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Abstract: The use of biodiversity surrogates has been discussed in the context of designing habitat
linkages to support the migration of species affected by climate change. Topography has been
proposed as a useful surrogate in the coarse-filter approach, as the hydrological process caused
by topography such as erosion and accumulation is the basis of ecological processes. However,
some studies that have designed topographic linkages as habitat linkages, so far have focused much
on the shape of the topography (morphometric topographic classification) with little emphasis on
the hydrological processes (generic topographic classification) to find such topographic linkages.
We aimed to understand whether generic classification was valid for designing these linkages. First,
we evaluated whether topographic classification is more appropriate for describing actual (coniferous
and deciduous) and potential (mammals and amphibians) habitat distributions. Second, we analyzed
the difference in the linkages between the morphometric and generic topographic classifications.
The results showed that the generic classification represented the actual distribution of the trees,
but neither the morphometric nor the generic classification could represent the potential animal
distributions adequately. Our study demonstrated that the topographic classes, according to the
generic classification, were arranged successively according to the flow of water, nutrients, and
sediment; therefore, it would be advantageous to secure linkages with a width of 1 km or more.
In addition, the edge effect would be smaller than with the morphometric classification. Accordingly,
we suggest that topographic characteristics, based on the hydrological process, are required to design
topographic linkages for climate change.

Keywords: connectivity; topographic classes; species distribution; morphometric topographic
classification; generic topographic classification

1. Introduction

Many species have been forced to migrate to new habitats or be confronted with extinction
because of numerous threats from human-induced environmental changes all over the world [1–3].
Unfortunately, such situations are expected to continue with the rapid growth in the global
population [4]. In particular, perpetual fragmentation by urban development is a significant challenge
to species that live in habitats with restricted conditions or species that have low dispersal capability.
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Moreover, after fragmentation, the remaining habitat patches are affected adversely by changes in the
biophysical environment, such as fluxes in energy and water, species, and nutrients [5,6].

To reduce the negative effects of fragmentation, linking habitats in which multi- or focal species
can migrate has been identified as the most effective strategy to conserve them [7,8]. In addition,
suitable habitat linkages can help conservation planners address conservation problems, such as shifts
in species’ range induced by climate change [9,10]. To identify the linkages, the most common method
employed has been the least-cost path method (LCM) of focal species [11]. Mainly for carnivores and
large herbivores with the greatest dispersal abilities, as well as area-sensitive species, low-resistance
linkages, which facilitate species movement, have been identified with LCM by drawing a resistance
map [12–16]. Although this method could be effective in tracking the movement of the focal species
being studied, it might not guarantee the long-term preservation of biodiversity, as it does not include
linkages for the other inhabitant species [17,18].

As an alternative target that accounts for a larger diversity of species simultaneously, abiotic
variables such as topography and temperature have been proposed as a method for determining
habitat linkages [11,19,20]. Among them, topography is less volatile than species distributions, and is
considered a significant variable, with substantial potential, in the coarse-filter approach as the basis
for plans that aim to conserve biodiversity in the face of climate change [21]. Various researchers have
insisted on topographic linkages as habitat linkages [11,19,22,23]. Studies have focused mainly on
the shape of the topography (morphometric topographic classification) [11,19]), rather than on the
hydrological process, such as the erosion and accumulation associated with the topography, which is
related to the habitat environment (generic topographic classification) [24]. Brost and Beier [11] applied
topographic variables, such as elevation, slope angle, solar insolation, and topographic position to
determine the topographic linkages. However, in determining the topographic linkages based on
topography, it may be more important to consider the topographic variables associated with erosion
and accumulation [25,26]. Erosion and accumulation are not only attributable to the important process
of terrain and soil formation [27], but they also enable seed, water, nutrients, and sediment to move,
thereby affecting the vegetation distribution pattern [28–31]. Several studies have identified a close
relationship between vegetation and erosion and accumulation [32–34]. Meanwhile, even though
vegetation is more vulnerable to climate change because of its insignificant migration [35], it has
been excluded often in habitat linkage studies for climate change owing to various uncertainties in
estimating the movement ability of vegetation in response to climate change [36,37]. Therefore, to
design habitat linkages including flora as well as fauna, we must consider topographic variables
related to erosion and accumulation.

Accordingly, in this study, our goal was to compare the topographic linkages applied in generic
and morphometric topographic classification to identify the topographic classification with greater
potential to support the migration of diverse species in response to climate change. To consider
diverse taxonomic groups that have different habitat environment preferences, our focus was on
coniferous forest, deciduous forest, mammals, and amphibians. To achieve our goal, we addressed
two research questions, as follows: (1) Which topographic classification, focusing on the shape
of topography (morphometric) or reflecting the hydrological process by topography (generic), is
superior for describing the actual (coniferous and deciduous trees) and potential (mammals and
amphibians) habitat distributions? (2) What are the differences in the topographic linkages between
the morphometric and generic topographic classifications?

2. Materials and Methods

2.1. Description of Study Areas

We selected three study sites with different areas and topographic patterns in South Korea
(Figure 1); all three sites had mountainous areas large enough to contain wildlife habitats. We set the



Forests 2017, 8, 466 3 of 19

mountains as termini to design the topographic linkages. The mountains were heavily fragmented by
human alterations, such as streets, residential areas, and croplands.Forests 2017, 8, 466  3 of 18 

 

 
Figure 1. Three study sites in South Korea. (a) Cheonan (816 km2); (b) Eumseong (236 km2); and (c) 
Cheongju (202 km2). 
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Geographic Information Institute of South Korea (2012) in order to create topographic maps, such as 
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maps. The reported accuracy for the DEM data is 2 m RMSE vertical. The actual coniferous and 
deciduous communities distribution maps were obtained from the forest-type map (scale 1:5000) of 
the Korea Forest Service (2013). We used all mapped coniferous and deciduous tree communities in 
the three study sites, but mixed tree communities in the forest-type map were excluded because of 
ambiguous habitat preferences. Coniferous and deciduous trees have different habitat preferences, 
such as soil acidity and humidity, nutrient contents, and shade tolerance [38]. We considered 
coniferous trees and deciduous trees, comprised of six communities and nine communities, 
respectively (Table S1). The information on mammals and amphibians to draw the potential habitat 
distribution maps was retrieved from the National Ecosystem Survey data of the Ministry of 
Environment (ME), South Korea, which contains the species occurrence points collected via 
standardized sampling protocol from 2′30″ latitude-longitude grid sites nationwide in 1997–2012 
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of amphibians. Even though occurrence point data were insufficient, these species were targeted 
because they can represent diverse habitat characteristics in the study sites (Table S1). 
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Topographical approaches were divided into two perspective groups, connected to 
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topography, and generic classification is related to the erosion-accumulation process. 

Figure 1. Three study sites in South Korea. (a) Cheonan (816 km2); (b) Eumseong (236 km2);
and (c) Cheongju (202 km2).

2.2. Data Collection

In this study, we used digital elevation maps (DEM) of 10 × 10 m cell size from the National
Geographic Information Institute of South Korea (2012) in order to create topographic maps, such as
elevation, slope, and curvature, which were used to draw the two kinds of topographic classification
maps. The reported accuracy for the DEM data is 2 m RMSE vertical. The actual coniferous and
deciduous communities distribution maps were obtained from the forest-type map (scale 1:5000) of
the Korea Forest Service (2013). We used all mapped coniferous and deciduous tree communities in
the three study sites, but mixed tree communities in the forest-type map were excluded because of
ambiguous habitat preferences. Coniferous and deciduous trees have different habitat preferences,
such as soil acidity and humidity, nutrient contents, and shade tolerance [38]. We considered coniferous
trees and deciduous trees, comprised of six communities and nine communities, respectively (Table S1).
The information on mammals and amphibians to draw the potential habitat distribution maps was
retrieved from the National Ecosystem Survey data of the Ministry of Environment (ME), South Korea,
which contains the species occurrence points collected via standardized sampling protocol from 2′30′′

latitude-longitude grid sites nationwide in 1997–2012 (2nd: 1997–2005, 3rd: 2006–2012) (Figure S1).
We selected six species of mammals and thirteen species of amphibians. Even though occurrence
point data were insufficient, these species were targeted because they can represent diverse habitat
characteristics in the study sites (Table S1).

2.3. Topographical Classification: Morphometric and Generic

Topographical approaches were divided into two perspective groups, connected to topographical
classifications (Figure 2). Morphometric classification refers to the shape of the topography, and generic
classification is related to the erosion-accumulation process.
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Cheongju, respectively, for Orad. These neighborhood values were calculated using the relief energy 
of topographic profiles based on Jang et al. [40] (Table S2). TPI is a useful index in these areas, which 
are dominated by mountainous topography, because it can identify the variance of topographic 
features [41]. A positive value for TPI indicates that the cell was higher than the adjacent cells (i.e., at 
the top of a mountain), or else the cell was lower than the adjacent cells (i.e., in a valley) [41]. The 
merit of morphometric classification is that it is less complicated than other methods, requiring only 
a topographical map or DEM. As the morphometric classification is focused on the shape of the 
topography itself, it could be unsuitable for determining the ecological processes caused by 
topography [24]. We used the topographic classification tools provided by the ‘6-category slope 
position parameters’ tool in the Land Facet Corridor extension of ArcGIS 9.3 (Environmental Systems 
Research Institute Inc.(ESRI), Redlands, CL, USA) (Table 1). Threshold values and topographic class 

Figure 2. Flowchart of the present study.

First, in the morphometric classification, we used the Topographic Position Index (TPI) as the
typical method. The TPI was then graded by differences in the elevation and slope between a criterion
grid cell and adjacent cells [39], as in Equation (1):

TPI = int((Elevation − focalmean (Elevation, Annulus, Irad, Orad)) + 0.5) (1)

where Irad is the inner radius of the annulus in cells, and Orad is the outer radius of the annulus
in cells.

We applied 50 m for Irad equally, and 550 m, 500 m, and 350 m for Cheonan, Eumseong, and
Cheongju, respectively, for Orad. These neighborhood values were calculated using the relief energy
of topographic profiles based on Jang et al. [40] (Table S2). TPI is a useful index in these areas,
which are dominated by mountainous topography, because it can identify the variance of topographic
features [41]. A positive value for TPI indicates that the cell was higher than the adjacent cells (i.e.,
at the top of a mountain), or else the cell was lower than the adjacent cells (i.e., in a valley) [41].
The merit of morphometric classification is that it is less complicated than other methods, requiring
only a topographical map or DEM. As the morphometric classification is focused on the shape of
the topography itself, it could be unsuitable for determining the ecological processes caused by



Forests 2017, 8, 466 5 of 19

topography [24]. We used the topographic classification tools provided by the ‘6-category slope
position parameters’ tool in the Land Facet Corridor extension of ArcGIS 9.3 (Environmental Systems
Research Institute Inc.(ESRI), Redlands, CL, USA) (Table 1). Threshold values and topographic class
name were based on the previous analysis [41] that has been applied in many other regions having
different topographic features [42–45].

Table 1. Morphometric topographic classes calculated and ordered by Topographic Position Index
(TPI) and slope [46].

Topographic Classes Criteria

TPI Slope

Ridges TPI ≥ 1
Upperslopes 0.5 ≤ TPI ≤ 1
Middleslopes −0.5 ≤ TPI ≤ 0.5 Slope ≥ 5◦

Flatslopes −0.5 ≤ TPI ≤ 0.5 Slope ≤ 5◦

Lowerslopes −1 ≤ TPI ≤ −0.5
Valleys TPI ≤ −1

Subsequently, generic classification, as a geomorphological classification system, could be defined
by quantifying the flow of water, energy, and materials [47]. The relationship between the upslope
contributing area (As) and the surface curvature (Cs) was used primarily to classify the topography [27].
These variables are defined in Equations (2) and (3):

As = (1/b)
n

∑
i=1

pi Ai, (2)

Cs =

(
n

∑
i=1

(zi − zn)/din

)
/n = g(x, y), (3)

where Ai is the area of the grid cell, n is the number of cells draining into the grid cell i, pi is the weight
depending on the runoff generation mechanisms, b is the contour width approximated by the cell
resolution, zi is the elevation of the ith current cell, zn is the elevation of a surrounding model point,
d is the horizontal distance between the two model points, and n is the total number of surrounding
points used in the evaluation [47].

The topographic classes by generic classification were defined using the scatter plot between the
As and Cs. The classification of topography by generic classification required several parameters to be
set, such as Asi, Ast, Ap, and Csi (Table 2). Asi and Ast were used to separate Summit and Toeslope
from Shoulder and Footslope, respectively. Ap is the value of the upslope contributing area initiating
the Channel. Regarding Csi, the points near the x-axis must contain both positive and negative values
as a quarter of the standard deviation of Cs (Figure 3) [27]. These parameters were applied differently
in each study site based on the topographic conditions (Table S3). Topographic drawings of the study
sites were included in the analysis. Summit is a flat surface at the top of the slope; Shoulder is a seepage
slope and convex creep slope; Backslope I and II are free-face and transportational mid- and low slopes;
Footslope is a colluvial footslope; Toeslope is an alluvial toeslope; and Channel is a channel wall and
channel bed. Scatter plots were constructed using ENVI (ESRI) and, subsequently, each topographic
class region in the study sites was calculated by using the ‘Raster calculator’ tool in the Spatial Analyst
of ArcGIS 9.3 (ESRI). The equations were derived by overlaying As and Cs maps and applying the
criteria of As and Cs in Table 2.
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Table 2. Generic topographic classes divided by the upslope contributing area (As) and the surface
curvature (Cs). The criteria for As and Cs were set by the level of sediment transport and the amount
of sediment [27,47].

Topographic
Class

Description Categories in
Figure 3

Criteria

As Cs

Summit The region is divided by two rivers in the
one drainage system a Min. ≤ Ast 0~Max.

Shoulder
This region has a positive surface curvature
value, and, therefore, an erosional process
is predominant

b Asi ≤ Ap +Csi ≤Max.

Backslope I These regions achieve equilibrium of
inflows and outflows c Asi ≤ Ast −Csi ≤ +Csi

Footslope
This region has a negative value for the
surface curvature, which indicates inflow
rather than erosion

d Min. ≤ Ast Min. ≤ −Csi

Backslope II These regions achieve equilibrium between
inflows and outflows e Ast ≤ Ap −Csi ≤ +Csi

Toeslope
This area is saturated with groundwater
and accumulates alluvial deposition from
the up valley

f Ast ≤ Ap Min. ≤ −Csi

Channel Rivers flow g Ap ≤Max. Min.~Max.
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to Park 2004).

2.4. Spatial Relationship between Topographic Classes and Species Distributions

We evaluated correspondence between the topographic classifications and species
distributions. [48] (Figure 2). Topography primarily affects the habitat conditions or species
distribution by the processes of erosion, transmission, and sedimentation [25], as well as the
morphological features [11]. To identify which topographic classification method was superior
at representing the distribution of the two types of flora and two types of fauna, we calculated
and compared the ratio of the (potential) habitat areas in each topographic class area from the
morphometric and generic topographic classifications.
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The ratios of coniferous and deciduous trees in each topographic class were calculated after a
comparison between the areas of coniferous or deciduous trees in each topographic class and the total
areas of each topographic class in the forest (Equation (4)). We overlaid the forest-type map with the
topographic-class map from the two topographic classifications. The entire forest, coniferous and
deciduous trees, were extracted and the areas of each type were calculated in each topographic class
from the overlying map.

Ratio (%) =
Areas o f coni f erous or deciduous trees in each topographic class

(
m2)

Total areas o f each topographic class in f orests (m2)
(4)

The ratios of the potential habitats of the mammals and amphibians in each topographic class
were considered in the non-urban area. Subsequently, we produced potential habitats in the mammal
and amphibian maps using ten species-distribution models (SDMs) in the biomod2 package in R
(R package 3.2.5) [49]. For the modeling, presence data of mammals and amphibians were insufficient.
Therefore, we developed two models (the mammal and amphibian models) by synthesizing presence
data of each taxon.

The ten SDMs consisted of maximum entropy algorithm (MAXENT), classification tree
analysis (CTA), rectilinear envelope similar to BIOCLIM (SRE), flexible discriminant analysis (FDA),
multivariate adaptive regression splines (MARS), random forest (RF), generalized linear models (GLM),
generalized boosted regression model (GBM), generalized additive models (GAM), and artificial neural
network (ANN) (Table S4). We ran each SDM five times to consider the uncertainty from the model
running. We selected the best SDM considering the average of AUC (area under the curve) values that
showed the highest reliability. The RF model had the highest AUC among SDMs; thus, we used the
results of the RF model (Table S5). Specifically, we utilized the result of the RF model run with the
highest AUC value (Table S5).

Based on the RF model results, we considered the potential habitat areas as the areas over the
threshold of the ‘receiver operating characteristic’ (ROC) curve [16]. Although various researchers
insist that SDMs could overestimate the probability presence, SDMs appear to be a superior choice for
mapping the distribution of species, as they require less research effort [50]. As predictor variables,
aspect, elevation, slope, distance from stream, and distance from road were used at the 10 m grid
cells, and the occurrence points of mammals and amphibians from the National Ecosystem Survey
were used as dependent variables. We used these occurrence points with 80% for model calibrations
and 20% for testing the models. The ratio of the potential habitats of mammal and amphibians in
each topographic class was calculated in the same manner, as with the coniferous and deciduous
tree analysis (Equation (5)). The analysis was conducted by using ArcGIS 9.3 (ESRI) and we utilized
the ‘Zonal Statistics as Table’. The graphs of the ratio were visualized by ggplot2 package in R
(R package 3.2.5) [51].

Ratio (%) =
Areas o f each topographic class in potential habitat o f species

(
m2)

Total areas o f each topographic classes in Non− urban area (m2)
(5)

Ultimately, the mean coefficient of variation (CV) in each ratio of the focal species groups in the
topographic classes was calculated to evaluate whether the ratios were constant regardless of the site.
The CV was used for identifying the measure of spread that describes the amount of variability relative
to the mean [52].

2.5. Design of Topographic Linkages

Subsequently, the topographic linkages of each topographic class in the morphometric and generic
classification methods were designed (Figure 2). First, to design the linkages, the termini required to be
connected were identified for each topographic map, after we had constructed the topographic-class
map of the two topographic classifications. However, all the classified topographic types were scattered
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throughout all the maps; therefore, the polygons that connected the termini were created by applying
the focal statistics concept, where their area was large enough to encompass 50% of the termini.
The focal statistics concept set the values for the surrounding cells of the focal topography type [11].
The grid cell values were fixed at 1 or 0 by containing or excluding them, and, subsequently, the density
was defined. Density refers to the values calculated by summing the neighborhood grid cell values
and converting them to a ratio [53]. The termini were subsequently calculated by using the ‘identify
termini polygons’ tool in the Land Facet Corridor extension of ArcGIS 9.3 [46].

Secondly, the cost surface was constructed by applying the Mahalanobis distance, which is the
relative distance from a parameter point in a multi-dimensional space [54], calculated by Equation (6):

D2 = (x−m)T × C−1 × (x−m) (6)

where D2 is the Mahalanobis distance, x is the data vector, m is the vector of the mean values of
independent variables, C−1 is the inverse covariance matrix of the independent variables, and T
represents a transposed vector. The Mahalanobis distance is used often in manufacturing and medical
research. The application of the Mahalanobis distance to independent variables is important because an
ideal status is believed to be a parameter, where the parameter is a factor that affects critical responses.
Topographic variables, such as elevation, slope, upslope contributing area, and surface curvature
that are applied in topographic classifications were used to calculate the Mahalanobis distance map.
The analysis was implemented in the Mahalanobis distance extension of ArcGIS 9.3 [11]. The Cost
Distance in ArcGIS 9.3 was subsequently used to produce cumulative cost surfaces by summing the
two cost-distance maps (one for each terminus).

Finally, the linkages for topography connections were constructed using the LCM. The generation
of a linkage area by applying topographic characteristics was achieved by the LCM by using the ‘create
corridor slices’ tool in the Corridor Designer ArcGIS toolbox [39]. The width of the linkage area was
set to be greater than the average 1-km width because most linkage areas for focal species (small and
large animals) were narrower than this width [17], and the linkage area required a width of over 1 km
to sustain the function for many years [55,56].

After designing the linkage areas, the perimeter/area ratio index (P/A) of the linkages was
calculated and compared in the study sites. The P/A relates a patch area to a boundary length and
reflects the patch shape. This index was used to assess the habitat structure and patch shape in the
landscape ecology [57]. The patch with a higher P/A could be affected more by the edge effect and
securing the core area could be difficult [58].

3. Results

3.1. Topographic Class Maps

More continuity was observed in the generic topographic class map than in the morphometric
topographic class map. In the generic classification, Shoulder, Footslope, and Toeslope each showed
a continuous pattern. Channel was classified as representing a river or stream, and not a valley at
high elevation. On the other hand, in the morphometric topographic classification, only Middleslope
occupied most of the landscape, with the other topographic classes showing inadequate continuous
patterns (Figure 4).

The topographic classes were distributed more evenly in the generic topographic classification
than in the morphometric topographic classification. In the generic topographic class map, the
topographic classes were divided by the erosion-accumulation process. For example, Summit and
Shoulder, representing high erosion and little accumulation of materials, appeared near the mountain
ridge, and Footslope and Toeslope, representing deposition and significant accumulation of materials,
were found near valleys. Backslope I was located between a ‘high-level’ ridge and a valley, and
Backslope II was located between a ‘low-level’ ridge and a valley, as they characterized ‘transmission of
materials and water’. However, the morphometric topographic classification produced a topographic



Forests 2017, 8, 466 9 of 19

class map dominated by Middleslope. As morphometric classification focused on the shape of the
topography, the slope and TPI calculated from a comparison of elevations between the focal cell and
the adjacent cells were used as the variables of the morphometric topographic classification [11].
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3.2. Spatial Relationship with Coniferous and Deciduous Forests

The morphometric topographic classification showed that it was slightly difficult to demonstrate
the habitat preferences of coniferous and deciduous trees. The ratios from Ridge to Middleslope
increased in the coniferous trees and decreased in the deciduous trees. It is believed that the
morphometric topographic classification could show a similar trend with the habitat environments
of these types of vegetation. However, the topographic classes having close to zero or negative
TPI and a low slope did not match these trends. Regarding coniferous trees, as Flatslope to Valley
represented a low slope and concave surface, the trends of the ratios differed from those of coniferous
ecological characteristics (Figure 5). In Cheonan and Cheongju, the ratio in Flatslope was higher than in
Middleslope. Middleslope had more advantages for conifers to inhabit than Flatslope, as Middleslope
had a higher slope that is unfavorable to accumulating nutrients and water. In Eumseong, the ratio in
Lowerslope was higher than in Flatslope. Lowerslope had negative TPI values, meaning the focal cell
had a relatively lower elevation than the adjacent cells. The deposition of sediment was more likely
to occur because of the concave surface of Lowerslope. Consequently, this trend did not match the
habitat preferences of the conifers. As regards the deciduous trees, Flatslope included fewer deciduous
forests than Middleslope in Cheonan and Cheongju, although the deciduous trees prefer significant
sedimentation and low slopes. In Eumseong, the ratio in Valley representing the river and stream was
higher than in Lowerslope.

In contrast, the ratios of coniferous and deciduous trees in the generic topographic classification
showed a similar trend to the habitat preferences of these trees. The ratios of coniferous and deciduous
trees in each topographic class gradually decreased in the instance of the former and increased in the
instance of the latter from Summit to Channel (Figure 5). In particular, the result of the deciduous trees
indicated that the vegetation preferred habitat features such as abundant nutrients and water [38].
The ratio of the coniferous forest in Backslope II was higher than in that in Footslope only in Cheongju
(approximately 1.2 percent). Even though Backslope II represented transportation of materials and
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water, this was probably because it had larger amounts of materials and water than Footslope, which
showed accumulation with a negative Cs value.Forests 2017, 8, 466  10 of 18 
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Figure 5. Ratio of coniferous and deciduous forests in morphometric (a) and generic (b) topographic
classes. The ratios of coniferous and deciduous forests in the generic topographic classification showed
a similar trend with the habitat preference of these types of vegetation. However, in the morphometric
topographic classification, from Flatslope to Valley, representing low slope and concave surface, the
ratios had different trends than the coniferous ecological characteristics.

Moreover, in the generic topographic classification, the ratios of coniferous and deciduous
trees in each topographic class of the three sample sites were more similar. Comparing the CV
to identify whether the ratios were constant regardless of the site, the generic topographic classification
showed a smaller value compared with the morphometric topographic classification. The CV in the
morphometric topographic classification was 18.78 (coniferous) and 5.71 (deciduous), but the CV in
the generic topographic classification was 17.37 (coniferous) and 2.83 (deciduous).

3.3. Spatial Relationship with the Potential Habitat of Mammals and Amphibians

The ratio of the potential habitats of mammals and amphibians in the morphometric topographic
classification was quite similar to their habitat preference and movement ability. For mammals,
except for Flatslope, all the morphometric classes contained more than 40 percent of the potential
habitat, as the mammals had extremely different habitat attributes. These ranged from goral
(Naemorhedus caudatus) inhabiting the high elevations and steep slopes, mainly comprising rock,
to water deer (Hydropotes inermis), and living grass land near rivers or streams. For amphibians, Ridge,
Upperslope, and Middleslope had quite low ratios of potential habitat, but Flatslope, Lowerslope, and
Valley showed relatively higher ratios (Figure 6). However, in the generic topographic classification,
the distribution of the amphibians was not related to the erosion-accumulation process. In Cheonan
and Eumseong, Summit, Backslope I, Footslope, and Channel had higher ratios. Regardless of
erosion-transportation-accumulation, the ratios in each generic topographic class were different.
In Cheongju, Backslope II and Channel showed higher ratios.

Moreover, in the morphometric topographic classification, the ratio of the potential habitats
of mammals and amphibians in each topographic class of the three sample sites was more similar.
The morphometric topographic classification had a smaller CV value compared with the generic
topographic classification. The CV in the generic topographic classification was 23.11 (mammal) and
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43.88 (amphibian), but the CV in the morphometric topographic classification was 21.33 (mammal)
and 28.64 (amphibian).Forests 2017, 8, 466  11 of 18 
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Figure 6. Ratio of the potential habitats of amphibians and mammals in the morphometric (a,c) and
generic (b,d) topographic classes. The ratio of the potential habitat of mammals and amphibians in the
morphometric topographic classification was quite similar to their habitat preference and movement
ability. However, in the generic topographic classification, the distribution of the amphibians and
mammals was not related to the erosion-accumulation process.
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3.4. Topographic Linkages

The generic topographic classification was more efficient in determining the adequate width and
extent of the topographic linkages. We set the linkages at greater than the average 1 km width (Figure 7).
However, the topographic linkages from the morphometric topographic classification were mostly
narrower than 1 km in width. This was ascribed to the differences in the Mahalanobis distance value
between the focal cell and the adjacent cells being higher than they were in the generic topographic
classification. The width of the linkages in the generic classification exceeded 1 km. The total areas of
the linkages were 27.1 km2, 7.2 km2, and 6.6 km2 in the morphometric classification, and 58.5 km2,
16.6 km2, and 10.4 km2 in the generic classification for Cheonan, Cheongju, and Eumseong, respectively.
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Figure 7. Topographic linkages based on morphometric and generic topographic classification.
Compared with the morphometric classification, the generic classification could secure sufficient
width and extent of linkages of over 1 km in width. The spatial differences among the topographic
linkages were also smaller in the generic classification than in the morphometric classification.



Forests 2017, 8, 466 13 of 19

In addition, the spatial differences among the topographic linkages were greater in the
morphometric classification than in the generic classification. In detail, in the generic topographic
classification, the topographic linkages for Summit, Shoulder, and Footslope were close to each other.
The linkage for Backslope II connected the low slope and lowland. In the morphometric topographic
classification, the linkage for Ridge appeared along the mountain ridge and the other linkages were
only partially overlain (Figure 7).

The P/A ratios of the linkages between the morphometric and generic topographic classifications
were clearly different, namely, (1) the P/A ratio in the generic classification was lower and the total
areas were larger; and (2) the P/A ratio in the morphometric classification was higher and the total
areas were smaller. In all the study sites, the perimeters of the linkages compared with the area were
longer in the morphometric classification than in the generic classification (Figure 8). In other words,
the topographic linkages from the morphometric classification could be more vulnerable to the edge
effect, and the topographic linkages from the generic classification would be more likely to secure the
core area in the linkages.
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The P/A ratio was higher in the morphometric classification than in the generic classification. A high
P/A ratio indicates that the topographic linkage could be vulnerable to the edge effect.

4. Discussion

4.1. Topographic Classes as a Surrogate of Species

Focusing on the shape of topography (morphometric) or reflecting the hydrological process by
topography (generic), we identified the topographic classification which was superior at describing the
actual (coniferous and deciduous trees) and potential (mammals and amphibians) habitat distributions.
Previous studies have shown that diverse environmental factors, such as temperature, precipitation,
soil, elevation, and slope, influence the ecological process and contribute to the formation of
biodiversity patterns [21,59–61]. In particular, topography could be a significant variable in predicting
the migration of species which is attributable to long-term effects, such as climate change [11,23].
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However, we argue that care needs to be taken regarding the topographic classification approach to be
used when topographic characteristics are considered as a surrogate of species.

First, generic topographic classification better describes the habitat preference of coniferous
and deciduous trees. The life cycle of coniferous trees has evolved for survival against strong xeric
conditions and wind, whereas deciduous trees are distributed on concave slopes or near streams [62,63].
We found that in the morphometric classification, the habitat preference of the trees was shown
generally, but Flatslope and Lowerslope showed different trends with the habitat preference. On the
other hand, in the generic classification, according to the habitat preference of the trees, the distribution
area ratio of coniferous and deciduous trees gradually decreased and increased, respectively, from
Summit to Channel (Figure 5). These results show that the distribution of these trees was more affected
by the erosion and accumulation processes than the shape of the topography. The generic classification
is based on the flow of energy and materials on the surface [47]. Therefore, since it can consider
the relationship between topography and soil, it has been recognized for decades that identifying
ecological features, such as the distribution of trees and plants, is advantageous [64].

Second, even though the topographic characteristics could not represent animal distributions
adequately (below 50 percent), the morphometric topographic classification was superior compared
with the generic topographic classification (Figure 6). Several linkage studies on mammals
and amphibians included topographic variables such as elevation, slope, and aspect as input
variables [19,22,65,66]. These studies revealed that topographic characteristics potentially affect the
movement of such animals. In the current finding, the potential habitats of mammals were smaller
in Flatslope, as agricultural areas accounted mainly for this class, and mammals are more likely to
avoid interferences and danger from humans [13,17]. This is the reason for Flatslope having low
distribution ratios in all the three study sites. Amphibians had a high percentage of potential habitats
in Flatslope, Lowerslope, and Valley. These results could be related to the habitat feature of amphibians.
Amphibians are aquatic in the juvenile stages, with the adult amphibians remaining close to streams
and valleys [67].

4.2. Designing Topographic Linkages to Accommodate Climate Change

Topographic linkages supporting the migration of species against climate change are frequently
mentioned in studies on the coarse filter approach [21,68–70]. Several studies have recommended
the coarse filter approach to conserve diverse communities against long-term effects such as climate
change. They have also shown that topographic linkages could be used to support the migration
of organisms in response to climate change, as similar topographic and geological characteristics
facilitate the connection of species among regions [71,72]. For instance, Brost and Beier [19] found that
topographic linkages drawn by the LCM can include the path of focal species. However, these studies
mainly considered topographic variables related to the topographic form, such as elevation, slope
angle, and insolation, to design linkages, and did not reflect the flow of energy and materials [11,23].

The width of linkages should be wide enough to ensure the conservation of diverse habitat
environments. The current findings show that the generic classification has two ecological advantages
in designing topographic linkages to support the migration of organisms responding to climate
change. First, it will help secure a sufficient width as it is easier with the generic classification
than the morphometric classification. Second, since the response of the species to climate change is
uncertain [21,73,74]. Maintaining the habitat linkages as wide as possible could enhance the likelihood
of species migration. As the generic classification method defines the topographic classes along with
the flow of materials, it is difficult to find a topographic class with completely different characteristics
around a specific topographic class. Consequently, when designing the topographic linkages using
LCM, wider areas could be selected using the generic classification (Figure 7). We also suggest
that all the topographic linkages, from Summit to Channel, need to be conserved to include all
the hydrological processes, as the generic topographic classification represents the most important
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hydrological processes affecting the ecosystem. It could be helpful to know the minimum width of
linkages in the coarse filter approach.

The P/A ratio of the generic classification was smaller than that of the morphometric classification,
so the possibility of being affected by the edge effect is significantly reduced (Figure 8). Theoretically,
all patches have the edge effect, because they are in contact with different landscapes [56]. For this
reason, the topographic linkages with less edge effect are more important for conservation. In this
study, we also found that the length of linkages was shorter in the generic classification. This means
that the species could migrate and sequentially colonize efficiently while receiving less influence
from human disturbance [75]. Therefore, it is important to design the topographic linkages with less
artificial effects.

5. Conclusions

Our finding offer insights into the method of designing topographic linkages and the strengths and
weaknesses of the topographic classifications. The generic topographic classification shows potential
for designing the topographic linkages in response to climate change. In particular, it has advantages
from the viewpoint of considering the distributions of vegetation and finding sufficient width and
extent of topographic linkages. In other words, topographic variables incorporating hydrological
processes, as well as the conventional topographic variables, such as elevation and slope, need to be
considered when topographic linkages are designed as a proactive tool against climate change and
fragmentation. However, further research is required on combining and weighing these topographic
variables or classifications to construct the topographic linkages for climate change, as both plants
and animals must be considered. Nevertheless, the topographic classification approach could be more
appropriate in regions lacking data on species’ distributions [76]. Therefore, we advocate the use of
topographic variables as significant variables and surrogates in planning for mitigating the effects of
climate change.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/8/12/466/s1,
Table S1: Flora and fauna used in this analysis; Table S2: Parameter values that classify the topography in
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are comparable with the parameter values in Jang et al. (2009) for the Republic of Korea; Table S3: Parameter
values that classify the topography in the generic topographic classification. Although different parameter values
were used according to the site, these are comparable with the parameter values in the three previous studies in
the Republic of Korea and the United States (Park et al. 2001; Park 2004; Jeong 2011); Table S4: Key features of
the 10 Species Distribution Models; Table S5: AUC values indicating the accuracy of the 10 Species Distribution
Models; Figure S1: Species distribution data of trees and animals in the study site (Cheonan).
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