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Abstract: Fires in urban-forest ecosystems (UFEs) are frequent with complex causes, posing a serious
hazard to human lives and infrastructure. Thus, quantifying wildfire risks in UFEs and their spatial
pattern is quintessential to develop appropriate fire management strategies. The aim of this study was
to explore spatial (geographically weighted logistic regression, GWLR) versus non-spatial (logistic
regression, LR) modelling approaches to determine the relationship between forest fire occurrence
and driving factors in Yichun, a typical urban-forest ecosystem in China. As drivers of fire, 13 factors
related to topographic, vegetation, infrastructure, meteorological and socio-economy were considered
and regressed against fire occurrence data from 1980 to 2010. Results demonstrate the superiority
of GWLR models over LR in terms of prediction accuracy, goodness of fit and model residuals.
The GWLR model further captured the spatial variability of driving factors over a broad study
area, and the fire likelihood maps identified areas with different zones of fire risk in the study area.
In conclusion, the study demonstrates quantitatively and spatially the importance of accounting
for local variation in drivers of fires, thereby improving fire management and prevention strategies.
The findings also contribute to the emerged field of fire management and fire risk assessment in UFEs.

Keywords: spatial heterogeneity; geographically weighted logistic regression; fire risk;
wildfire management

1. Introduction

Uncontrolled forest fire results in loss of forest resources and land degradation, while affecting
air quality and posing a threat to human life and property [1–3]. Urban-forest ecosystems (UFEs)
are zones that consist of urban areas and surrounding forests. In China, the UFEs usually refer to
the forested city or urban area with high forest coverage. Compared to natural forests or remote
forested regions, more forest fires occur in UFEs due to the high frequency of human activities and
density of infrastructure [4]. Although these fires are generally small due to early detection, intense
suppression efforts and better firefighter accessibility [5], every ignition source has the potential to
grow into a large fire. The large and increasing number of lives and infrastructures being exposed
to wildfire hazard highlights the need to quantify wildfire risks and understand the fire drivers in
UFEs. However, the causes of UFE fires are usually more complex than those in pure forested areas
due mainly to various human activities, thus a fire prediction tool, which can fully account for the
complexity between fire occurrence and its driving factors, is urgently needed.
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Fire prediction modelling has become an important tool for forest managers to recognize the
timing and location of fire events and to optimize the allocation of resources for firefighting [6]. In the
past decade, many different statistical methods have been applied to identify fire driving factors
and establish fire prediction models by considering all possible environmental, topographic, climatic
and infrastructure factors. These include the artificial neural network [7], the maxent algorithm [8],
the autoregressive model [9], classification trees [10], global logistic regression [11–19], multiple linear
regression and random forest [20–22], of which logistic regression is the most commonly used tool.

On the other hand, improved 3S technology (Remote Sensing, RS; Geographical Information System,
GIS; Global Position System, GPS) enable the application of large spatial information of factors such
as topography, vegetation, and climate for fire modeling [17–19,21,23,24], which provides a valuable
contribution to the improvement of fire management and prevention strategies. However, the most
commonly used methods mentioned above have not fully considered the spatial heterogeneity of the
relationship between fire occurrence and its potential drivers, but have instead assumed that model
parameters are valid and homogeneous for the entire study area, or assumed that the models are spatially
stationary or non-spatial. In reality, however, the relationship between fire ignitions and driving factors are
spatially non-stationary, and the coefficients of model parameters vary with spatial location [4].

Geographically weighted regression (GWR) is a useful analytical tool that can provide information
on spatial non-stationarity in relationships between variables [25]. Geographically weighted logistic
regression (GWLR) is an extension of GWR; currently being applied in the fields of fire occurrence
prediction and fire risk mapping, and its superiority over general logistic regression (LR) has started
to manifest [4,26,27]. However, to date, comprehensive analyses of the application of GWLR
to understand specific relationships between variables and forest fire in China arelimited [28];
in particular, whether GWLR is a proper method for fire risk evaluation in UFEs is still a critical
question that needs to be answered.

Thus, the aims of this study were to (1) evaluate the applicability of GWLR to identifying the
spatial-informative driving factors of fire occurrence prediction in Yichun, China; (2) explore the
importance of considering spatial interaction between factors and fire occurrence on fire risk analysis;
and (3) map the likelihood of fire occurrence based on selected fire driving factors and propose
relevant fire management perspectives for the study area. The study will provide valuable insights
to better understand drivers of fire in UFEs in China by accounting for spatial variation of potential
driving factors.

2. Materials and Methods

2.1. Study Area

The study was conducted in Yichun city, which is located in the Chinese boreal forest ecosystem
(127◦37′–130◦46′ E, 46◦28′–49◦26′ N) with an administrative area of 32,759 square km and average
altitude about 600 m (Figure 1). Yichun has the world’s largest plantation area of Pinus koraiensis.
The average annual air temperature is 1 ◦C; average annual precipitation is between 750 and 820 mm.
Yichun is a typical forest resource-based urban city and ecological garden city, which make it a
famous destination for tourism. Because of its geographic location, Yichun exhibits some common
characteristics of boreal forest ecosystems and is threatened by fire [29,30]. The fire season extends
from April to October and ignitions are mainly caused by human activities [31]. According to Forest
Fire Prevention Office of Yichun, China, the majority of reported fires during the period 1980–2010
occurred due to human activity (31.78%), railways (29.2%), electrical wires (4.5%), lighting (5.47%),
and other unknown reasons (29.05%) (Figure 1). There is an utmost need in this area for investigation
of fire driving factors and mapping of fire risk for forest managers.
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Figure 1. Maps of the study area, fire locations and fire cause distribution. “Human induced” cause in
the pie chart represents both intentional and unintentional fires due to various human activities.

2.2. Data Acquisition

Forest fire data from 1980 to 2010 were collected from the Forest Fire Prevention Office of Yichun,
China. This dataset included fire location, size, cause, and date of occurrence. Since both LR and
GWLR models require binary target variables, we randomly generated non-fire points as control points
(1:1.5 as the fire ignition number) [15,32]. To avoid creating control points that would be on the same
or nearby location to fire ignition points, a buffer zone of 1000 m around fire points was considered
as a barrier, excluding the control points that fell into the buffer [33]. The double random principle
of time and space was adopted during the random generation process; i.e., the space coordinates
were randomly generated, while the time points were selected from 360 months from 1980 to 2010
(repeatable), then the space and time points were randomly combined together. Our dependent
variables consisted of real fire points (n = 479) and the generated control points (n = 720). For the
purpose of analysis, we assigned a value of 1 to fire points and 0 to control points.

The independent variables used in this study consist of five categories, including topography,
vegetation type, infrastructure, meteorology, and socio-economic factors, with a total of 13 explanatory
variables. The meteorological dataset was composed of average monthly precipitation, average
monthly relative humidity, and average monthly temperature. Elevation, slope and aspect were used
as topographic variables while distance to rivers, railways, roads and settlement were used as proxies
of infrastructure, and forest types as a descriptor of vegetation. For socio-economic drivers, per capita
GDP and population density were used as descriptors. Data sources and extraction methods are
presented in Table 1.
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Table 1. Variables included as predictors in the model.

Variable Name Code Data
Type/Resolution Data Description and Extraction Source

Climate
Average monthly

precipitation
Preci_m_avg

Raster/1 km

The climate factors of each fire point and control point
were retrieved from the HADCM2 climate model. The
HADCM2 climate model, developed by the Hadley
Centre for Climate Research and Prediction, was used in
coupled mode. The original dataset was collected from
the Intergovernmental Panel on Climate Change (IPCC)
and rescaled. The corresponding monthly climate
factors for each fire and control point were retrieved
from ArcGIS19.0 environment.

Earth System Science Data
Sharing Platform, China

Average monthly
relative humidity RH_m_avg

Average monthly
temperature Temp_m_avg

Topographic
Elevation Elev

Raster/25 m

Elevation, slope and aspect values were retrieved from
the Digital Elevation Model (DEM) data with resolution
of 25 m. Elevation and slope values for each fire and
control point were used directly in the modelling
process. The aspect was categorised as flat, North
(315–45◦), East (45–135◦), South (135–225◦) and West
(225–315◦). The proportion of each variant in the study
area was calculated and the corresponding value for
each fire and control point was used to develop
the model.

National Administration of
Surveying, Mapping and

Geoinformation of China, 2002

Slope Slope

Aspect Aspect

Vegetation
Forest type Forest type Raster/1 km

Forest vegetation types for each fire and non-fire point
were extracted from the vegetation map (1 km
resolution). Accordingly, four categories were identified:
(1) needle leaf deciduous and needle leaf evergreen trees;
(2) broadleaf deciduous trees and broadleaf deciduous
shrubs; (3) grass and agricultural crops; and (4) urban
construction land, permanent wetland and barren or
sparsely vegetated land. These vegetation types were
extracted from the vegetation map layer for each fire
point and control point in ArcGIS 10.0; and the
proportion of each vegetation type located in a fire or
control point was used during modelling.

The Cold and Arid Regions
Science Data Center, China, 2000

Infrastructure
Distance to river Dis_ river

Vector/1:250,000

Basic geographic information was obtained from the
National Administration of Surveying, Mapping and
Geoinformation of China. The data were collected in
2000. The variables were retrieved based on a 1:250,000
Digital Line Graphic (DLG) map and included: distance
to nearest railway, distance to nearest road and distance
to nearest river.

National Administration of
Surveying, Mapping and

Geoinformation of China, 2002

Distance to railway Dis_ railway
Distance to road Dis_road

Distance to
settlement Dis_sett

Socio-economic
Per Capita GDP CGDP

Raster/1 km

Two variables represent the Per Capita GDP and annual
population density of the study area. This data was then
correlated with fire points and control points using the
ArcGIS Raster Extraction tool.

The Road of
Revitalization-Thirty Years of
Reform, Heilongjiang, 2009

Statistical Yearbook of China
2000, 2001

Density of
population Den_Pop

The codes chosen may not include the whole description of the variable for simplicity purposes.

2.3. Modeling Approaches

Both LR and GWLR modelling approaches were applied to predict fire occurrence in the UFEs.
The LR, a non-spatial model, is a generalized linear model with a binomial distribution for the response
variable. It has been widely used on forest fire-related studies and the model has been described in
detail elsewhere [11,28,32,34]. The GWLR model assumes that the relationship between the dependent
variable and independent variables is spatially dependent and varies withlocation [35]. It is an
expansion of the global (non-spatial) LR model that takes into account geographic location factors and
carries out LR for each location. Therefore, the estimation of parameter coefficients in a GWLR model
is spatially variable. The GWLR model can be written as follows:

log it(P) = log
(

P
1− P

)
= β0(ui, vi) + β1(ui, vi)x1 + β2(ui, vi)x2 + . . . + βn(ui, vi)xn (1)

where (ui,vi) are geographic coordinates for location i, and β0(ui,vi), β1(ui,vi), β2(ui,vi),..., βn(ui,vi) are
the regression coefficients for location i. The calculation of estimated coefficients for location i uses
weighted least-squares regression, namely:
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β̂(u, v) =
(

XTW(u, v)X
)–1

XTW(u, v) log it(P) (2)

where β̂(u,v) is the estimated value of β, W(u,v) is the weighting matrix, and X is the independent
variable matrix [28,36,37].

To fit the model, Adaptive Gaussian function was employed, as it has shown strong performance
in previous studies [28]:

Wij = exp (−d2
ij/θ2

i(k)) (3)

where Wij is the weight value of an observation at location j for estimating the coefficient at location i,
dij is the Euclidean distance between locations i and j, θ is the bandwidth size, and θi(k) is the kernel
bandwidth size defined as the kth nearest neighbor distance.

In a GWLR model, estimation of parameters is related to the bandwidth used by the kernel
function; thus, the optimal kernel bandwidth was determined by corrected Akaike’s Information
Criterion (AICc) [38,39].

2.4. Model Fitting and Evaluation

Prior to model fitting, multicollinearity analysis was conducted, and no correlation between
independent variables and dependent variables was detected. Therefore, all predictor variables were
included during model fitting. Two types of tests (i.e., the full variables test and significant variables
test) were set up to compare the fitting effect of LR and GWLR models. To avoid the influence of sample
distribution on test results, the complete dataset was divided into 60% training and 40% validation
sets [21]. This procedure was iterated five times, resulting in five data sub-sets and a complete dataset.
Procedures for the two test types were as follows: (1) in the all variables test, 13 independent variables
were used to fit the five data sub-sets and the complete dataset; (2) in the significant variables test,
the forward Wald method was used in the LR model to select significant variables. In the GWLR model,
we used an approach applied by previous researchers to determine whether local parameter estimates
were significantly stationary or not [28,35]. That is to say, the variables might exhibit non-stationarity
if the inter-quartile range (25% and 75% quartiles) of the GWLR parameters was greater than ±1
standard deviations (SD) of the equivalent global LR parameters. This approach was applied in the
GWLR model to fit five data sub-sets, and variables that appeared to be significant in space in at least
three out of five intermediate models were included in the final model. In order to model the entire
study area, we applied local polynomial interpolation using ArcGIS 10.2 to estimate coefficients for
the non-observed values [3]. The LR model was computed using SPSS 19.0 software (IBM, New York,
NY, USA) while GWR4.0 software (Department of Geography, Ritsumeikan University, Kyoto, Japan,
updated 7 May 2012) was used for fitting the GWLR model.

To assess the predictive performance of LR and GWLR, AIC, AICc, and sum of squared errors
(SSE) were employed. The smaller the AIC, AICc, and SSE values are, the better the performance of
the model fitting will be. Additionally, Receiver Operating Characteristic (ROC) curve analysis [40]
was used to evaluate the prediction accuracy of these two models. The area under the curve (AUC)
was the measurement criterion of model prediction accuracy [41,42], where the larger the AUC
value is, the better the performance of the model fitting will be [43]. In addition, the Youden
criterion (i.e., Youden criterion = sensitivity + specificity − 1) was used to determine the cut-off
point derived from ROC curve analysis. If the predicted probability of fire occurrence is greater than
the cut-off point, there is a considerable chance of forest fire occurrence; otherwise, there is no forest
fireoccurrence [11,15]. Based on this, the correct classification rate of both models was computed,
and the classification accuracy of the two models compared.

The total residuals of LR and GWLR models in the full variables and significant variables tests
were calculated. We also performed interpolation using the Kriging method on the residuals of LR and
GWLR models, respectively in ArcGIS 10.0. Besides, the spatial autocorrelation pattern in residuals of
both models was compared using correlograms [44,45]. The smaller the value of Moran’s I, the better
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the performance of the model fitting, taking into account spatial structure [46]. Correlograms and
Moran’s I values were calculated using the Rookcase software package inMicrosoft Excel [47,48].

2.5. Classification of Fire Risk Zones

Likelihood maps of fire occurrence were created based on the LR and GWLR models. The mapping
process was conducted using Kriging interpolation in an ArcGIS 10.2 environment. Furthermore,
cut-off values of each model (the average cut-off value of the five data sub-sets and complete dataset)
were used to divide the study area into three fire risk zones following Changet al. [19] as: (1) low fire
risk zone (cutoff = 0), (2) medium fire risk zone (cutoff = 0.5) and (3) high fire risk zone (cutoff > 0.5).
Spatial distribution characteristics of the likelihood of forest fire occurrence were analyzed and high
fire risk zones within the study area were identified.

3. Results

3.1. Overview of LR and GWLR Models

3.1.1. Model Fitting

The contribution of each explanatory variable and significant variable in the LR and GWLR
models, as well as the respective estimated coefficients are given in Table 2. For both modeling
approaches, negative correlations were found between fire occurrence and distance to railway, distance
to settlement, slope, elevation, monthly average relative humidity, and per capita GDP; while a
positive correlation was observed between fire occurrence and distance to the road and average
monthly temperature. While population density negatively correlated with fire occurrence in the LR
model, distance to river and monthly average precipitation correlated positively and negatively with
fire occurrence, respectively in GWLR. Explanatory variables that had no significant correlation with
fire occurrence for both modeling approaches were vegetation type and aspect. In addition, population
density in the GWLR model and monthly average precipitation in the LR model had no significant
correlation with fire occurrence. Evaluation of model performance revealed that the GWLR model had
smaller AIC, AICc and SSE values; but a slightly higher AUC and prediction accuracy for each data
sub-set and the complete dataset than the LR model (Table 3). The average prediction accuracy of the
LR model was 76.69% and 65.62% for training and validation sets, respectively, whereas the GWLR
model predicted the likelihood of fire occurrence with 82.04% and 81.48% accuracies for the training
and validation sets, respectively.

3.1.2. Residual Analysis

Both total residuals and spatial pattern of residuals for the LR and GWLR model were produced
for the all variables test and significant variables test. The distribution of residual for both models
appeared to be more or less symmetrical, with no serious bias; and the median residuals of the GWLR
model were closer to 0 compared to the LR model (Figure 2). With regard to the spatial pattern
of residuals, the GWLR model had the best fit; i.e., overall smaller residuals across the study area
(Figure 3). In contrast, the overall residual of the LR final model was higher than that of GWLR and
spatially uneven. The positive (under-prediction) and negative (over-prediction) residuals of the LR
model were also clustered within the study area. The Moran’s I values were smaller for the GWLR than
the LR model at different lag classes (Figure 4), indicating that the GWLR modelling had minimized
residuals that might be caused by spatial autocorrelation.
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Table 2. Coefficient estimates of all variables and significant variables tests for the logistic regression (LR) and geographically weighted logistic regression
(GWLR) models.

Statistics βintercept βDis_railway βDis_road βDis_sett βDis_river βVeg_type βSlop βAspect βElev βRH βTemp βPreci βCGDP βDen_pop

All variables
LR model
Estimate 9.931 −0.013 0.147 −0.211 0.026 0.098 −0.029 4.268 −0.004 −0.019 0.036 0.011 −0.0002 −0.219
S.D. 1.101 0.005 0.031 0.027 0.012 0.279 0.017 3.204 0.0006 0.012 0.015 0.075 0.00003 0.030
Estimate − 1s.d. 8.830 −0.018 0.116 −0.238 0.014 −0.181 −0.046 1.064 −0.0046 −0.031 0.021 −0.064 −0.00023 −0.249
Estimate + 1s.d. 11.032 −0.008 0.178 −0.184 0.038 0.377 −0.012 7.472 −0.0034 −0.007 0.051 0.086 −0.00017 −0.189

GWLR model
Minimum 7.335 −0.064 −0.147 −0.240 −0.006 −0.446 −0.033 0.041 −0.00583 −0.064 −0.0003 −0.188 −0.0003 −0.233
25% quartile 8.518 −0.056 0.056 −0.202 −0.0003 −0.277 −0.024 1.514 −0.0043 −0.035 0.031 −0.132 −0.0003 −0.211
Mean 9.817 −0.038 0.078 −0.184 0.013 −0.120 −0.019 2.451 −0.00358 −0.019 0.045 −0.065 −0.0002 −0.202
Median 9.745 −0.039 0.089 −0.179 0.005 −0.132 −0.020 2.403 −0.0034 −0.014 0.050 −0.062 −0.0002 −0.201
75% quartile 11.268 −0.020 0.136 −0.164 0.029 0.059 −0.016 3.484 −0.00278 −0.002 0.064 −0.001 −0.00008 −0.192
Maximum 12.449 −0.014 0.173 −0.145 0.044 0.143 −0.002 4.580 −0.00212 0.004 0.071 0.063 −0.00002 −0.176

Significant variables
LR model
Estimate 0.047 −0.015 - - −0.033 - −0.063 - −0.004 0.018 - 0.099 - -
p−value 0.969 <0.001 - - <0.0001 - <0.001 - <0.001 0.005 - 0.03 - -
S.D. 0.308 0.004 - - 0.007 - 0.011 - 0.0002 0.006 - 0.034 - -

GWLR model
Minimum 4.740 −0.068 −0.159 −0.241 −0.003 - −0.036 - −0.006 −0.058 - 0.037 −0.0004 -
25% quartile 5.333 −0.061 0.055 −0.206 0.002 - −0.028 - −0.004 −0.048 - 0.045 −0.0004 -
Mean 5.824 −0.043 0.080 −0.190 0.015 - −0.023 - −0.004 −0.041 - 0.069 −0.0003 -
Median 5.965 −0.044 0.089 −0.187 0.006 - −0.024 - −0.003 −0.039 - 0.061 −0.0004 -
75% quartile 6.341 −0.024 0.142 −0.171 0.030 - −0.018 - −0.003 −0.035 - 0.086 −0.0002 -
Maximum 6.707 −0.018 0.178 −0.150 0.049 - −0.005 - −0.002 −0.030 - 0.116 −0.0001 -

The abbreviated variable names are the same as in Table 1.
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Table 3. Comparison of goodness of fit and prediction accuracy of LR and GWLR models in all variables (A.V.) and significant variables (S.V.) tests.

Dataset Model
AIC AICc SSE AUC Cut-Off

Prediction Accuracy (%)

Training Set
(60% Data)

Validation
(40% Data)

A.V. S.V. A.V. S.V. A.V. S.V. A.V. S.V. A.V. S.V. A.V. S.V. A.V. S.V.

Sample 1 LR 1603.59 1665.92 1603.85 1666.05 257.14 339.09 0.827 0.683 0.438 0.381 77.8 68.1 76.3 68.1
GWLR 1504.49 1542.29 1507.32 1543.80 227.32 238.54 0.865 0.853 0.433 0.415 79.7 77.4 85.2 83.8

Sample 2 LR 1615.02 1637.89 1615.28 1638.03 258.97 336.73 0.814 0.669 0.400 0.384 78.0 67.9 75.1 63.9
GWLR 1516.63 1486.21 1519.49 1496.31 229.27 210.74 0.854 0.879 0.336 0.385 77.2 80.1 83.9 86.6

Sample 3 LR 1599.73 1626.39 1599.99 1626.50 256.66 332.46 0.823 0.693 0.395 0.414 77.3 69.2 75.3 69.8
GWLR 1491.39 1471.72 1496.36 1480.67 220.07 210.39 0.870 0.883 0.395 0.364 79.8 80.4 85.8 86.1

Sample 4 LR 1567.02 1615.77 1567.28 1615.91 251.37 339.67 0.833 0.686 0.444 0.395 78.3 68.0 75.7 67.7
GWLR 1451.52 1516.59 1469.29 1518.07 224.21 234.06 0.866 0.855 0.419 0.431 80.0 77.9 85.9 83.6

Sample 5 LR 1560.97 1819.49 1561.23 1819.56 248.80 355.93 0.833 0.596 0.424 0.338 77.9 65.3 75.2 48.2
GWLR 1478.60 1664.90 1480.13 1665.16 226.20 267.36 0.863 0.814 0.383 0.422 78.0 75.1 84.9 83.8

Complete dataset LR 2670.82 3331.48 2670.97 3331.53 431.58 568.22 0.820 0.676 0.429 0.410 77.5 67.8 - -
GWLR 2534.87 2616.65 2535.87 2617.27 398.32 415.33 0.847 0.835 0.440 0.355 78.5 73.7 - -

AIC = Akaike’s information criterion; AICc = AIC with a correction for finite sample sizes; SSE = sum of squared errors of prediction; AUC = area under the curve. For the complete
dataset, the data were not divided into training or validation datasets, so we only calculated one prediction accuracy for the all variables and significant variables tests.
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3.2. Spatial Distribution of Fire-Drivers

Spatial interpolation of the estimated coefficient of explanatory variables included in the
GWLR model was performed using the complete dataset to better understand their spatial pattern.
The estimated coefficients of the GWLR model showed that distance to railway, distance to settlement,
elevation, slope, population density and per capita GDP were negatively correlated with fire occurrence
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over the entire study area, while aspect and average monthly temperature correlated positively with
fire occurrence in the majority of the study area. Other variables, including distance to road, forest
type, distance to river, average relative humidity, and precipitation showed both positive and negative
relationships over the study area (Figure 5).
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The spatial heterogeneity of coefficients of selected significant variables, such as distance to
railway, distance to residential area, average relative humidity, elevation and per capita GDP showed a
negative correlation with forest fire occurrence across the study area (Figure 6). However, the influence
area of other variables on fire occurrence concentrated in some specific parts of Yichun. The average
monthly precipitation and distance to river only showed a significant positive relationship with forest
fires in the south and north of Yichun, respectively. Both slope and distance to road have a strong
negative correlation with fire occurrence at the center of the study area; distance to road also positively
correlated to fire occurrence in the south and north of Yichun.
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Figure 6. Spatial patterns of estimated GWLR coefficient for selected significant variables. If the
t-value of the estimated coefficient for a particular variable is <−1.96 or >1.96, then the variable had a
significant effect on fire occurrence; otherwise the variable was considered as insignificant. Negative
coefficients are mapped with cold colors (blue), and positive coefficients are mapped with warm colors
(orange to red). The abbreviated variable names are the same as in Table 1.
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3.3. Fire Risk Classification

Maps of the likelihood of fire occurrence show that fire ignition was more likely to occur in the
central region of Yichun, where the majority of forest-related human activities have taken place, with
low possibility of fire detected around the peripheral regions (Figure 7A1,A2). In addition, fire risk
zone maps derived from the cut-off values of LR and GWLR models showed more or less similar fire
risk distribution in the study area; however, the GWLR model classified more high and moderate fire
risk zones than the LR model (Figure 7B1,B2). The map obtained from both models shows that high
fire risk zones were concentrated in the central region of Yichun; moderate risk zones surrounded the
high risk zones, covering only minor regions of the study area; the low fire risk category covered the
majority of the study area.
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GWLR models. The cut-off values for fire risk zone classification are 0.39 and 0.35 for the LR and
GWLR models, respectively.

4. Discussion

The study demonstrates spatial variability in fire occurrence and its drivers in the UFEs, and the
GWLR modelling approach captures this variability better than the LR. The GWLR model has better
classification accuracy than non-spatial LR models (Table 2), with small spatial residuals(Figures 2–4).
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This is attributed to the fact that the GWLR model is not designed to model spatial autocorrelation;
but rather estimates local parameters explicitly at each data point, which can account for spatial
heterogeneity [37]. Our result is consistent with previous studies that demonstrated higher classification
accuracy with GWLR than a non-spatial logistic regression modelling approach [3,4]. The results
also show that the causes of spatial variability in fire occurrence in UFEs are related to few anthropic
and natural factors, notably infrastructure development, topography and weather variables. When
studying factors that influence significantly the likelihood of fire occurrence, it is essential to consider
regional variation in environmental and social conditions, as the same variables may function differently
depending on the location and scale of analysis [49].

In the present study, the most important fire drivers in the UFEs were distance to railway, distance
to river, slope, elevation and monthly average relative humidity. However, some variables such as
distance to road, distance to settlement, precipitation, and per capita GDP are only identified as main
fire drivers in the GWLR model. Fire occurrence was negatively correlated to distance to railway,
distance to settlement, elevation, relative humidity and per capita GDP (Figures 5 and 6). Railways
reflect a transportation corridor in Yichun, and national fire records reveal that the majority of fire
occurrences during this study period were accidental and negligent fires caused by human activities
in and around railways, fire accidents by machinery, or lack of controlled burning activities near the
tracks and railway infrastructure. Similar negative correlation between distance to railway and fire
frequency was reported in the Upper Midwest states and Missouri and boreal forest in China [50–52].
On the contrary, Guo et al. [53] reported a positive relationship between fire and distance to railway
in subtropical forest in China and Rodrigues et al. (2014) [3] reported both positive and negative
relationships with spatial distribution in the study area. This discrepancy reflects that the effects of
distance to railway on fire occurrences are site-specific. The negative relationship between distance
to settlements and fire occurrence in the GWLR model suggests that ignition is most likely to occur
near settlements, since most fires are caused by various human activities, such as slash burning and
clearing agricultural residue. Our findings agree with previous studies that demonstrated significant
negative correlations between fire occurrence and human settlement and activities [32,54–57].

Distance to road showed both significant positive (in the north and south of Yichun) and negative
(in the central parts) influence on the likelihood of fire occurrence, revealing strong spatial variation
in the influence of roads on fire occurrence. Distance to road has often been found to be related to
human caused accidental or negligent fires [46,58,59]. Specifically, this risk appears to be higher in
Wildland-Urban Interface (WUI) zones [15,60] where population and human infrastructure facilities
are close to forested zones [61]. The positive relationship between road and fire occurrence in northern
and southern Yichun is a surprising result and difficult to explain, as these areas are relatively far
away from urban areas and road density is low. More fires occur in the forests in these areas and may
correlate statistically with greater distance from roads.

Results from the present study show that some topographic and weather variables were found to
be important drivers of fire in UFEs. It has been shown that lower elevation and flatter areas correlate
positively with fire occurrence [62,63]. This is the case in many regions of China [30], as the majority
of people reside at lower elevations in the Chinese boreal forest, and the same findings have been
reported elsewhere [64–66]. Elevation likely influences fire frequency through surfacemoisture [67],
species composition [68], and fuel moisture [69], which have been shown to increase with elevation.
In addition, fire ignitions preferentially occur at lower elevations and at less steep slopes due to easy
access by humans. Generally, steep slopes imply greater topographic roughness and are more difficult
for humans to access [70]. As expected, average monthly relative humidity showed a significant
negative correlation with fire occurrence over the whole of Yichun (Figure 6). High relative humidity
induces an increase in moisture content of the fuel, thereby reducing the likelihood of fire. The GWLR
model also identified a positive correlation between precipitation and fire occurrence, meaning high
precipitation will increase the possibility of fire ignition. This might be related with increased growth
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of the herbaceous layer, which in turn increases the amount of fuel load. Similar findings were reported
in other studies [71,72].

Socio-economic factors, population density and per capita GDP were negatively correlated with
the likelihood of fire occurrence. Particularly, the probability of fire occurrence is lower in the northern
part of the study area where per capita GDP is higher than the rural parts of the study area. One
possible explanation would be a shift from traditional use of fire for heating and cooking to the use
of modern fuels in a controlled environment. Similarly, as population density increases, availability
of land resources decreases, which in turn reduces the likelihood of fire. Previous studies on the
relationship between fire and GDP [36,73] have found similar results. As a whole, GDP is an important
factor to consider at a regional scale, as the probability of fire occurrence is always greater when the
per capita GDP is low. Among explanatory variables considered in the present study, vegetation type
and aspect appeared to play no role in predicting the likelihood of fire occurrence in the study area.
The relatively simple spatial composition of vegetation type in Yichun might be the cause of the weak
relationship between vegetation type and fire occurrence, which is consistent with other studies [74,75].
Aspect is regarded as a critical factor of fire behavior, through its influence on wind speed, but was
found to be poorly related to fire occurrence [76]. It is not surprising that aspect did not exhibit spatial
variability as it is a pre-determined position in the landscape.

5. Conclusions and Management Perspectives

This study provides an improved understanding of the spatial variability of fire occurrence
in Yichun, China, a typical UFE, as well as the relative importance of various underlying factors.
Non-spatial global (LR) and spatial (GWLR) models were used to explore wildfire occurrence patterns
and the main drivers. Compared to the LR model, the GWLR model demonstrated better performance,
evidencing that spatially varying relationships improve the explanatory power of global LR models.
The results show that both environmental and human factors influence the likelihood of fire occurrence
in Yichun but the specific influence is spatially variable. The likelihood of fire occurrence was also
mapped based on the two models, which in turn provided valuable information for improving
fire prevention activities for local forest managers. This assessment contributes to the field of fire
management and fire risk assessment in UFEs in China, as it quantitatively and spatially revealed the
importance of accounting for local variation when modeling fire drivers.

Forest fire managers are often uncertain about the spatial locations where fire is likely to occur, thus
linking fire ecology and management is paramount [77]. In this regard, the results of this study provide
evidence about the importance of infrastructure and climate parameters as drivers of fire occurrence in
the UFEs. From forest fire management perspectives, the findings have the following implications:
(1) fire management policies should be developed based on spatial patterns of factors that will drive the
maximum likelihood of fire occurrence; (2) allocation of resources for intensive fire prevention should
be made based on the level of fire risk; (3) forest fire managers should implement fire prevention and
fire suppression practices in high fire risk zones (such as railway tracks); and (4) planned burning
would be a good option to reduce fuel loads and suppress unintended large fire, particularly around
infrastructure facilities and settlements.
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