.02000.x
http://dx.doi.org/10.1111/j.1600-0587.2008.05505.x
http://dx.doi.org/10.1111/j.1600-0587.2010.06251.x
http://dx.doi.org/10.1016/j.foreco.2012.05.034
http://dx.doi.org/10.1111/ddi.12257

Forests 2017, 8, 207 14 of 16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Lindner, M.; Fitzgerald, ].B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.;
Lasch, P,; Eggers, ]J.; van der Maaten-Theunissen, M.; et al. Climate change and european forests: What
do we know, what are the uncertainties, and what are the implications for forest management? J. Environ.
Manag. 2014, 146, 69-83. [CrossRef] [PubMed]

Fu, D.J.; Huang, H.W. Brief introduction of expoitation and utilization of fuel plants resources. J. Wiuhan
Bot. Res. 2006, 24, 183-190.

Zhuang, D.F; Jiang, D.; Liu, L.; Huang, Y.H. Assessment of bioenergy potential on marginal land in China.
Renew. Sustain. Energy Rev. 2011, 15, 1050-1056. [CrossRef]

State Forestry Administration (SFA). The National Forestry Biomass Energy Development Plan.
Available online: http://www.forestry.gov.cn//portal/main/s/218/content-633246.html (accessed on
4 September 2014).

Phillips, S.J.; Dudik, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias
and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl.
2009, 19, 181-197. [CrossRef] [PubMed]

Yang, W.].; Ma, K.P.,; Kreft, H. Geographical sampling bias in a large distributional database and its effects on
species richness-environment models. J. Biogeogr. 2013, 40, 1415-1426. [CrossRef]

Chinese Academy of Science (CAS). Plant Photo Bank of China (PPBC). Available online: http://www.
plantphoto.cn (accessed on 15 October 2014).

Hijmans, R.J.; Cameron, S.E.; Parra, ].L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate
surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965-1978. [CrossRef]

Food and Agriculture Organization of the United Nations (FAO)/International Institute for Applied
Systems Analysis (IIASA)/International Soil Reference and Information Centre (ISRIC)/Institute of Soil
Science—Chinese Academy of Sciences (ISSCAS)/Joint Research Centre of the European Commission (JRC).
Harmonized World Soil Database (Version 1.2). Available online: http://webarchive.iiasa.ac.at/Research/
LUC/External-World-soil-database/HTML/ (accessed on 2 September 2013).

Iverson, L.R.; Prasad, A.M. Predicting abundance of 80 tree species following climate change in the eastern
united states. Ecol. Monogr. 1998, 68, 465-485. [CrossRef]

Cruz-Cardenas, G.; Villasefior, J.L.; Lépez-Mata, L.; Ortiz, E. Potential distribution of humid mountain forest
in mexico. Bot. Sci. 2012, 90, 331-340. [CrossRef]

Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions.
Ecol. Model. 2006, 190, 231-259. [CrossRef]

Merow, C.; Smith, M.].; Silander, J.A. A practical guide to maxent for modeling species’ distributions: What
it does, and why inputs and settings matter. Ecography 2013, 36, 1058-1069. [CrossRef]

Elith, J.; Phillips, S.; Hastie, T.; Dudik, M.; Chee, Y.E.; Yates, C.]. A statistical explanation of maxent for
ecologists. Divers. Distrib. 2011, 17, 43-57. [CrossRef]

Garcia, K; Lasco, R.; Ines, A.; Lyon, B.; Pulhin, F. Predicting geographic distribution and habitat suitability
due to climate change of selected threatened forest tree species in the philippines. Appl. Geogr. 2013, 44,
12-22. [CrossRef]

Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley: New York, NY, USA, 1989.

Kramer-Schadt, S.; Niedballa, J.; Pilgrim, ].D.; Schroder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.;
Heckmann, I; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in maxent
species distribution models. Divers. Distrib. 2013, 19, 1366-1379. [CrossRef]

Jiménez-Valverde, A.; Lobo, ]. M. Threshold criteria for conversion of probability of species presence to
either-or presence-absence. Acta Oecol 2007, 31, 361-369. [CrossRef]

Fordham, D.A.; Wigley, TM.L.; Brook, B.W. Multi-model climate projections for biodiversity risk assessments.
Ecol Appl. 2011, 21, 3317-3331. [CrossRef]

Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, BEN.;
Ferreira de Siqueira, M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004,
427,145-148. [CrossRef] [PubMed]

Van Vliet, ].; Bregt, A K.; Hagen-Zanker, A. Revisiting kappa to account for change in the accuracy assessment
of land-use change models. Ecol Model 2011, 222, 1367-1375. [CrossRef]


http://dx.doi.org/10.1016/j.jenvman.2014.07.030
http://www.ncbi.nlm.nih.gov/pubmed/25156267
http://dx.doi.org/10.1016/j.rser.2010.11.041
http://www.forestry.gov.cn//portal/main/s/218/content-633246.html
http://dx.doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
http://dx.doi.org/10.1111/jbi.12108
http://www.plantphoto.cn
http://www.plantphoto.cn
http://dx.doi.org/10.1002/joc.1276
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://dx.doi.org/10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2
http://dx.doi.org/10.17129/botsci.394
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1111/j.1600-0587.2013.07872.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1016/j.apgeog.2013.07.005
http://dx.doi.org/10.1111/ddi.12096
http://dx.doi.org/10.1016/j.actao.2007.02.001
http://dx.doi.org/10.1890/11-0314.1
http://dx.doi.org/10.1038/nature02121
http://www.ncbi.nlm.nih.gov/pubmed/14712274
http://dx.doi.org/10.1016/j.ecolmodel.2011.01.017

Forests 2017, 8, 207 15 of 16

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.]J.C.; Fromentin, ].M.;
Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389-395.
[CrossRef] [PubMed]

Thomas, C.D. Climate, climate change and range boundaries. Divers. Distrib. 2010, 16, 488—495. [CrossRef]
Pattison, R.R.; Mack, R.N. Potential distribution of the invasive tree triadica sebifera (euphorbiaceae) in the
united states: Evaluating climex predictions with field trials. Glob Chang. Biol 2008, 14, 813-826. [CrossRef]
Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop
evapotranspiration and irrigation requirements in the mediterranean region. Agric. Water Manag. 2014, 144,
54-68. [CrossRef]

Moriondo, M.; Trombi, G.; Ferrise, R.; Brandani, G.; Dibari, C.; Ammann, C.M.; Lippi, M.M.; Bindi, M. Olive
trees as bio-indicators of climate evolution in the mediterranean basin. Glob. Ecol. Biogeogr. 2013, 22, 818-833.
[CrossRef]

Zomer, RJ.; Trabucco, A.; Wang, M.; Lang, R.; Chen, H.; Metzger, M.].; Smajgl, A.; Beckschéfer, P.; Xu, J.
Environmental stratification to model climate change impacts on biodiversity and rubber production in
xishuangbanna, yunnan, china. Biol. Conserv. 2014, 170, 264-273. [CrossRef]

Ray, D.; Behera, M.D.; Jacob, ]. Indian brahmaputra valley offers significant potential for cultivation of rubber
trees under changed climte. CSci 2014, 107, 461-469.

Diao, S.E; Shao, WH.; Dong, R.X.; Sun, H.G,; Jiang, X.M. Diurnal variation of photosynthesis and relationship
with the eco-physiological factors of sapindus mukorossi. Acta Bot. Boreali-Occident Sin. 2014, 34, 0828-0834.
Jiang, C.C,; Lu, XK, Ye, X.F; Guo, Y.Z.; Jiang, Y.X. Characteristics and cultivation techniques of
sapindus mukorossi. Southeast Horticulture 2014, 6, 118-121.

Shao, W.H.; Yue, H.E; Xu, Y.Q.; Dong, R.X; Jiang, ].M.; Shen, EQ.; Zhang, J.Z. Effects of site type on the
growth and main economic traits of sapindus mukorossi gaertn. J. Henan Agric. Univ. 2015, 49, 783-786.

Gu, S.H,; Tu, J.L,; Liu, L.Y;; Zhong, G.J.; Bao, T.F. Waterlogging tolerance of native tree species in jiaxing,
zhejiang. Technol. Soil Water Conserv. 2015, 5, 7-9.

Wiens, J.A,; Stralberg, D.; Jongsomijit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change:
Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729-19736. [CrossRef]
[PubMed]

Cai, J.; Chen, E; Wang, S.H. Distribution area prediction of biofuel crop jatropha cucars L. . Sichuan Univ.
(Nat. Sci. Ed.) 2012, 49, 239-245.

VanDerWal, J.; Shoo, L.P.; Graham, C.; Williams, S.E. Selecting pseudo-absence data for presence-only
distribution modeling: How far should you stray from what you know? Ecol. Model. 2009, 220, 589-594.
[CrossRef]

Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve
the performance of ecological niche models. Ecol. Model. 2014, 275, 73-77. [CrossRef]

Nenzén, HK.; Aragjo, M.B. Choice of threshold alters projections of species range shifts under climate
change. Ecol. Model. 2011, 222, 3346-3354. [CrossRef]

Dennis, R.L.H.; Thomas, C.D. Bias in butterfly distribution maps: The influence of hot spots and recorder’s
home range. |. Insect Conserv. 2000, 4, 73-77. [CrossRef]

Goberville, E.; Beaugrand, G.; Hautekeete, N.C.; Piquot, Y.; Luczak, C. Uncertainties in the projection
of species distributions related to general circulation models. Ecol. Evol. 2015, 5, 1100-1116. [CrossRef]
[PubMed]

Visconti, P.; Bakkenes, M.; Baisero, D.; Brooks, T.; Butchart, S.H.M.; Joppa, L.; Alkemade, R.; Di Marco, M.;
Santini, L.; Hoffmann, M.; et al. Projecting global biodiversity indicators under future development scenarios.
Conserv. Lett. 2016, 9, 5-13. [CrossRef]

Kosinkova, J.; Doshi, A.; Maire, J.; Ristovski, Z.; Brown, R.; Rainey, T.]. Measuring the regional avaiability of
biomass for biofuels and potential for microalgae. Renew. Sustain. Energy Rev. 2015, 49, 1271-1285. [CrossRef]
Puettmann, KJ. Silvicultural challenges and options in the context of global change: "Simple" fixes and
opportunities for new management approaches. J. For. 2011, 109, 321-331.

FAO. Climate Change to Forest Management; Food and Agriculture Organization of the United Nations: Rome,
Italy, 2013.


http://dx.doi.org/10.1038/416389a
http://www.ncbi.nlm.nih.gov/pubmed/11919621
http://dx.doi.org/10.1111/j.1472-4642.2010.00642.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01528.x
http://dx.doi.org/10.1016/j.agwat.2014.05.019
http://dx.doi.org/10.1111/geb.12061
http://dx.doi.org/10.1016/j.biocon.2013.11.028
http://dx.doi.org/10.1073/pnas.0901639106
http://www.ncbi.nlm.nih.gov/pubmed/19822750
http://dx.doi.org/10.1016/j.ecolmodel.2008.11.010
http://dx.doi.org/10.1016/j.ecolmodel.2013.12.012
http://dx.doi.org/10.1016/j.ecolmodel.2011.07.011
http://dx.doi.org/10.1023/A:1009690919835
http://dx.doi.org/10.1002/ece3.1411
http://www.ncbi.nlm.nih.gov/pubmed/25798227
http://dx.doi.org/10.1111/conl.12159
http://dx.doi.org/10.1016/j.rser.2015.04.084

Forests 2017, 8, 207 16 of 16

70. Pawson, S.M.; Brin, A.; Brockerhoff, E.G.; Lamb, D.; Payn, T.W.; Paquette, A.; Parrotta, J.A. Plantation forests,
climate change and biodiversity. Biodivers Conserv 2013, 22, 1203-1227. [CrossRef]

71. Garcia-Gonzalo, J.; Borges, ].G.; Palma, ].H.N.; Zubizarreta-Gerendiain, A. A decision support system for
management planning of eucalyptus plantations facing climate change. Ann. For. Sci. 2014, 71, 187-199.
[CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1007/s10531-013-0458-8
http://dx.doi.org/10.1007/s13595-013-0337-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Compilation of Occurrence Data 
	Climatic and Environmental Inputs 
	Model Simulation 
	Analysis of Model Outputs 

	Results 
	Selection of Model Variables and the Modeling Accuracy 
	Current Potential Distributions of S. mukorossi 
	Future Distribution of S. mukorossi 
	Comparison between the SFA’s Plan and Future Distributions 

	Discussion 
	Changes of the Distribution Range of S. mukorossi 
	Uncertainties in Projections 
	Implications for Forest-Based Bioenergy Planning 
	Limitations of the Current Study 

	Conclusions 

