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Abstract: Forests are important place for outdoor recreation and scenery appreciation. So in order
to better meet the needs of the public, forest appreciation has received increasing attention from
foresters in recent years. However, related research is still limited. Therefore, this paper seeks to
examine the relationship between forest colors (measured by specific elements and spatial indices
of color) and Scenic Beauty Estimation values. We researched Jiuzhai Valley in China by selecting
104 pictures to determine the scenic beauty estimation values of forests in a mountainous region.
Quantitative color elements were extracted by programming on Matlab, and spatial indices of color
patches were extracted by ArcGIS and FRAGSTATS. A total of 23 indices were obtained to explain the
color characteristics of each forest picture. The results showed that the yellow and red colors were
the main mutable colors of Jiuzhai Valley in autumn, but the color patches index had no significant
change over time in that season. After partial correlation analysis, principal component analysis, and
cluster analysis, we found that 14 color elements, eight color patch factors and six particular indices
had an effect on the SBE values, which can then be used to efficiently measure and enhance the forest
color beauty of Jiuzhai Valley.
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1. Introduction

Forests play a crucial role in relieving the population from the effects of urbanization, allowing
visitors to get closer to nature and to restore their bodies and mind. Therefore, based on their ecological
functions, forests have become a research hotspot with respect to improving their service value. Some
research shows that improving scenic beauty is effective, and that the color of plants is an important
effective indicator [1]. Color is a visual characteristic triggered by light and differing from spatial
attributes. It stimulates human visual nerves more than other factors such as the shape, size, etc. [2].
Plant color has a relatively obvious effect on the transmission of forest visual characteristics and
the stimulation of the human sensory apparatus. In China, many ecological forests have started
to introduce an increasing number of flowering and discoloring species during the transformation
process. However, there is little research into the relationship between forest colors and scenic beauty.
Such research can provide a scientific basis for the management and operation of forest sceneries by
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assessing and analyzing the relationship between forest color indices and scenic beauty values, and it
can help foresters to carry out tending work that meets the public’s aesthetic needs.

The aesthetic analysis of a single color is common among color studies [3]. However, the color
definition of an individual plant is still unclear in color aesthetics. For example, a yellow daffodil is
often regarded as a type of green plant by people. Moreover, different populations have aesthetic
differences with respect to individual plants [4]. In practical applications, the aesthetic experience
of plant colors is only applicable to guiding the configuration of individual trees, and its application
range is limited. Currently, aesthetic studies of single plants are almost entirely absent. Rather, research
is mainly carried out on the color composition of more complex plant groups, and these mostly focus
on the community color at middle or small scales.

At present, research into community colors and public aesthetics proceed in two directions.
The first direction involves a theoretical evaluation: viz., color harmony theory. Color harmony is the
theoretical system for exploring the relationship among different colors based on an aesthetic view.
The relationship between the adjacent color, contrast colors, and similar colors can be used to select
plant color configuration modes for better scenery [5]. Color harmony theory is usually applied to the
evaluation of several color combinations, and requires the recognition of main colors to determine
the visual relationship between colors. For example, contrast colors such as red and green of plants in
autumn can stimulate vision, while adjacent colors such as red and yellow plants can make a landscape
look modest. Therefore, color harmony theory is mostly used to determine the color configurations of
plants on a small scale or with fewer species. In recent years, some scholars relied on the following
claim: “when mixed colors turn to neutral grey, they are symbols of color harmony.” This hypothesis
is central to the Munsell Color System for optimizing the color of plant communities [6]. That is to say,
through replanting and thinning, when the values of brightness and saturation are both 50% in the
forest landscape, the scenery is said to be harmonized in terms of its overall color. Since then, some
scholars have used the same methods to obtain an optimized landscape, by issuing questionnaires
based on it. The results showed that landscape optimization under the guidance of color harmony
theory had a demonstrable and positive effect on the public [7]. However, the theory of color harmony
is based on aesthetics, which are easily affected by social factors such as human history, geography,
and culture [8]. Consequently, it has a certain bias as a measurement standard for color aesthetics.

The second direction is quantitative: viz., scenic beauty estimations. This approach involves
judging the level of beauty by having the public or experts score the landscape [9]. This direction
pays more attention to the public’s aesthetic responses and population differences. Scenic beauty
research has long been carried out and at this point has a mature theoretical and practical basis [10].
The Scenic Beauty Estimation (SBE) and Law of Comparative Judgment (LCJ) methods are the most
commonly used [9,11]. However, these evaluation systems usually score the overall factors combining
the community structure, canopy characteristics, plant morphology, seasonal changes, environmental
quality, and more. Usually, the color factor is just a small part. As such, there is a lack of in-depth
studies regarding the relationship between plant colors and aesthetics, and researchers have failed
to sufficiently understand how color compositions affect aesthetics. Recently, some studies in China
began to discuss the impact of different plant colors on SBE scoring. These studies took the proportion
of plant colors, color layout, etc. as their focus. In a study of color composition, Li found that when the
area ratio of Amygdalus davidiana Carr. and other green trees was 2:1 and the distribution of Amygdalus
davidiana was comprehensive or intensive, the community had the largest SBE value [12]. In the single
tree color preferences research, Sun found yellow hue, high brightness and value were related to high
beauty scores of yellow trees, and brightness and saturation were not related to the beauty scores of
brown trees in any way; red trees were the same as yellow ones in terms of their beauty [13]. Recently,
the field of plant color aesthetic research has been extended. Furthermore, the extraction of plant color
factors has been continually enriched. Yet, aesthetic evaluations have always been implemented using
only two types of methods: color harmony theory and SBE. Among these, SBE is better recognized for
its advantages of quantity and demographic distinction.
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In general, a qualitative method is the most common way to research forest color aesthetics, mostly
using type variables to explain forest colors. Nevertheless, the results are not sufficiently precise. This is
mainly related to the development of plant color measurement methods. At present, there are three
main methods for quantifying color elements. One is the visual control method: researchers use color
cards to compare plant colors and derive the closest color value. This is mainly applied in plant color
research with few colors or low precision [10,14]. The second is the instrument measurement method.
This method uses a color measuring spectrometer to measure the plant. The method is highly precise,
but requires very close distance. Thus, it can only measure the color value at a certain point, and
is suitable only for measuring the color of partial plant organs [15]. The third method is a software
quantification method. It uses a digital camera to record forest colors, and combines Photoshop [16],
ColorImpact [17] and other software for image processing, thus quantifying color elements. It is
suitable for forest landscapes with multiple colors or on a large scale. Furthermore, this method is
significantly affected by the environment, light, observation distances, camera sensor performance,
and other factors. It requires removing non-plant factors in the image to reduce the influence of these
colors [13].

In summary, forest colors are an important component to the quality of forest landscapes and to
the aesthetic needs of the public. The study of color and forest scenic beauty is both theoretical and
practical. This study is aimed at surveying forest color beauty at a relatively large scale, namely the
landscape in Jiuzhai Valley, China. That is to say, we try to examine what types of color characteristics
are related to public aesthetic preferences. Our method of image data acquisition is described, and
the quantization of the color elements is explored under the mode of self-programming. Then, after
combining the color patch space indices, we obtained all the factors of forest color, after that the
relationship of these factors and SBE values is analyzed. Using our method, we hope to provide some
suggestions for forest scenery management with similar plant species.

2. Materials and Methods

2.1. Study Area

Jiuzhai Valley in northern Sichuan is the first nature reserve in China to have as its primary
goal the preservation of its natural scenery. It is also a tourist destination with the concurrent titles
UNESCO World Natural Heritage Site, National Key Scenic Spot, and National and Scenic National
Park. It has important value in terms of tourism, with over 5 million visitors in 2016. It has an average
altitude of 3000 meters and forest coverage rate of more than 80%. The research sites we selected
included mountainous landscapes with natural secondary forests, and with a certain proximity to
tourists. The dominant community types are Betula Linn., Alibes Mill., Quercus Linn., Picea wilsonii
Mast., Pinus tabuliformis Carr., and Picea Dietr. Various types of plants change color in autumn, when
the foliage ultimately results in a colorful forest scene of yellow and red.

2.2. Sampling Area Selection

Based on the primary survey of the forest landscape of Jiuzhai Valley and typical sampling
methods, we chose 57 observing sites on three main tourist lines. Essential information from each
sample plot was measured and recorded (Table 1). Longitude, latitude, and altitude were measured
with a GPS instrument (Garmin Montana 650), the height and distance of the mountains were surveyed
using a laser range finder, a compass was used to ascertain the direction of slopes, and a digital light
meter was used to measure the illumination intensity at corresponding periods. The weather situation
and species composition were also recorded.
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Table 1. Essential information of sample plots.

Slope Direction Percent (%) Altitude (m) Distance (m) Height (m) Height Angle (degree)

East 1.8 2648 ± 0 211 ± 0 162.5 ± 0 37.6 ± 0
Northeast 21.8 2453 ± 230 278 ± 115 121.9 ± 63.7 23.9 ± 7.2
Northwest 10.9 2665 ± 264 253 ± 116 146.4 ± 77.6 28.8 ± 5.1

South 9.1 2483 ± 139 285 ± 150 79.8 ± 51.0 17.3 ± 7.1
Southeast 12.7 2525 ± 279 254 ± 56 120.8 ± 68.6 24.1 ± 13.2
Southwest 43.6 2476 ± 208 234 ± 75 121.8 ± 54.8 27.1 ± 7

Total 100 2501 ± 223 252 ± 94 121 ± 60.3 25.5 ± 8.3

2.3. Photography

It was verified in previous studies that the real landscape could be depicted well and truly using
colorized photos [18]. Furthermore, when the image was larger, image analysis was more efficacious
than any other color extraction method. Nonetheless, photo quality and detail were always affected
by environmental factors such as illumination intensity, air quality, and other factors (tourists or
buildings, etc.). Thus, standard operations must be performed to minimize the influential factors
during image acquisition and picture processing [19]. All pictures were collected with a Canon EOS-7D
with 18 million pixels under bright illumination between 10 a.m. and 3 p.m. We acquired the images on
three occasions in 2015: 28 August, 28 September, and 27 October. To guarantee the key characteristics,
we attempted to omit all elements except the forest landscape, and shooting positions, angles, and
modes were unified each time. In total, 171 pictures were collected. We then removed those that
were heavily defoliated or affected by environmental factors, leaving us with a total of 104 photos.
To avoid the effects of different sky colors in each picture, Adobe Photoshop CC software was used
to change the sky color of every image into two forms. One form was the change to pure white for
color quantization, and the pure white can be deleted easily in the color element extraction, so as to
eliminate the influence of sky color. The other form was changing to identical blue with the same white
clouds for the sake of aesthetic value, so that the preferred influence of sky can be deleted (Figure 1).
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Figure 1. Samples of forest sceneries in Jiuzhai Valley: (1a), (2a), (3a), (4a) are four pictures of different
plots, and (1b), (2b), (3b), (4b) are the same scenes as above pictures, but taken in different months.
The above photos were taken in September, and those below were taken in October.

2.4. Scenic Beauty Estimation and Dependability Control

SBE is generally used in forests and other landscape investigations, in addition to simple surveys.
It is more important that the standardized SBE values can effectively reduce deviation caused by
individual variation [18]. Consequently, SBE was adopted to evaluate the forest color landscapes in
Jiuzhai Valley using image questionnaires.
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There is no definition of the population in this paper, and random samplings were taken for the
survey. Many researchers discussed how to choose a sample size from different targets. Nei considered
that 381 samples would be suitable for a 95% confidence coefficient when the statistical population
was sufficiently large [20]; Creswell utilized attributes of questionnaire surveys, and suggested that
the number of formal samples should be more than 350 [21]. This study confirmed the sample size
using the formula from Scheaffer [22]:

n =
N

(N − 1)δ2 + 1
(1)

where n is the sample number, N is the statistical population, and δ is the sample error (here, 0.05).
That is, the confidence coefficient equals 95%. In this study, the statistical population was sufficiently
large, at n ≥ 400 after the calculations.

In consideration of the sample size, survey time, and people selected, the traditional interior
multimedia playback mode was replaced with other methods, to improve the population structure
of subjects and to guarantee the sample size. Polat printed pictures and surveyed some parks [23];
Schirpke used a network for research [24]. We adopted a Web-based survey, with the help of a
questionnaire platform, and issued 600 questionnaires randomly, ultimately collecting 453 of these.
Table 2 shows the basic demographics of the subjects.

Table 2. Basic demographics of questionnaire subjects.

Basic
Information Category Number Percent (%) Basic

Information Category Number Percent (%)

Gender Men 231 50.7 Central China 28 6.1
Women 225 49.3 South China 60 13.2

Age Under 25 years old 58 12.7 Southwest China 56 12.3
26–35 years old 190 41.7 Northwest China 12 2.6
36–55 years old 171 37.5

Annual forest
recreation

times

0 15 3.3
55 years old or older 37 8.1 1–3 142 31.1

Education Primary education 11 2.4 4–10 174 38.2
Junior education 89 19.5 11–20 87 19.1

College 277 60.7 21–100 32 7.0
Graduate 79 17.3 101–200 5 1.1

Region North China 93 20.4 201 or more 1 0.2
Northeast China 47 10.3 Work about

forests?
Yes 49 10.7

Eastern China 160 35.1 No 407 89.3

The image order was determined randomly, and seven grades of beauty classification were chosen
for all evaluators. All participants marked the pictures from −3 to 3, which represent a range from “not
beautiful at all” to “most beautiful.” The language of the questionnaire, case description, and survey
steps were determined based on the investigation standard of SBE by Daniel [25]. As a multiple scoring
type, a reliability test can be used to judge the dependability of the image questionnaire. Therefore,
we utilized the α-coefficient calculation method by Cronbach [12], with the following formula:

α =
k

k − 1

[
1 − ∑k

i=1 Si
2

Sx
2

]
(2)

where k is the number of survey pictures, Si is the score variance of the ith question, and Sx is the score
variance of all the pictures. There were 104 pictures in this study, after calculating α = 0.973, meaning
that the reliability test succeeded.

2.5. Color Element Extraction

2.5.1. Color Quantization Based on the HSV Model

The most popular method of color quantization involves expressing the color information of
digital images using color models. This method is widely used in computer image retrieval. Among
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the many color models, the Hue, Saturation, and Value (HSV) color space (see Figure S1a for more
details) is comparatively closer to the color perception of human eyes. The distance between the
two HSV color points in the color space can be calculated using the Euclidean distance. Thus, it is
helpful to quantify colors that are consistent with human perception [26]. To facilitate quantification,
usually three components of H, S, and V require respective and proper partitioning and classification
to reduce the number of colors. However, when the image colors change slightly, this approach will
result in a less clear attribution of color values near the category threshold. Therefore, in the color
quantization, the choices of quantization classification and quantity are critical [27]. Smith extracted
166 colors in his study [28], and Zhang extracted 36 colors [26]. An excessive number of colors in
quantization will increase the workload and change the sensitivity of the colors. However, if the
number of quantification colors is too small, the research will lose a considerable amount of color
information, ultimately deteriorating the accuracy of the quantification. This paper adopted Chen’s
quantization methods, dividing the HSV color space into 256 colors. Here, H:S:V = 16:4:4 [27]. Then,
we performed subsequent processing. At the same time, the true distribution of the color space is
not uniform. Compared with the uniform quantization method, non-uniform color quantization can
divide colors into the same groups more reasonably. This is suitable for the division of saturation and
value by non-uniform color quantization [28,29] (see Figure S2 for more details). In total, 256 colors
were obtained in this way. Any color that belonged to the same interval after the quantification was
considered the same color.

However, some colors among the 256 quantified were difficult for human eyes to distinguish.
So after non-uniform quantization, this study normalized similar colors into Black, White, and Grey
(see more details in Figure S3), and then 147 colors were ultimately obtained by 144 colors (Figure 2)
together with Black, White, and Grey. In Figure 2, we selected one representative color in the color
classification threshold to fill each interval, but actually, each block represented a type of color range
containing many colors within the threshold value. As shown in Figure 2, H1 and H2, belong to
the red color, H3 and H4 belong to the yellow color, H5, H6, H7, H8, and H9 belong to the green
color, and H10, H11, H12, H13, H14, H15, and H16 belong to the blue-violet color. Then, according
to non-uniform quantization and color normalization processing described above, we completed
the programming using the MATLAB2015a (Math Works) platform, by calculating the pixel value
of each type of color in different images. The results were written into Excel 2013 (see more details
in Figure S4). Figure 3 shows an example of an original pictures converted to a 147-color pattern by
Matlab, thereby simplifying the colors in the photo.

Forests 2017, 8, 63    6 of 19 

reduce the number of colors. However, when the image colors change slightly, this approach will 

result in a less clear attribution of color values near the category threshold. Therefore, in the color 

quantization, the choices of quantization classification and quantity are critical [27]. Smith extracted 

166 colors  in his study [28], and Zhang extracted 36 colors [26]. An excessive number of colors in 

quantization will  increase  the workload and change  the  sensitivity of  the colors. However,  if  the 

number of quantification colors is too small, the research will lose a considerable amount of color 

information, ultimately deteriorating the accuracy of the quantification. This paper adopted Chen’s 

quantization methods, dividing the HSV color space into 256 colors. Here, H:S:V = 16:4:4 [27]. Then, 

we performed subsequent processing. At the same time, the true distribution of the color space is not 

uniform. Compared with  the uniform  quantization method, non‐uniform  color  quantization  can 

divide colors into the same groups more reasonably. This is suitable for the division of saturation and 

value by non‐uniform color quantization [28,29] (see Figure S2 for more details). In total, 256 colors 

were obtained in this way. Any color that belonged to the same interval after the quantification was 

considered the same color.   

However, some colors among the 256 quantified were difficult for human eyes to distinguish. 

So after non‐uniform quantization, this study normalized similar colors into Black, White, and Grey 

(see more details in Figure S3), and then 147 colors were ultimately obtained by 144 colors (Figure 2) 

together with Black, White, and Grey. In Figure 2, we selected one representative color in the color 

classification threshold to fill each interval, but actually, each block represented a type of color range 

containing many colors within the threshold value. As shown in Figure 2, H1 and H2, belong to the 

red color, H3 and H4 belong to the yellow color, H5, H6, H7, H8, and H9 belong to the green color, 

and H10, H11, H12, H13, H14, H15, and H16 belong to the blue‐violet color. Then, according to non‐

uniform  quantization  and  color  normalization  processing  described  above,  we  completed  the 

programming using the MATLAB2015a (Math Works) platform, by calculating the pixel value of each 

type of color in different images. The results were written into Excel 2013 (see more details in Figure 

S4). Figure 3 shows an example of an original pictures converted to a 147‐color pattern by Matlab, 

thereby simplifying the colors in the photo.   

 

Figure 2. Colors after normalizing. Figure 2. Colors after normalizing.



Forests 2017, 8, 63 7 of 19
Forests 2017, 8, 63    7 of 19 

(a)  (b) 

Figure 3. Colors quantization process: (a) an original picture; (b) a picture converted from (a) with 

147 colors in the Hue, Saturation, and Value (HSV) color space. 

2.5.2. Selection of Color Component Indicators 

According  to previous  research,  color  attribute  factors  such  as  the  ratio of main  color, hue, 

saturation,  and  value were  selected  [17,19]. We  selected  five  color  indicators  based  on  current 

research and the color characteristics of Jiuzhai Valley. The total pixels in the original images were 

the same. In this study, skies were classified as background and removed. Therefore, they were not 

included in the calculation. Consequently, the total number of pixels in each image was the number 

of  pixels without  sky  pixels. When  the  proportion  of  color  pixels was  too  small,  the  color was 

relatively difficult to recognize to the naked eye. To simplify the data, in this analysis, colors with a 

proportion of less than 1% were ignored. Based on the color quantization data obtained above, the 

quantitative calculation of each factor component indicators had been carried out. 

1. Hue Ratio (H): a total of sixteen hue ratios (H1, H2, H3, ..., H16), where   ு೔ܣ is the sum of pixels 
of the ith hue;   ௡ܣ is the total number of pixels.   

ܪ ௜ܲ ൌ
ு೔ܣ
௡ܣ

ൈ 100  (3)

2. Saturation Ratio (S): five saturation proportions of S1, S2, S3, Grey, and White, where   ௌ೔ܣ is the 
sum of pixels of the ith saturation interval;   ௡ܣ is the total pixels.   

ܵ ௜ܲ ൌ
ௌ೔ܣ
௡ܣ

ൈ 100  (4)

3. Value Ratio (V): four brightness ratios of Black, V1, V2, and V3, where ܣ௏೔  is the sum of pixels 
of the ith value interval;   ௡ܣ	 is the total pixels. 

ܸ ௜ܲ ൌ
஺ೇ೔
஺೙

ൈ 100   (5)

4. Number of Colors (NC): among the 147 colors, the number of colors with a proportion of no less 

than 1%. 

NC ൌ SUMሺܪ௔ܵ௕ ௖ܸሻ , ௔ܵ௕ܪ ௖ܸ ௜ܲ ൒ 1%  (6)

5. Maximum Hue  Index  (MHI):  ratio  of  the  hue with  the  largest  pixel  proportion, with  the 

exception of Black and White. 

ܫܪܯ ൌ
ெுܣ
௡ܣ

ൈ 100  (7)

2.6. Spatial Index of Color Patches 

Figure 3. Colors quantization process: (a) an original picture; (b) a picture converted from (a) with
147 colors in the Hue, Saturation, and Value (HSV) color space.

2.5.2. Selection of Color Component Indicators

According to previous research, color attribute factors such as the ratio of main color, hue,
saturation, and value were selected [17,19]. We selected five color indicators based on current research
and the color characteristics of Jiuzhai Valley. The total pixels in the original images were the same.
In this study, skies were classified as background and removed. Therefore, they were not included
in the calculation. Consequently, the total number of pixels in each image was the number of pixels
without sky pixels. When the proportion of color pixels was too small, the color was relatively difficult
to recognize to the naked eye. To simplify the data, in this analysis, colors with a proportion of less than
1% were ignored. Based on the color quantization data obtained above, the quantitative calculation of
each factor component indicators had been carried out.

1. Hue Ratio (H): a total of sixteen hue ratios (H1, H2, H3, ..., H16), where AHi is the sum of pixels
of the ith hue; An is the total number of pixels.

HPi =
AHi

An
× 100 (3)

2. Saturation Ratio (S): five saturation proportions of S1, S2, S3, Grey, and White, where ASi is the
sum of pixels of the ith saturation interval; An is the total pixels.

SPi =
ASi

An
× 100 (4)

3. Value Ratio (V): four brightness ratios of Black, V1, V2, and V3, where AVi is the sum of pixels of
the ith value interval; An is the total pixels.

VPi =
AVi

An
× 100 (5)

4. Number of Colors (NC): among the 147 colors, the number of colors with a proportion of no less
than 1%.

NC = SUM(HaSbVc), HaSbVcPi ≥ 1% (6)

5. Maximum Hue Index (MHI): ratio of the hue with the largest pixel proportion, with the exception
of Black and White.

MHI =
AMH
An

× 100 (7)
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2.6. Spatial Index of Color Patches

We sketched color patches in ArcGIS (10.3, Esri, Redlands, CA, United States) by visual
interpretation, and converted vector data to a grid. Then, with the help of FRAGSTATS (v4.2.1,
University of Massachusetts, Amherst, MA, United States), spatial form indices of color patches were
calculated. Pictures in this research were exclusively forest landscapes in mountainous slopes. These
rules were adopted when determining the boundaries of the color patches. (1) We first demarcated
the pictures based on different species of plants. From photos of Jiuzhai Valley, colors were distinct
among evergreen coniferous forest and broadleaved deciduous forest. Therefore, distinguishing tree
species was the first demarcation rule. (2) We demarcated the pictures based on color differences.
In some pictures, there were various shrubwoods mixed together, making it difficult to distinguish
them one-by-one. Thus, we relied on color differences, putting species with similar colors in one patch
under normal visual discrimination. (3) We magnified photos with high definition, in order to reduce
visual errors as much as possible.

Based on existing research results and the forest characteristics in Jiuzhai Valley [30], 18 categories
were defined as follows: proportion of coniferous forest (AP), broad-leaved forest proportion (BP),
shrubwood proportion (SP), total area of color patches (TA), color patch perimeter-area ratio (PARA),
color diversity in patches (CD), color patch density (PD), largest color patch index (LPI), color landscape
shape index (LSI), contagion of color patch (CON), landscape division index of color (DIV), splitting
index of color patch (SPL), Shannon’s diversity index of color patch (SHDI), Simpson’s evenness
index of color patch (SIEI), aggregation index of color patch (AI), proportion of alike adjacencies of
color patch (PLA), color patch of cohesion index (COH), and the mean area proportion of the color
patch (ARP).

2.7. Data Processing and Analysis

2.7.1. Standardized Calculation of SBE Value

Aesthetic measures invite differences between different respondents, affecting the evaluation
results according to either strict or loose standards. Traditional standardization will result in the
aesthetic dimension differences being blurred, and this will affect the accuracy of the evaluation
results. Therefore, it was necessary to process the evaluation results to eliminate differences [19].
The calculation method of SBE by Daniel is widely considered an idealized method that is not affected
by aesthetic differences and scoring rules [25]. Thus, we used this method as a reference:

SBEs =
(
Zi − Za

)
× 100 (8)

Z =
∑n−1

n=1 Zn

n
(9)

Z = NOR(cp) (10)

where cp is the cumulative frequency of each grade ranked from high to low; Z is normal distribution
unilateral quantile corresponding to cp. When cp = 0 or cp = 1, it should be respectively converted to
cp = 1/(N × 2) or cp = 1 − 1/(N × 2). Here, N is the total number of respondents; Z is the arithmetic
mean of Z, n is the grade, n = 1, . . . , 7, corresponding to the score from 3 to −3; Zi is the arithmetic
average of Z with ith scenery; and Za is the arithmetic average of Z with a scenery by random selection.

After this calculation, the SBE values of the 8 pictures in Figure 1 were as follows: (1a): 50.27, (1b):
53.06, (2a): 27.61, (2b): 36.58, (3a): 26.22, (3b): 53.91, (4a): −36.18, (4b): −18.48.

2.7.2. Statistic Analysis

One-way analysis of variance (ANOVA) was employed to analyze differences in hue, with the
value at the level of 0.05. Partial correlation analysis was performed between the color variables and
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SBE values for the control of non-color elements. The results were used to eliminate some irrelevant
indicators. Based on controlling non-color elements, principal component analysis (PCA) was adopted
using a maximum-variance algorithm on rotating component matrices. Then, simplified factor score
calculation steps were utilized with reference to the research of Mao [31]. Pearson correlation analysis
was used to verify the relationship of the SBE value to the simplified factor. Finally, based on SBE
values and principal factors, system clustering analysis was adopted for group connections and the
squared Euclidean distance to classify sample pictures.

The data was analyzed with SPSS (23.0, IBM, Armonk, NY, United States) and Excel.

3. Results

3.1. Color Variation of Three Months in Jiuzhai Valley

3.1.1. Color Characteristics

Figure 4 showed the proportion of color elements in autumn. From the hue, it is clear that there
were significant quantities of green (H5, H6, H7, H8, H9) and yellow (H3, H4), whereas there was
relatively little red (H1, H2) and blue-violet (H10, H11). There were almost no other colors. Colors
of low saturation were higher than those of high saturation, and the rank order was S1 > S2 > S3.
There were more medium-value colors than the high and low ones, sorted as follows: V2 > V1 > V3.
In addition, the proportion of Black, White, and Grey was Grey > Black > White.
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Figure 4. Proportion of color elements in autumn.

3.1.2. Comparison of Forest Color Element Variation over Time

With the change of autumn, colors in H1, H2, H3, H4, H8, H9, H10, H12, H13, H14, H15, and H16
increased gradually, but colors in H6, H7, and H11 increased at first and then decreased. H5 showed
a decreasing trend (see Figure S5 for more details). One-way ANOVA indicated that the majority of
differences in color elements over three months were significant (p < 0.05) or very significant (p < 0.01),
except for colors in H7, H8, H9, H12, H13, and H14. In addition, the multiple comparisons suggested
that there was no significant difference in H1, H2, H15, and H16 between August and September,
although they were different in October. H4 in August differed in September and October. H5 had
significant differences. H6 changed conspicuously between September and October, but these two
months did not exhibit significant differences from August. H10 and H11 were similar to H6, but the
months where significant differences existed were different, namely in August, October, and September
(see Table S1 for more details). Significant differences in forest saturation and value over three months
were tested (see Table S2 for more details). S1 and S2 showed significant differences. S1 increased
gradually with time, but S3 was contrary to S1. This means that the forest’s saturation was diminishing
in autumn in Jiuzhai Valley. From the percentage changes, Grey, Black, S2, and V1 decreased gradually,
and in addition to White tending to decrease after the rising to a peak, other variables all increased.
With the exception of S1 and S3, however, there were no obvious differences.
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One-way ANOVA regarding the number of colors (NC) and maximum hue index (MHI) indicated
that they were both very significant, showing considerable change (see Table S3 for more details).
The three values of NC were 14.636, 19.88, and 22.292, exhibiting a significant increase. Moreover,
the three in MHI were 0.453, 0.325, and 0.253, which decreased significantly.

3.1.3. Comparison of Forest Color Patch Variation over Different Months

The color diversity in patches (CD) and the color patch perimeter-area ratio (PARA) exhibited
significant differences (Table 3). Except for these two indicators, however, the others were not
significant. The CD values over three months were 1.091, 1.778, and 2.083, and the PARA values were
125.839, 187.376, and 249.807. Thus, they both increased over time.

Table 3. Differences in forest color patches over three months.

Indicator AP BP SP NP CD ARP PD LPI LSI

F 1.494 0.898 3.088 2.240 7.949 1.397 2.594 1.278 1.464
P 0.229 0.411 0.050 0.112 0.001 0.252 0.080 0.283 0.236

Indicator PARA CON DIV SPL SHDI SIEI AI PLA COH

F 3.183 1.161 .892 0.805 0.387 1.592 1.570 1.326 0.770
P 0.046 0.317 0.413 0.450 0.680 0.209 0.213 0.270 0.466

Note: AP means proportion of coniferous forest; BP means broad-leaved forest proportion; SP means shrubwood
proportion; NP means number of patches; CD means color diversity in patches; ARP means the mean area
proportion of the color patch; PD means color patch density; LPI means largest color patch index; LSI means color
landscape shape index; PARA means color patch perimeter-area ratio; CON means contagion of color patch; DIV
means landscape division index of color; SPL means splitting index of color patch; SHDI means Shannon’s diversity
index of color patch; SIEI means Simpson’s evenness index of color patch; AI means aggregation index of color
patch; PLA means proportion of alike adjacencies of color patch; COH means color patch of cohesion index.

3.2. Relationship between Forest Color Characteristics and SEB Values

As explained above, lighting (i.e., the orientation of the mountain slope) and fallen leaves were
the main environmental disturbances in the study. ANOVA indicated that the SBE values were very
significant (p = 0.009; p = 0.001) when these two factors changed. Consequently, partial correlation
analysis was performed to control the effect of non-color elements.

3.2.1. Relationship between Forest Color Elements and SBE Values

The correlations between H1, H2, H3, H5, H7, H8, H9, Grey, Black, S2, V1, V2, V3, and the SBE
values were found to be significant or very significant, but other color elements were not significant
(Figure 5). In this study, those parameters that have no significant correlation with SBE values were
deleted. Among the preserved variables, some were positively correlated with SBE values. From large
to small, they were ordered as follows: NC > V2 > H3 > V3 > H8 > H9 > H7 > H2 > S2 > H1. Some
were negative correlations, which were ordered as follows: Grey > H5 > V1 > Black.
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Figure 5. Correlation between color elements and Scenic Beauty Estimation (SBE) values.
Note: ** denotes p < 0.01, * denotes p < 0.05.
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3.2.2. Relationship between Forest Color Patch Structures and SBE Values

The parameters of shrubwood proportion (SP), color diversity in patches (CD), landscape division
index of color (DIV), Shannon’s diversity index of color patch (SHDI), and Simpson’s evenness index
of color patch (SIEI) showed significant or very significant positive correlations with the SBE values.
According to the correlation coefficient from large to small, they were ordered as SIEI > CD > DIV >
SHDI > SP. The indicators of the proportion of the coniferous forest (AP), mean area proportion of
color patch (ARP), largest color patch index (LPI), contagion of color patch (CON), and color patch
of cohesion index (COH) showed significant or very significant negative correlations with the SBE
values. The correlation coefficient from large to small was as follows: ARP > AP > LPI > COH > CON
(Figure 6).
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Figure 6. Correlation between color patch structure and SBE value. Note: ** denotes p < 0.01, * denotes
p < 0.05.

3.3. Comprehensive Index Construction of Forest Colors

There were many indicators significantly correlated with SBE values. Therefore, in order to
simplify research parameters, PCA was used to integrate indicators with a strong correlation together
by controlling non-color elements. After transformation, the Kaiser–Meyer–Olkin (KMO) index was
0.624, showing that the variables were suitable for analysis. The accumulative contribution rates of the
first six factors were 24.786%, 40.572%, 55.577%, 68.526%, 77.111%, and 83.266%. Therefore, these six
factors could be used to explain all the variables.

The results from the rotated component matrix are shown in Figure 7. PC1 was strongly correlated
with the landscape division index of color (DIV, 0.959), largest color patch index (LPI, −0.923), color
patch of cohesion index (COH, −0.896), Shannon’s diversity index of color patch (SHDI, 0.881),
Simpson’s evenness index of color patch (SIEI, 0865), shrubwood proportion (SP, 0.58), and the
proportion of the coniferous forest (AP, −0.721). PC1 reflected the broken and discrete degree of color
patches. As such, it was named as the color patch fragmentation index. PC2 was in close relation to H8
(0.96), H9 (0.933), H7 (0.906), and H5 (−0.618). These four indicators were all green. Hence, PC2 was
defined as the green leaves change index. PC3 was strongly correlated with H2 (0.963), H1 (0.887), H3
(0.797), color diversity in patches (CD, 0.644), and the number of colors (NC, 0.595). These indicators
changed significantly with autumn. Thus, PC3 was defined as the yellow and red leaves change index.
PC4 was closely related to V1 (−0.866), V3 (0.813), V2 (0.734), and Black (−0.581), which presented
color value differences. Thus, PC4 was defined as the value index. The relationship between PC5, S2
(0.863), and Grey (−0.838) was correlated. Thus, PC5 was defined as the saturation index. PC6 was in
close relation to the contagion of color patch (CON, −0.851). Consequently, PC6 was defined as the
color patch contagion index.
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Figure 7. Principal component analysis of multiple color variables.

After simplifying the factor count and calculating the weight of each variable in its factor, the
equations were as follows (more details about the six simplified factors, significant correlation factors,
and vegetative cover composition of the eight pictures in Figure 1 can be seen in Table S4):

PC1 = −0.073 × AP + 0.049 × SP − 0.147 × LPI + 0.153 × DIV + 0.139 × SHDI

+0.133 × SIEI − 0.158 × COH − 0.148 × ARP
(11)

PC2 = −0.139 × H5 + 0.282 × H7 + 0.297 × H8 + 0.283 × H9 (12)

PC3 = 0.243 × H1 + 0.270 × H2 + 0.230 × H3 + 0.108 × NC + 0.148 × CD (13)
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PC4 = −0.177 × BLACK − 0.326 × V1 + 0.188 × V2 + 0.309 × V3 (14)

PC5 = −0.472 × GREY + 0.528 × S2 (15)

PC6 = −CON (16)

Further, Pearson correlation between simplified color factors and SBE values showed significant
or very significant positive correlations. Therefore, the six simplified factors could explain the overall
variables well, and correlations remained (Table 4).

Table 4. Pearson correlation between simplified color factors and SBE values.

SBE PC1 PC2 PC3 PC4 PC5 PC6

SBE 1
PC1 0.462 ** 1
PC2 0.281 * −0.033 1
PC3 0.421 ** −0.860 ** 0.080 1
PC4 0.376 ** 0.043 −0.232 * 0.118 1
PC5 0.410 ** −0.073 0.023 0.101 0.349 ** 1
PC6 0.247 * 0.991 ** −0.022 −0.863 ** 0.013 −0.094 1

Note: ** denotes p < 0.01, * denotes p < 0.05.

3.4. Classification of the Forest Color Landscape in Jiuzhai Valley

Clustering analysis of the SBE value and six factors was performed to divide forest color sceneries
into three categories (T1, T2, T3) and six subtypes (T1-1, T1-2, T1-3, T2-1, T2-2, T3). T1 contained three
subtypes, T2 contained two subtypes, and T3 contained only one. From Table 5, SBE values decreased
successively with T1, T2, and T3. Therefore, the three categories of forests could be defined as the
scenery superiority forest (T1), scenery supplementary forest (T2), and potential ascension forest (T3).

Table 5. Differences of SBE values and color factors in six categories.

Indicator
T1 T2 T3

Total T1-1 T1-2 T1-3 Total T2-1 T2-2 Total

SBE 36.21 ± 12.35 A 50.94 ± 6.59 a 32.95 ± 4.09 b 20.18 ± 3.73 c −10.17 ± 9.33 B −1.87 ± 2.53 d −18.47 ± 4.47 e −41.63 ± 6.30 Cf
PC1 0.22 ± 0.57 A 0.19 ± 0.52 a 0.18 ± 0.54 a 0.37 ± 0.74 a −0.87 ± 1.03 B −0.78 ± 0.91 b −0.95 ± 1.23 c −1.57 ± 1.84 Bbc
PC2 0.04 ± 0.90 A 0.18 ± 1.14 a −0.02 ± 0.75 a −0.04 ± 0.84 a −0.24 ± 0.85 A 0.01 ± 1.12 a −0.49 ± 0.43 a −0.68 ± 0.35 Aa
PC3 0.06 ± 0.69 A 0.45 ± 0.76 a −0.20 ± 0.55 b 0.04 ± 0.66 ab −0.27 ± 0.29 A −0.16 ± 0.31 b −0.38 ± 0.24 b −0.61 ± 0.05 Ab
PC4 0.12 ± 0.87 A 0.47 ± 0.79 a 0.06 ± 0.85 ab −0.30 ± 0.86 bc −0.43 ± 0.64 B −0.14 ± 0.80 abc −0.73 ± 0.22 c −0.83 ± 0.69 ABc
PC5 0.18 ± 0.77 A 0.50 ± 0.96 a −0.07 ± 0.67 b 0.28 ± 0.41 ab −0.75 ± 1.20 B 0.04 ± 0.84 ab −1.54 ± 0.97 c −0.70 ± 0.90 ABbc
PC6 0.15 ± 0.55 A 0.10 ± 0.55 a 0.26 ± 0.57 a −0.05 ± 0.47 ab −0.95 ± 1.27 B −0.90 ± 0.80 bc −1.00 ± 1.70 c 0.42 ± 3.87 Aab

Note: Different letters indicate significant differences at the 0.05 level.

Among the six values of the three categories, the color patch fragmentation index (PC1), the green
leaves change index (PC2), the yellow and red leaves change index (PC3), the value index (PC4), and
the saturation index (PC5) decreased linearly with a decreasing SBE value. However, the color patch
contagion index (PC6) increased after the first decrease. Multiple comparisons showed that PC2 and
PC3 were not significantly different among T1, T2, and T3. With the exception of PC2 and PC3, other
factors were significantly different between T1 and T2. SBE values and PC6 were significantly different
between T2 and T3, but other factors were not significantly different between these two categories.
Multiple comparisons on six subtypes showed that PC3 was not significantly different between T1-1

and T1-2, T2-1, T2-2. In other factors, the significance of difference in the subtypes was the same as that
in the categories.

Differences in forest color variables in the six categories showed that H1, H2, H3, H7, H8, H9, V2,
V3, number of colors (NC), shrubwood proportion (SP), color diversity in patches (CD), landscape
division index of color (DIV), Shannon’s diversity index of color patch (SHDI), and Simpson’s evenness
index of color patch (SIEI) decreased linearly. However, H5, Grey, Black, V1, proportion of coniferous
forest (AP), largest color patch index (LPI), color patch of cohesion index (COH), and the mean area
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proportion of color patch (ARP) increased linearly. S2 increased after the first decrease, and the
contagion of color patch (CON) was the opposite of S2, which first increased and then decreased (see
Table S5 for more details).

Multiple comparisons showed that H1, H2, H3, H5, H7, H8, H9, Black, and V1 were not
significantly different among T1, T2, and T3, and that other variables were significantly different
in T1, T2, T3 or in T1, T2. Among the six subtypes, H1, H2, and H3 were significantly different between
T1-1 and the other five subtypes. Other variables were the same as the factors they belonged to.
In general, the significant differences in forest color variables were basically the same as those in the
principal factors simplified, which the variables belonged to. In addition, Black and V1 were not the
only indicators composing the value index (PC4). These were affected by V2 and V3 such that PC4

showed significant differences.
After synthesizing the values distribution and performing multiple comparisons of principle

factors and color variables, it was clear that the green leaves change index (PC2) and the yellow
and the red leaves change index (PC3) had less influence on SBE beauty than the color patch
fragmentation index (PC1), the value index (PC4), the saturation index (PC5), and the color patch
contagion index (PC6).

3.5. Variation Tendency between PC2, PC3, and SBE Values

As explained above, when the color patch fragmentation index (PC1), the value index (PC4),
the saturation index (PC5), and the color patch contagion index (PC6) were significantly different,
the green leaves change index (PC2) and the yellow and red leaves change index (PC3) were not
significantly different from the SBE value. At the same time, there were no significant differences in
some indicators of the PC4, so PC1, PC5, and PC6 were the main factors used to analyze the variation
of PC2 and PC3, when SBE values were different. Two cases were included.

One case involved pictures taken from the same sample spots in different months. These were
almost the same index as PC1 and PC6, when PC2 and PC3 were significantly different. We selected
ten groups of pictures randomly. Each group contained two pictures taken in different months, where
the colors were significantly different. Varying features of PC2 and PC3 in each group were found: in
all groups, images with higher SBE values showed an increase in their PC3 (Figure 8). PC2 in Groups 3,
4, 7, 8, and 9 was lower when the SBE value was higher, but in other groups, it was higher. Thus, there
was no evident regularity found suggesting that PC2 was related to SBE values in Case 1.
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Figure 8. Variation tendencies between PC2, PC3, and the SBE values in Case 1.

The second case involved pictures taken in different sample spots, in which PC1, PC5, and PC6

were similar. We selected ten groups of pictures randomly, as with Case 1. The results showed that
PC2 was higher as the SBE value increased, while PC3 was almost unchanged in Groups 1, 2, 4, and 6
(Figure 9). In other groups, PC2 and PC3 were both higher with a higher SBE value.
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Figure 9. Variation tendencies between PC2, PC3, and the SBE values in Case 2.

4. Discussion

The correlations between forest colors and forest scenic beauty have been previously
confirmed [23], but the excavation of color indicators mostly remained at the qualitative-oriented level.
This paper found that self-programming had a certain advantage in the quantitative analysis of forest
color pictures, which can be used to choose the color indicators according to the research content and
requirements. In this paper, 16 types of hue, three types of saturation, three valuation types, and Black,
White, and Grey were selected to classify and summarize the colors of Jiuzhai Valley forests. In future
research, it will be possible to refine the colors within the color gamut of tree species according to
research priorities and needs. These research needs might include studying the color variation of a
tree species. Indeed, each hue can be separated into nine or more independent colors.

In general, the hue of the Jiuzhai Valley forest in autumn was mainly yellow (H3, H4) and green
(H5, H6), and the proportion of red (H1, H2) was very small. The main factor was the saturation S1.
In terms of value, V2 accounted for the most. As the months changed, the colors of red (H1, H2) and
yellow (H3, H4) increased significantly. There was an increase in yellow, and the change in green was
not uniform. Meanwhile, the saturation decreased and the value increased. This change was consistent
with the Jiuzhai Valley’s plant species and the characteristics of seasonal change. The phytocoenosium
of Jiuzhai Valley is mainly composed of Betula Linn., Alibes Mill., Quercus Linn., Picea wilsonii Mast.,
Pinus tabuliformis Carr., and Picea Dietr. The forest with a large area of evergreen coniferous trees had
lower color saturation and value than the deciduous broad-leaved forest [32]. The leaves of deciduous
broad-leaved species (Betula platyphylla Suk., Betula albosinensis Burk., etc.) in autumn were mainly
yellow, which was also the main reason for the higher proportion of yellow. Sun also verified the
tendencies between plant type and color change [13]. Moreover, there were a variety of plants in
Jiuzhai Valley with red leaves in autumn—e.g., Cotinus szechuanensis A. Penzes, Acer davidii Franch.,
Sorbus hupehensis Schneid., Berberis veitchii Schneid., Cotoneaster adpressus Bois, etc. However, the
proportion of red remained relatively small. On the one hand, this might be because of the small
distribution range of red-leaf plants in some survey plots. On the other hand, this might be due to the
geographical features of Jiuzhai Valley. As previously demonstrated, the prevalence of red-colored
plants is closely related to climate [33]. However, the elevation of Jiuzhai Valley is relatively high, and
the weather is commonly windy and rainy. During the survey, many plants began to defoliate before
the frost, resulting in a lower proportion of red-colored plants. Despite this, the number of colors (NC)
and the main hue index (MHI) significantly increased and decreased respectively with time. Both were
affected by the discoloration of plant leaves.

There were no significant changes in color patch indices in different months, except for the color
diversity in patches (CD) and the color patch perimeter-area ratio (PARA), both of which increased
over time. This suggests that the distribution pattern and the spatial relationship between color patches
do not change significantly over time, except in terms of the number of mixed colors in the color
patches and the shape of some patches. Thus, in autumn, the color change in Jiuzhai Valley is mainly
reflected in the change of color composition elements. The color patches layout exhibited almost no
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significant change. That is mainly because the composition of plant communities is the main factor
that determines the layout of the color patches [30], which is not affected by changes in color.

The different orientation of the sample plot would lead to discrepancies in the shooting light,
which was an environmental interference factor in this study. Moreover, fallen leaves were another
problem. We showed that both of these factors had a significant influence on the SBE value. Therefore,
those two indicators were used as control variables for the partial correlation analysis. The results
showed that the number of colors (NC), V2, H3, V3, H8, H9, H7, H2, S2, and H1 had positive
correlations with the SBE values in the order from large to small, and Grey, H5, V1, and Black had
negative correlations with the SBE values in the order of closest to farthest. This indicates that colorful
leaves, the green color, higher value, and saturation were closely related to the SBE values, while the
lower value and saturation exhibited the opposite effect. The correlation between the color patch
index and the SBE values showed that when the values of the shrubwood proportion (SP), the color
diversity in patches (CD), the landscape division index of color (DIV), and the Shannon’s diversity
index of color patch (SHDI) were higher, they were closely correlated with high SBE values. However,
when the proportion of coniferous forest (AP), the mean area proportion of color patch (ARP), the
largest color patch index (LPI), and the color patch of cohesion index (COH) were higher, they were
closely correlated with a low SBE value. This is consistent with the results obtained by Mao in the
study of in-forest landscapes [30]. According to species composition, it is obvious that sceneries are
in low beauty values when they are comprised by some purely (or mostly) coniferous trees of lower
saturation and lightness with discoloration in autumn, such as Picea wilsonii Mast., Pinus tabuliformis
Carri, Abies ernestii Rehd., Pinus armandii Franch., etc. Furthermore, it turns to high value when they
consist of a large amount of plants with color changing in autumn, and higher lightness and saturation,
such as Populus davidiana Dode, Quercus wutaishanica Mayr, Betula platyphylla Suk., Betula albosinensis
Burk., Fraxinus chinensis Roxb., etc., and added to mixed forests that are mainly coniferous forests.
It can also be seen through Figure 1. In picture 2a, there are certain portions of Quercus wutaishanica
Mayr, Betula platyphylla Suk., Betula albosinensis Burk., etc. in which some sceneries of more color
patches are formed, with rather dispersed distribution together with Abies ernestii Rehd. Furthermore,
in autumn, the leaves are colorful with higher saturation and lightness. Furthermore, in picture 2d, it is
Abies fabri forest which contains less fragmentations with an integral and big patch, and the forest’s
saturation and lightness are also low with no colorful leaves. Therefore, the scenic beauty value of
image 2a is obviously higher than that of image 2d.

The forest color elements and the color patch distribution indicators can accurately reflect color
differences in the Jiuzhai Valley forest. However, there were too many indicators, and these were
not completely independent. PCA can represent all the indicators with fewer factors, and this was
practical [24]. In this paper, we used six factors to explain and to screen the correlated variables.
Meanwhile, we combined the SBE values for clustering analysis. From the results, we observed
the change between the principal component factors among different categories and the SBE values.
First, when the averaged value of the color patch fragmentation index (PC1), the value index (PC4),
and the saturation index (PC5) were 0.22, 0.12, and 0.5 (after normalization), the SBE values were
significantly high and decreased with the reduction of these three factors. This suggested that forests
with color patches that were more scattered and divided, and that were composed of many species
of higher value and saturation, had a relatively higher SBE value. Second, when the average color
patch contagion index (PC6) was 0.15, the SBE was the highest, and the SBE value was relatively low
when the PC6 was larger or smaller. In addition, in the forest color landscape categories with multiple
comparisons, the following results were obtained. Some indices, such as the yellow and red leaves
change index (PC3), showed significant differences in a certain subtype (T1-1, T1-2, T1-3). Moreover,
there were corresponding color variables (H1, H2, H3), which were also significantly different for
this subtype, but there was no obvious difference in the larger categories (viz., T1, T2, and T3). This
fact might be explained by the large number of samples included in this large category, because
this results in the fluctuation of this index among the samples. For example, two images with the
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same PC3 generated totally different SBE values because of the discrepancy of indicators, such as
the proportion of coniferous forest (AP) and the landscape division index of color (DIV). As shown
in picture 3b in Figure 1, the scenic beauty value is 53.91 which is the highest among the 8 pictures.
The scenery is comprised of Abies ernestii Rehd., Pinus tabuliformis Carri., Populus davidiana Dode,
Betula platyphylla Suk., Betula albosinensis Burk., Quercus wutaishanica Mayr, etc. The plant pieces are
abundant, and the number of colors reaches 27 after quantification. These broad-leaved trees show
higher brightness and saturation with red and yellow in autumn, thus values of PC3, PC4, PC5 are
higher; the color patches show much fragmentation with many divisions, thus PC1 is higher; each type
of color patch is in moderate connection, with medium size and distance from each other, therefore,
PC6 is in medium value.

The study of color-comprehensive factors and SBE values found that the green leaves change
index (PC2) and PC3 had no apparent correlation with SBE values. However, according to the single
index correlation analysis results, there was a significant correlation between PC2 and PC3 and the SBE
values. The most likely reason for this was that PC1, PC4, PC5, and PC6 had a significant influence on
the SBE values. Therefore, in this paper, by controlling PC1, PC5, and PC6, we divided the images into
two cases: same and similar values of the color patch index. We then performed random sampling for
further analysis. In the pictures taken at the same plot in different months, such as images 1a and 1b,
2a and 2b, 3a and 3b, 4a and 4b in Figure 1, the results showed that pictures of higher PC3 value had
higher SBE values. In pictures with a similar color patch index and saturation index taken in different
plots, such as images 1a and 2a in Figure 1, PC2 and PC3 both had a positive correlation with the SBE
values, and PC2 had a stronger influence than PC3.

5. Conclusions

The color elements affecting the SBE values of Jiuzhai Valley were mainly the number of colors
(NC), V2, H3, V3, H8, H9, H7, H2, S2, H1, Grey, H5, V1, and Black. These elements can be summarized
as the green leaves change index (PC2), the yellow and the red leaves change index (PC3), the value
index (PC4), and the saturation index (PC5). The color patches’ composition indicators affecting the
SBE values in Jiuzhai Valley were the shrubwood proportion (SP), the proportion of coniferous forest
(AP), the color diversity in patches (CD), the landscape division index of color (DIV), Shannon’s
diversity index of color patch (SHDI), the mean area proportion of color patch (ARP), the largest color
patch index (LPI), and the color patch of cohesion index (COH). Among these, CD can be classified
into PC3, and the remaining indices can be summarized as the color patch fragmentation index (PC1)
and the color patch contagion index (PC6). PC2, PC3, PC4, and PC5 were significantly correlated with
the change of time. Furthermore, PC1 and PC6 were mainly influenced by the community structure,
regardless of the change in time. PC1, PC4, PC5, and PC6 contributed the most to the SBE values. When
the first three had higher values, the SBE value was also higher. However, PC6 was larger or smaller
when the SBE values decreased. On the one hand, by controlling the ranges of those four factors, we
found that in pictures with almost the same controlled index taken in the same plots at different times,
the simultaneous change relationship between PC3 and the SBE values stood out. The SBE values
were relatively high when PC3 was relatively large. On the other hand, in pictures with a similarly
controlled index taken in different plots, the contribution of PC2 was more significant, and when PC2

was larger, the SBE values were higher as well.
In the mingled forests composed of evergreen coniferous forests and defoliated broad-leaved

forests, under the premise of forest management, modifying and improving colors of forest sceneries
can be an effective way of increasing their beauty. (1) In pure stands of evergreen coniferous
ones, increasing the autumn colors of broadleaf trees should be given priority, such as Acer Linn.,
Betula platyphylla Suk., and Betula albosinensis Burk., so as to improve forests’ beauty in autumn.
(2) In pure or mixed stands of evergreen coniferous ones, increasing broad-leaved trees and shrubs
with higher brightness and saturation, and greener colors such as Populus davidiana Dode, and Quercus
wutaishanica Mayr, will help to raise the degree of forest sceneries even in a season with pure green
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leaves. (3) It is obvious that the mixed forests with coniferous and broad-leaved trees are the most
abundant color diversity, so beauty values are higher than that of pure forests. Therefore, to consider
management methods of creating appropriate mixed forests is to enhance the beauty of forests. (4) In
terms of mixed landscapes, selecting 1–3 types of coniferous forests and 2–4 species of deciduous trees
can create a beautiful landscape, if more focus is directed at maitaining the fragmented color patches,
balancing the patch size (which should not be too big or small), and moderating the distance among
the same color patches (which should beneither too close nor too far).

It is worth emphasizing that the conclusions drawn from the tendencies of the color
comprehensive index and the SBE values were based on autumn landscape conditions and the
particular color characteristics of Jiuzhai Valley forests over the course of three months. Owing
to the limitations in vegetation type in the mountainous region along with environmental factors,
it is possible that there were non-linear variations from some excluded values apart from the linear
relationship described in this paper. Therefore, in order to construct a scenic beauty prediction model
under the influence of the forest color elements and patch characteristics, we need to carry out more
controlled experiments in the future.
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Figure S4: MATLAB application process flow, Figure S5: Dynamic change in forest hue over three months, Table S1:
Differences in forest hue over three months, Table S2: Differences in forest saturation and value over three months,
Table S3: Differences in forest color numbers over three months, Table S4: Values of six simplified factors and
significant correlation factors regarding the images, Table S5: Differences in forest color variables in six categories.
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