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Abstract: Dipteronia Oliv. is an endangered genus found in China with two species, D. sinensis
and D. dyeriana. Previous morphological, cytogenetic, and molecular studies have suggested that
D. dyeriana is a species related to D. sinensis. However, it is unclear how the two species diverged
and whether gene flow exists between these two species. Here, we performed a molecular study
at the population level to characterize genetic differentiation and decipher the phylogeographic
history for Dipteronia species based on newly sequenced chloroplast DNA (cpDNA) and amplified
fragment length polymorphisms (AFLP) date retrieved from our previous studies. No haplotype
was shared between the two species in the cpDNA network. However, the phylogenetic analysis
suggested that a haplotype found in D. sinensis (H4) showed a closer relationship with haplotypes
of D. dyeriana. Based on our estimated time of divergence, these two cpDNA haplotype lineages of
Dipteronia diverged at about 31.19 Ma. Furthermore, two genetic clusters with asymmetric gene flow
were supported based on the structure analysis, which corresponded with the two Dipteronia species,
and we also detected a low level of asymmetric gene flow between these two species according to
the MIGRATE analysis using AFLP data. During the Last Glacial Maximum (LGM, c.21 kya BP),
the genus’ predicted distribution was more or less similar to that at present, which was also supported
by the mismatch analyses that showed no population expansion of the two Dipteronia populations
after the LGM. The combined cpDNA and AFLP data revealed significant genetic differentiation
between the two Dipteronia species with asymmetric gene flow, which can be explained by the varying
phylogeographical histories of these two species.

Keywords: chloroplast DNA; AFLP; genetic structure; phylogeographic history; refugia; D. sinensis;
D. dyeriana

1. Introduction

The geographical distribution of genetic variation in extant populations has generally resulted from
interactions between two fundamental processes: population dynamics in response to past geological
or climatic changes and a species’ evolutionary ability to respond to natural selection [1]. A detailed
examination of genetic variation within and between populations can help explain the phylogeographic
history of a species in response to past geological and climatic oscillations. Numerous studies have
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identified glacial refugia for temperate plant species and traced their postglacial recolonization
routes [2–7]. The Quaternary climatic oscillations and the associated regional-scale geological events
probably promoted intra-specific divergence due to the survival of populations in different glacial
refugia and the subsequent barriers to dispersal during recolonization [1]. Recent genetic studies
conducted in the Chinese population have confirmed the effects that the Quaternary climate
oscillations had on the genetic structure of plants, such as Juniperus przewalskii, Pinus tabulaefrmis,
and Rhododendron simsii [8–11]. Climatic oscillations during the Pleistocene resulted in several
glacial–interglacial cycles, which caused the expansion and contraction of habitats of, for example,
Juniperus przewalskii, Pinus tabulaefrmis, and Rhododendron simsii [4,8,9,11,12]. Although no massive ice
sheets developed in Central China during glacial periods, the tremendous global climatic changes,
together with local climatic changes caused by the Qinghai-Tibet Plateau uplift particularly during
Quaternary glaciations, have affected the distribution and evolution of many plant species in this
area [8,13]. In recent years, chloroplast DNA (cpDNA) markers have been frequently utilized to
survey the population genetic structure and phylogeography of plants [14], and to locate refugia and
post-glacial recolonization routes [14,15]. In addition, the bi-parentally inherited AFLP marker has
also been used in genetic mapping [16], estimations of phylogenetic relationships [17], and genetic
diversity studies [18].

The genus Dipteronia Oliv. (Aceraceae) is found in China with two extant species, D. sinensis
Oliv. and D. dyeriana Henry. Both species are diploid (2n = 18) trees distributed in the broad-leaved
deciduous forests in central and southern China, occurring along mountain streams at altitudes of
1000–2400 m above the sea level [19]. Two species are deciduous trees or small trees with a height of up
to 10–25 m tall and pinnately compound leaves. Individual trees are andromonoecious, having both
male and bisexual flowers that are born in paniculate inflorescences. The distinction between D. sinensis
and D. dyeriana is mainly based on morphology. For example, the panicles of D. dyeriana are densely
yellow-green pubescent, unlike in D. sinensis. The fruit of D. dyeriana is larger than the fruit of
D. sinensis [20]. Controlled pollination tests revealed that D. dyeriana is self-compatible, but a high bee
pollinator activity is generally observed in the field, suggesting that the species is at least partially
reproduced by insect-mediated outcrossing. Similar to Acer, the genus Dipteronia has schizocarpic
winged fruits (samaras) borne in pairs, but in contrast to Acer, the seeded mericarps or "nutlets" are
winged essentially all the way around the seed. These fruits, whose broad wings turn from light green
to red with ripening, are apparently dispersed by wind [21]. These two species are rare and endangered
with a limited population and have been listed in Chinese Rare and Endangered Plant Species [22].
Studies have shown that rare or endangered species are essential to the conservation of biodiversity
and the restoration and survival of the ecosystem [23]. Additionally, Dipteronia is one of the ancient
relic woody genera in the floristic region of the Northern Hemisphere and the fossil record shows that
species of this genus were once distributed in North America (from the late Paleocene to the early
Oligocene) in the Tertiary [19,24,25]. The Quaternary glaciation has been suggested as the cause of the
extinction of this genus in North America, because during the glaciation, the northern part of North
America was mostly covered by continental icecaps [26,27]. In contrast, the Quaternary glaciers in
China were mainly developed in a few mountains and no major icecaps formed [28,29]. Many Tertiary
relic plants, such as Dipteronia, could survive in refugia in central and southern China, although their
distribution area has been significantly fragmented by the glaciations. Thus far, most studies on
Dipteronia have been focused on morphological development and taxonomy [30–33]. Only a few
studies have been conducted to research the genetic diversity and genetic structure of Dipteronia [34],
in which only the genetic diversity and differentiation of the two Dipteronia sepcies have been described
based on AFLP analysis [35].

In the present study, we integrated new cpDNA analysis and previous AFLP data [35] to infer
the historical and contemporary divergence, in addition to the genetic diversity, of Dipteronia across
multiple individuals and populations covering its natural ranges in China. Specifically, we aimed to
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determine the amount of sequence divergence and potential interspecific gene flow after divergence
between D. sinensis and D. dyeriana, as well as to infer the possible refugia.

2. Materials and Methods

2.1. Sample Collection

In this study, 18 natural populations distributed throughout each species’ range were sampled,
including 15 individuals from each population (Figure 1 and Table 1). Individuals of the sampled
populations were separated by at least 10 m. In addition, using a closely related species,
five Acer miaotaiense P. C. Tsoong individuals were selected as an outgroup. Young leaves were collected,
dried in a plastic bag with silica gel, transported to the laboratory, and stored in a −80 ◦C freezer until
DNA extraction.
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LS Long-shan 34°21′ 106°00′ 1526 15 H3 (15) 
CD Chuan-dongzi 30°28′ 102°42′ 1468 15 H1 (12), H4 (3) 
JZ Jian-zhu 32°03′ 108°43′ 1479 15 H1 (15) 
YS Yao-shan 33°43′ 112°16′ 1138 15 H1 (12), H5 (3) 
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JC Jiu-chongshan 31°24′ 110°33′ 870 15 H5 (15) 
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Figure 1. The distribution of nine chloroplast DNA haplotypes identified within 18 Dipteronia Oliv.
Haplotype colors corresponds to those in Figure 2. The blue and red dotted areas represent the
distribution areas of D. sinensis and D. dyeriana, respectively. Population abbreviations correspond to
those given in Table 1.

Table 1. Details of sample locations (taken from GPS coordinates), sample sizes, and chloroplast DNA
haplotype frequencies for 18 populations of Dipteronia Oliv. in China.

Code Sample Location Latitude Longitude Altitude (m) Number Haplotype
(Sample Number)

D. sinensis
FP Fo-ping 33◦40′ 107◦41′ 1154 15 H1 (15)
HZ Han-zhong 32◦08′ 105◦30′ 1603 15 H1 (15)
LY Lue-yang 33◦35′ 106◦16′ 1346 15 H2 (15)
LS Long-shan 34◦21′ 106◦00′ 1526 15 H3 (15)
CD Chuan-dongzi 30◦28′ 102◦42′ 1468 15 H1 (12), H4 (3)
JZ Jian-zhu 32◦03′ 108◦43′ 1479 15 H1 (15)
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Table 1. Cont.

Code Sample Location Latitude Longitude Altitude (m) Number Haplotype
(Sample Number)

YS Yao-shan 33◦43′ 112◦16′ 1138 15 H1 (12), H5 (3)
HH Hou-he 31◦19′ 110◦29′ 1297 15 H5 (3), H6 (12)
JC Jiu-chongshan 31◦24′ 110◦33′ 870 15 H5 (15)
QT Qing-tanwan 31◦03′ 110◦55′ 1685 15 H5 (15)
WJ Wan-jiagou 31◦24′ 110◦33′ 811 15 H5 (15)
ZC Zhu-caogou 31◦05′ 110◦55′ 1735 15 H5 (15)
HP Hu-pingshan 30◦01′ 110◦31′ 1500 15 H7 (15)
YJ Yin-jiang 27◦59’ 108◦42′ 1098 15 H7 (15)

D. dyeriana
MZ Meng-zi 23◦24′ 103◦23′ 1902 15 H8 (15)
PB Ping-bian 23◦01′ 103◦52′ 2019 15 H9 (15)
WS Wen-shan 23◦37′ 104◦24′ 2217 15 H9 (15)
ZW Zhi-wuyuan 25◦02′ 102◦54′ 1923 15 H9 (15)

2.2. DNA Extraction and PCR Amplification

Total genomic DNA was extracted from dry leaves using a modified CTAB method [36,37],
before being kept at −20 ◦C for long-term storage or 4 ◦C for immediate use. The initial screening
of eight cpDNA markers using a subset of 30 samples from five populations revealed four cpDNA
markers (trnV intron, rps18-rpl20, rpl20-rps12, and trnH-psbA), generating genetic variations that were
used for subsequent phylogeographcical analyses (Table 2).

Table 2. Characteristics of the four chloroplast DNA spacer regions of Dipteronia Oliv.

Region Size Range
(bp)

Total Number of
Mutations

N◦ Polymorphic
Sites

Parsimony Informative
Sites (Two Variants)

trnV intron 408 6 6 6
rps18-rpl20 415 (404–415) 6 6 6
rpl20-rps12 560 (559–560) 10 10 10
trnH-psbA 356 (356–399) 15 14 14

Amplification reactions (50 µL) contained 2.0 mM MgCl2, 0.25 mM dNTPs, 50–100 ng DNA,
0.8 mM of each primer, 1 × PCR Buffer, and 2 U Taq DNA polymerase. Amplifications were conducted
using the following cycling profile: 94 ◦C for 5 min, 30 cycles of 94 ◦C for 45 s, 53–60 ◦C for 55 s,
72 ◦C for 1 min, and 72 ◦C for 7 min. All PCR products were purified from agarose gels using a PCR
Product Purification Kit (Shanghai Sangon Biological Engineering Technology & Service Co., Ltd.,
Shanghai, China) and were sequenced in both directions by standard methods on an ABI 377 automated
sequencer in Shanghai Sangon Biological Engineering Technology & Service Co., Ltd.

2.3. Data Analysis

2.3.1. Chloroplast Data Analysis

Multiple alignments of the cpDNA sequences were manually performed using ClustalX v1.83 [38]
and BioEdit v7.0.4.1 [39]. Insertions/deletions (indels) were generally retained so as to increase the
number of matching nucleotides in a sequence position. Nucleotide diversity (π) and haplotype
diversity (Hd) [40] among the population were calculated using the DnaSP v5.0 [41]. Neutrality tests,
such as Tajima’s D and Fu’s Fs, were also calculated with this program. We also calculated
within-population diversity (HS), total diversity (HT), and population differentiation (GST) at the
species level. To incorporate the relationships between haplotypes, an estimate of population
subdivision for phylogenetically ordered alleles (NST) was obtained. A higher NST than GST usually
indicates the presence of a phylogeographic structure. All aforementioned parameters were calculated
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using the program HAPLONST [42]. A statistical parsimony haplotype network based on the matrix
of pairwise differences between haplotypes was obtained with the aid of the TCS 1.06 [43] using the
95% connection probability limit, treating gaps as single evolutionary events. To investigate genetic
differentiations between two species and among each species, the analysis of molecular variance
(AMOVA) was performed with the program ARLEQUIN ver. 3.5 [44], while the significance of
variance components was tested with 10,000 permutations. Mismatch distribution analyses were
carried out in ARLEQUIN ver. 3.5 [44] to infer the historical demographic expansion events within the
two species.

The best fitted model of DNA substitutions (HKY + I) was selected using the Akaike information
criterion (AIC) method in Modeltest v2.3 [45]. The Bayesian Markov Chain Monte Carlo (BMCMC)
phylogenetic estimate was inferred using MrBayes v3.1.2 [46] with default priors. Acer miaotaiense,
which is closely related to Dipteronia [47], was used as an outgroup for creating the root of the
Bayesian tree. Bayesian analysis was performed with 20,000,000 generations. Four simultaneous
chains were run by sampling every 1000 generations. The first 25% of the total trees were discarded
and >50% posterior probability consensus trees from the remaining trees were calculated and combined
to a final tree. The divergence times for different Dipteronia cpDNA haplotype lineages were estimated
using a Bayesian approach implemented in BEAST v1.5.4 [48] using the HKY + I model. The starting
tree was randomly generated. We chose a coalescent tree model, which assumed a constant size
for our tree. The mean cpDNA mutation rate reported in a previous study for Acer mono [49] was
used for the four concatenated cpDNA non-coding regions to estimate the lineage divergent time in
BEAST under the uncorrelated lognormal clock model. Three separate MCMC analyses were run
for 20,000,000 generations with sampling at every 2000 generations and the first 25% generations
were discarded as ‘burn-in’. Tracer v1.5 [50] was used to check the parameters and ensure that all
the effective sample size (ESS) values were greater than 200. The final tree was generated using the
TreeAnnotator v1.8.2 program and visualized in FigTree v1.4.2.

2.3.2. Analysis of AFLP Datasets

We re-scored and re-analyzed two available AFLP datasets: one mainly contained populations of
D. sinensis Oliv. (121 individuals), while the other mainly contained populations of D. dyeriana Henry
(21 individuals) [35]. These datasets were initially generated and analyzed as part of several larger
meta-studies [35]. The population structure was detected using the model-based Bayesian algorithm
in STRUCTURE v2.3.4 [51]. We used the admixture model without prior information on population
membership and assumed independent allele frequencies among populations. The number of clusters
(K) was set to vary depending on the data set. For each value of K, we conducted 10 independent
simulations with a burn-in and run length of 100,000 Markov chain Monte Carlo (MCMC) replications.
The number of gene pools was inferred by estimating ∆K and lnP (D) [51–53].

The historical gene flow between D. sinensis and D. dyeriana was estimated using MIGRATE
v3.1.3 [54]. The MIGRATE program calculates maximum likelihood (ML) estimates for both migration
rates and effective population size between pairs of populations using a coalescent approach [55].
We relied on a maximum likelihood estimation, using 10 short chains (10,000 trees) and three long
chains (1,000,000) with 10,000 trees discarded as initial ‘burn-in’. The following input was used:
replicates = YES:5, randomtree = YES and heating = ADAPTIVE: 1{1 1.2 1.5 3.0} [56].

2.3.3. Species Distribution Models

Species distribution models (SDMs) were carried out in MAXENT v3.3.1 [57] to predict suitable
climate envelopes for D. sinensis at present and during the Last Glacial Maximum (LGM: c. 21 kya
before present; BP), respectively. In addition to the distribution records in this study (see Table 1),
125 collection records were obtained from the Chinese Virtual Herbarium (http://www.cvh.org.cn) [58]
and the National Specimen Information Infrastructure of China (http://www.nsii.org.cn) [59]. Based on
this total of 145 records, a current distribution model was developed using six bioclimatic data layers
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(annual mean temperature, annual precipitation, precipitation of wettest, driest, warmest and coldest
quarter) available from the WorldClim database (http://www.worldclim.org) [60,61] at a 2.5-arcmin
resolution for the present (1950–2000). This restricted bioclimatic dataset avoided including highly
correlated variables (data not shown) and thus, prevented potential overfitting [62]. This model was
then projected onto the paleoclimatic dataset simulated by the COMMUNITY CLIMATE SYSTEM
MODEL (CCSM v3.0; http://pmip2.lsce.ipsl.fr/) [63,64] to infer the extent of suitable habitats during
the LGM. Preparation of the LGM palaeoclimate layers at a 2.5 arc-min resolution used the same method
as a previous study [65]. The accuracy of each model prediction was tested by calculating the area under
the ROC Curve (AUC) [66], while AUC values > 0.8 indicate accurate simulations for the SDM models.

3. Results

3.1. Chloroplast DNA Polymorphism

In this study, the total alignment length of four regions (trnV intron, rps18-rpl20, rpl20-rps12,
and trnH-psbA) was 1789 bp. A total of nine haplotypes were identified based on the total alignment
sequence (Figure 1, Tables 1 and 2). There are seven haplotypes in D. sinensis and two haplotypes
in D. dyeriana, with no shared haplotype between them. The distribution of nine haplotypes was
shown in Figure 1 and the most widespread haplotypes were H1 (in five populations), H5 (in six
populations), and H9 (in three populations). All the remainders were unique to a specific population
(Figure 1; and Table 1). There were three populations that harbored two haplotypes, while the
remaining populations only contained a single cpDNA haplotype (Figure 1; and Table 1). The unrooted
network of Dipteronia Oliv. haplotypes was broadly consistent with the strict consensus tree with a
star-like genealogical signature. The ancestral-like haplotype H5 lies at the center with other derivative
haplotypes connected to it independently. H4 was a haplotype of D. sinensis, which connected to H9 of
D. dyeriana (Figure 2). In the phylogeny tree, H4 haplotype belonged to D. yeriana. It was predicted
that the H4 haplotype was the ancestral haplotype and became extinct in D.yeriana because it couldn’t
adapt to the environment. However, it was still reserved in D. sinensis.
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3.2. Genetic Diversity and Population Differentiation

For D. sinensis, the cpDNA revealed a low level of haplotype diversity (Hd = 0.260) and nucleotide
diversity (π = 0.63 × 10−3). The analysis of genetic diversity in the D. sinensis population showed
that the total genetic diversity (HT = 0.812) was much higher than the average within-population
diversity (HS = 0.086) (Table 3). Additionally, the GST and NST values were 0.894 and 0.912, respectively.
A statistical analysis using a permutation test showed that the NST value was higher than the GST value
(p > 0.05), indicating an absence of phylogeographical structure for D. sinensis. With respect to
D. dyeriana, a lower haplotype diversity (Hd = 0.395) and nucleotide diversity (π = 0.23 × 10−3)
was detected and the total genetic diversity (HT = 0.500) was also much higher than the average
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within-population diversity (HS = 0) (Table 3). The AMOVA results indicated that 29.92% of the total
genetic variation was partitioned between the two species, while 63.78% was found among populations
(Table 4). The AMOVA analyses revealed that 67.86% and 100% of the species’ total cpDNA variation
was distributed among the population for D. sinensis (FST = 0.89448, p < 0.001) and D. dyeriana (FST = 1,
p < 0.001), respectively, and low genetic differentiation was found within populations (Table 4).

Table 3. Genetic diversity, differentiation parameters, and neutrality test in all populations of D. sinensis
and D. dyeriana.

Species π × 10−3 Hd HT HS GST NST Fu’s Fs (p-Value) Tajima’s D (p-Value)

D. sinensis 0.63 0.260 0.812 0.086 0.894 0.912 19.053 (p = 0.998) –2.365 (p = 0.000)
D. dyeriana 0.23 0.395 0.500 0 1 1 0.976 (p = 0.534) 0.723 (p = 0.851)

π = nucleotide diversity; Hd = haplotype diversity; HT = total diversity; HS = within-population diversity;
GST = population differentiation; NST = population subdivision for phylogenetically ordered alleles.

Table 4. Different hierarchical types of analysis of molecular variance (AMOVA) of D. sinensis and
D. dyeriana.

Markers Source of Variation df Sum of
Squares

Variance
Components

Percentage of
Variation (%)

Fixation
Index

Between species 1 6.734 0.160 Va 29.92 FCT: 0.299

Among populations
within species 16 27.921 0.342 Vb 63.87 FSC: 0.911

Within populations 72 2.400 0.033 Vc 6.22 FST: 0.938 **

Total 89 37.056 0.536

D. sinensis Among populations 13 24.171 0.363 Va 89.45 FST: 0.894

Within populations 56 2.400 0.043 Vb 10.55

Total 69 26.571 0.406

D. dyeriana Among populations 3 3.750 0.250 Va 100 FST: 1.000

Within populations 16 0.000 0.000 Vb 0

Total 19 3.750 0.250

df = degrees of freedom; FCT = correlation of chloroplast types within groups relative to the total; FSC = correlation
within populations relative to groups; FST = correlation within populations relative to the total; and ** p < 0.001.

At the species level, neutrality test statistics (Tajima’s D and Fu and Li’s F’) (Table 3) were all
non-significant, while the mismatch distributions of D. sinensis were multimodal (Figure 3). As the
haplotypes of D. dyeriana contained no more than three haplotypes within the Yunnan province,
the mismatch analysis was not conducted.
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3.3. Phylogeny and Molecular Dating Based on cpDNA Data

In the present study, the phylogeny of cpDNA sequences was analyzed based on the Maximum
likelihood (ML) and Bayes method with Acer miaotaiense as an outgroup (Figure 4). The phylogenetic
tree derived from different methods produced an identical topology. All haplotypes were clustered into
two clades with weak support values. Most haplotypes, except for one haplotype (H4), of D. sinensis
formed a clade with a high support value, while the H4 haplotype of D.sinensis in the network clustered
with the two haplotypes belonging to D. dyeriana. The BEAST-derived cpDNA chronogram indicated
that the split time of the two cpDNA clades was dated to 31.2 Ma (Figure 4), with a divergence time
for six haplotypes of D. sinensis of 7.76 Ma (95% HPD: 2.63–18.34 Ma; Figure 4) and a divergence time
for two haplotypes of D. dyeriana of 1.04 Ma (95% HPD: 0.01–3.84 Ma; Figure 4).
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Figure 4. (a) Phylogenetic tree (ML) of the nine chloroplast haplotypes detected in Dipteronia Oliv.
with H10 as the outgroup using Acer miaotaiense. (b) Beast-derived chronogram for the haplotypes
in Dipteronia Oliv. based on four chloroplast DNA spacer regions. Posterior probabilities above
0.95 are shown above nodes. Error bars around nodes correspond to 95% highest posterior densities of
divergence times. H10 marks the outgroup using Acer miaotaiense.

3.4. Population Sturcture and Interspecific Gene Flow Based on AFLP Data

In the Bayesian analysis of population structure, the highest likelihood of the AFLP data was
obtained when samples were clustered into two groups (K = 2). All the D. dyeriana were clustered
into groups and the populations of D. sinensis showed a mosaic structure, which indicated a low
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level of hybridization between these two species (Figure 5). After estimating the migration rates
between the two species, we detected that the mean migration rate from D. dyeriana to D. sinensis was
0.7325 (0.7054–0.7600; 95% HPD) and the reverse migration rate was 0.4860 (0.4601–0.5130; 95% HPD).Forests 2017, 8, 424  9 of 14 
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3.5. Present and Past Ecological Niche Models

The AUC value for the current potential distribution of D. sinensis was relatively high (AUC > 0.9),
demonstrating a reliable predictive model performance. The predicted distribution ranges of the
species under the current status were identical to its actual distribution ranges (Figure 6). The actual
distribution ranges of D. dyeriana were slightly contracted compared to the potential range during
the LGM.
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4. Discussion

4.1. Genetic Diversity, Genetic Differentiation, and Glacial Refuge

The total genetic diversity of D. sinensis (HT = 0.812) was higher than the mean total genetic
diversity (HT = 0.670) detected in 170 plant species for which cpDNA markers have been used [7].
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The diversity was also higher compared to that of 13 other seed plants used as maternally inherited
markers in China [10]. The high genetic diversity detected in D. sinensis might reflect the accumulation
of nucleotide mutations over long evolutionary time-scales [67,68]. Previous research related to the
genetic diversity of Dipteronia based on AFLP and random amplified polymorphic DNA (RAPD)
markers also indicated that D. sinensis has a higher diversity [34,35]. In contrast, the genetic diversity
of D. dyeriana found in this study was low (HT = 0.500), probably due to its limited distributed area
and low population sizes.

Based on our data set, high genetic differentiation was detected between these two species and
variation was also detected among populations. Physical barriers may have contributed to the marked
genetic differentiation among Dipteronia populations. Therefore, geographic isolation may also partly
account for the pronounced genetic differentiation. Neighboring populations were usually separated
by geographic barriers and anthropogenic facilities, which largely hindered gene flow via seed and
pollen dispersal among populations. We detected high genetic differentiation and low gene flow
between these two species.

According to the coalescent theory, the ancestral haplotypes are expected to occupy a central
position in the network of haplotypes with a high frequency and have a great probability of producing
mutational derivatives [69]. In this study, H5 was found to be predominant and geographically
widespread, which was located in the interior position of genealogies (Figure 2) and is most likely
the ancestral haplotype. Suitable habitats in refugia may permit species to persist for long periods.
Unique genotypes and high levels of diversity often occur in these locations [2]. We inferred that the
most likely refugium for D. sinensis was the Qinling-Daba mountains because they have the highest
number of haplotypes (H1, H2, H3, and H5), as well as the highest haplotype diversity and nucleotide
diversity (Figure 1 and Table 3). Meanwhile, H2 and H3 were specific to LY and LS, which were located
in the Qinling mountains. The CD population had a high nucleotide and haplotype diversity, with the
specific haplotype H4 belonging to it. This population was located in the west of the Sichuan basin,
where there seems to be another potential refugium. The population in the Sichuan basin is surrounded
by mountains of Northwest China with no glaciers in the Quaternary glacial. Compared with the
same latitude, the significantly higher average temperature of the basin provides a good refuge for the
genus Dipteronia Oliv. (Aceraceae). Additionally, the ecological niche modelling (ENM) analyses also
indicated that these regions were suitable distribution ranges for these species, which also confirmed
these refugia.

4.2. Demographic History of Dipteronia

Our phylogenetic and phylogeographic analyses based on cytoplasmic and nuclear (AFLP)
data clearly support the monophyly of the genus Dipteronia and provide evidence for the genetic
distinctiveness of D. sinensis and D. dyeriana, although asymmetric gene flow was revealed between
these two species according to the STRUCTURE and MIGRATE analyses. Based on our cpDNA
chronogram, the split time of the main clades was dated to the Oligocene, which indicated a long
evolutionary history and independent evolution of the two species. Our molecular dating analyses
(Figure 4b) indicate that the onset of haplotype diversification in D. sinensis (c. 7.77 Ma, 95% HPD:
2.63–18.33 Ma) occurred midway during the Pliocene period. The diversified geological and/or
climatic changes had possibly acted as an isolating barrier between regional populations and promoted
the diversification of two lineages of D. sinensis. Furthermore, the divergence time of two D. dyeriana
haplotypes (H8 and H9) was located in the Quaternary, which indicated that the fluctuant climatic
changes promoted the diversified events of D. dyeriana populations. However, there is a lack of
fossil records of Dipteronia in China. We speculate that the Dipteronia species may have a complex
evolutionary history during the long species trajectory of this endemic genus.

In the present study, no phylogeographic structure was detected for D. sinensis. Additionally, no
expansion was detected for these two species, which indicated stable habitats where there are some species
after the LGM. The ENM results also supported a rare distribution expansion for Dipteronia (Figure 6).
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4.3. Recommendations for Species Conservation

In our study, the presence of unique D. sinensis cpDNA haplotypes in two different regions
suggested the existence of two separate refugia. These putative refugia have long been recognized
as centers of plant diversity and endemism in subtropical China [70,71]. Our results supported
the hypothesis that some parts of China have been spared from the direct impact of Pleistocene
glaciations [72] and have served as potential refugia for temperate deciduous trees [73,74].
The genetic data from D. sinensis indicated a pattern of long-term fragmentation and refugia survival,
as hypothesized by Harrison et al. [73]. Although all the D. sinensis populations in the two proposed
glacial refugia areas are currently under legal protection as one of the most endangered plant species
in China, routine practices and additional precautions for the conservation of this endangered plant
are still awaiting consideration with the support of of genetic information.

To preserve the total genetic diversity, in situ conservation and ex situ conservation are both
necessary for this endangered genus. In the current study, each suggested glacial survival area of
D. sinensis comprised a set of populations possessing unique haplotypes and these areas should be
qualified as different “evolutionary significant units” [75], such as the populations, CD, LY, HH, and LS.
These distinct units can be used as a reference source for the ex situ conservation when transplanting
individuals between areas or to a new site. In ex situ conservation, samples should be collected
especially from those populations harboring unique haplotypes.

Currently, there are only five natural populations of D. dyeriana in southeast Yunnan, and our
genetic survey revealed the relatively low genetic diversity of this endangered species, as had been
reported in a previous study [35]. As the genetic drift or inbreeding might have decreased the
within-population gene diversity of D. dyeriana, we recommend recovering the genetic diversity in
each population through replanting the seedlings to natural habitats to increase genetic exchange
and recombination. Therefore, a broad genetic sample should be preserved by ex situ conservation
programs (such as seed banks and botanic gardens). This will potentially allow future reintroductions
or population reinforcements, whose success will heavily depend upon the genetic quality of the
available ex situ sample [76,77].

5. Conclusions

In the current study, we performed a molecular study at the population level to characterize
genetic differentiation and decipher the phylogeographic history for Dipteronia species based on
chloroplast DNA (cpDNA) and amplified fragment length polymorphisms (AFLP) data. The genetic
diversity (HT = 0.812) of D. sinensis was higher than that of D. dyerana (HT = 0.500). The combined
cpDNA and AFLP data revealed significant genetic differentiation between the two Dipteronia species
with asymmetric gene flow, which can be explained by the varying phylogeographical histories of
these two species. Based on our estimated time of divergence, the two cpDNA haplotype lineages
of Dipteronia diverged at about 31.19 Ma. During the Last Glacial Maximum (LGM, c.21 kya BP),
the genus’ predicted distribution was more or less similar to that at present, which was also supported
by the mismatch analyses that showed no population expansion of the two Dipteronia populations
after the LGM.
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