Next Article in Journal
Forest Planning Heuristics—Current Recommendations and Research Opportunities for s-Metaheuristics
Previous Article in Journal
Forest Site Classification in the Southern Andean Region of Ecuador: A Case Study of Pine Plantations to Collect a Base of Soil Attributes
Article Menu
Issue 12 (December) cover image

Export Article

Open AccessArticle
Forests 2017, 8(12), 475; doi:10.3390/f8120475

Phytoremediation Efficacy of Salix discolor and S. eriocephela on Adjacent Acidic Clay and Shale Overburden on a Former Mine Site: Growth, Soil, and Foliage Traits

Natural Resources Canada, Canadian Forest Service—Atlantic Forestry Centre, 1350 Regent St., P.O. Box 4000, Fredericton, NB E3B 5P7, Canada
*
Author to whom correspondence should be addressed.
Received: 27 October 2017 / Revised: 17 November 2017 / Accepted: 28 November 2017 / Published: 2 December 2017
View Full-Text   |   Download PDF [3728 KB, uploaded 5 December 2017]   |  

Abstract

Plants regularly experience suboptimal environments, but this can be particularly acute on highly-disturbed mine sites. Two North American willows—Salix discolor Muhl. (DIS) and S. eriocephala Michx. (ERI)—were established in common-garden field tests on two adjacent coal mine spoil sites: one with high clay content, the other with shale overburden. The high clay content site had 44% less productivity, a pH of 3.6, 42% clay content, high water holding capacity at saturation (64%), and high soil electrical conductivity (EC) of 3.9 mS cm−1. The adjacent shale overburden site had a pH of 6.8, and after removing 56.5% stone content, a high sand content (67.2%), low water holding capacity at saturation (23%), and an EC of 0.9 mS cm−1. The acidic clay soil had significantly greater Na (20×), Ca (2×), Mg (4.4×), S (10×), C (12×) and N (2×) than the shale overburden. Foliar concentrations from the acidic clay site had significantly greater Mg (1.5×), Mn (3.3×), Fe (5.6×), Al (4.6×), and S (2×) than the shale overburden, indicating that these elements are more soluble under acidic conditions. There was no overall species difference in growth; however, survival was greater for ERI than DIS on both sites, thus overall biomass yield was greater for ERI than DIS. Foliar concentrations of ERI were significantly greater than those of DIS for N (1.3×), Ca (1.5×), Mg (1.2×), Fe (2×), Al (1.5×), and S (1.5×). There were no significant negative relationships between metal concentrations and growth or biomass yield. Both willows showed large variation among genotypes within each species in foliar concentrations, and some clones of DIS and ERI had up to 16× the Fe and Al uptake on the acidic site versus the adjacent overburden. Genetic selection among species and genotypes may be useful for reclamation activities aimed at reducing specific metal concentrations on abandoned mine sites. Results show that, despite having a greater water holding capacity, the greater acidity of the clay site resulted in greater metal mobility—in particular Na—and thus a greater EC. It appears that the decline in productivity was not due to toxicity effects from the increased mobility of metals, but rather to low pH and moisture stress from very high soil Na/EC. View Full-Text
Keywords: acidic soil; foliar nutrient and metal concentration; Salix; site reclamation; species variation acidic soil; foliar nutrient and metal concentration; Salix; site reclamation; species variation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Mosseler, A.; Major, J.E. Phytoremediation Efficacy of Salix discolor and S. eriocephela on Adjacent Acidic Clay and Shale Overburden on a Former Mine Site: Growth, Soil, and Foliage Traits. Forests 2017, 8, 475.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top