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Abstract: The Upper Parana Atlantic Forest (BAAPA) in Paraguay is one of the most threatened 
tropical forests in the world. The rapid growth of deforestation has resulted in the loss of 91% of its 
original cover. Numerous efforts have been made to halt deforestation activities, however farmers’ 
perception towards the forest and its benefits has not been considered either in studies conducted 
so far or by policy makers. This research provides the first multi-temporal analysis of the dynamics 
of the forest within the BAAPA region on the one hand, and assesses the way farmers perceive the 
forest and how this influences forest conservation at the farm level on the other. Remote sensing 
data acquired from Landsat images from 1999 to 2016 were used to measure the extent of the forest 
cover and deforestation rates over 17 years. Farmers’ influence on the dynamics of the forest was 
evaluated by combining earth observation data and household survey results conducted in the 
BAAPA region in 2016. Outcomes obtained in this study demonstrate a total loss in forest cover of 
7500 km2. Deforestation rates in protected areas were determined by management regimes. The 
combination of household level and remote sensing data demonstrated that forest dynamics at the 
farm level is influenced by farm type, the level of dependency/use of forest benefits and the level of 
education of forest owners. An understanding of the social value awarded to the forest is a relevant 
contribution towards preserving natural resources. 

Keywords: BAAPA; remote sensing; household survey; forest; farm types 
 

1. Introduction 

Deforestation in the tropics today continues inexorably with severe implications for biodiversity 
conservation, climate regulation and ecosystem services such as carbon storage. The rapid expansion 
of the agricultural frontier, cattle ranching and illegal logging has converted the world’s last remnants 
of tropical forest into isolated patches endangering their continuity [1]. Between 1999 and 2005, 69 
million ha of forest have been lost in Latin America accounting for almost 7% of the forest cover of 
the continent [2]. Despite the fact that its speed has declined in comparison to previous years [3], 
deforestation still remains a concern. The latest studies conducted on a global level identified 
Paraguay as one of the countries in Latin America with the highest deforestation rates [4,5]. The 
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continuous anthropological pressure on natural resources has led to the loss of 90% of the forest cover 
in the eastern region of the country, where the Atlantic Forest is located [6]. The Atlantic Forest 
encompasses 15 ecoregions and a total area of 471,204 km2 [7]. The ecoregion is considered to be a 
biodiversity hotspot, due to the presence of numerous endemic species that are unique in the world 
[8–11]. Even though the portion of the Atlantic Forest (also known as the Upper Parana Forest 
(BAAPA)) within Paraguay only represents a small share of the complete geographic extension of the 
ecoregion, it has been recognized as a highly diverse ecosystem [12]. According to Huang et al. [13], 
the BAAPA forest cover decreased around 50% of its original cover between 1973 and 2000, in less 
than 30 years [1]. Latest studies [6,14] estimated that only 10% of its original cover remains. One of 
the major drivers of deforestation in the region is the expansion of mechanized agriculture and a lack 
of economic opportunities for forest owners [15,16]. Economic alternatives to service wood 
production (e.g., construction wood, fire woods and charcoal) are limited for the local population. As 
a result, it is tempting for small-scale farmers to lease their lands to large companies that produce 
exclusively monocultural crops such as soy beans and maize [17]. A common perception among 
farmers in the region is that one ha of soy crops simply holds a higher economic value than one ha of 
native forest. In addition, the low economic compensation that can be obtained for forest products 
cannot compete with the high levels of income generated by agricultural exports [18].  

Over the past decades, several governmental institutions, e.g., Forest National Institute 
(INFONA) and international organizations (e.g., Food and Agriculture Organization of the United 
Nations (FAO), the World Wildlife Fund (WWF) and the United States Agency for International 
Development (USAID)), have used remote sensing data to assess deforestation in the BAAPA. 
Nevertheless, despite the existence of numerous deforestation reports, major parts of the spatial 
analysis are kept in clusters and some even considered sensitive information [19]. According to Da 
Ponte et al. [19], only few scientific studies have provided a systematic analysis of forest cover change 
in the BAAPA region [13,20,21]. These studies estimated the dynamics of the forest cover and forest 
structure by implementing solely bi-temporal analysis based on Landsat images spanning the years 
1970 to 2001 and 2003 to 2013, respectively. Even though the discussed studies successfully identified 
deforestation processes and patterns with remote sensing techniques, no attempts were made to 
understand the underlying drivers of change or the effectiveness of conservation policies. No ground 
information that could capture local circumstances (e.g., uses of natural resources, farm types and 
cultural characteristics) between forest owners has been included in past analysis. For instance, recent 
studies conducted in the BAAPA [18,22] have demonstrated that farmers’ perceptions of the 
importance of the forest vary according to farm types. Farmers with less economic resources depend 
more heavily on the forest, whereas larger farmers consider the forest’s main value to be 
recreational/cultural. Hence, it is to be expected for small-scale farmers to present a higher percentage 
of farms exhibiting a decrease in their forest cover. 

In order to address these shortcomings, in this study, a dense set of Landsat imagery is applied 
on the one hand to provide the first multi temporal analysis of forest cover change in the BAAPA 
region (to the knowledge of the authors) between the years 1999 and 2016. On the other, remote 
sensing and household level data are combined to understand how farmers’ perceptions of the forest 
affects conservation practices at the farm level. The goal of this study is to measure the influence of 
farmer’s educational background on the dynamics of the forest, how changes in deforestation 
frequency differ according to farm type (small, medium, and large), how farmers’ dependency on 
natural forest resources influences changes in the forest cover, and the impact farmers’ participation 
in conservation programs has on preservation. The outcomes obtained in this study provide useful 
information when contemplating the importance of social involvement in land-use planning. 

2. Data and Methods 

2.1. Study Area 

This study was conducted in the Upper Parana Atlantic Forest of Paraguay (BAAPA), located in 
the eastern region of the country. The ecoregion comprises portions of ten departments, resulting in 
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a total area of 86,000 km2 (see Figure 1) [23]. Almost 50% (over 3 million inhabitants) of the country’s 
population is located within the boundaries of the BAAPA [23]. The areas of highest population 
density in the ecoregion are located in the east (Ciudad del Este) and south (Encarnación), whereas 
in the north the population decreases [23]. The climate in the Atlantic Forest is characterized by 
frequent rainfalls that fluctuate between 1300 to 1800 mm per year. The temperature in the region 
varies greatly between seasons. During summer months (December–March), the temperature can 
increase up to 42 °C, while over winter (May–August), it can decrease down to 0 °C. Most of the 
diverse biological richness of the BAAPA is distributed in the ecoregions of the Montane Forest in 
the North (Amambay), the central forest in the south and the Upper Parana forest in the southeast 
[12]. Although forest cover represents a significant portion of the natural vegetation in the ecoregion, 
the severe pressure from anthropological activities has degraded the forest with only a few remaining 
fragmented patches [13,20]. 

Prior to 1940, the BAAPA forest covered over 55% of the eastern region of the country 
(accounting for almost 9,000,000 ha). Nevertheless, uninterrupted deforestation practices resulted in 
the loss of 90% of its original cover [6]. Currently, 90% of the country’s soy bean production on 3 
million ha is located within the boundaries of the BAAPA region [24]. According to studies such as 
Huang et al. [13,20], causes of deforestation were related to the long-established perception of the 
forest as unproductive lands, the rapid expansion of the agricultural frontier and the unsustainable 
use of natural resources. By the year 2000, almost two-thirds of the Paraguayan Atlantic Forest was 
lost, with an annual average deforestation rate of 2000 km2. The government introduced reforestation 
programs in the late 1990s (incentives to forestation and reforestation law 536/96) to diminish the 
damage done in the BAAPA, yet unfortunately, these did not obtain remarkable results. The lack of 
clear regulations and financial support discouraged land owners from introducing further lands into 
the program [25]. By 2003 at the latest, Paraguay had become the country with the second highest 
deforestation rate in the world [3]. In response, the Paraguayan government approved in 2004 the 
“Zero Deforestation Law (2524/04)” for a period of two years, which prohibited the conversion of any 
parts of the Atlantic forest in eastern Paraguay [14,16]. According to reports from the World Wildlife 
Fund [3], deforestation rates decreased drastically as a result, slowing by over 90% from 2002 (110,000 
ha of forest loss per year) to 2009 (8000 ha of forest loss per year). 
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Figure 1. (a) Overview of the study area (Base layer provided by Natural Earth Community and 
Conservation international [26,27]); (b) Paraguay and the Upper Parana Atlantic Forest (BAAPA) 
location (source: adapted from Natural Earth [26]); (c) Household distribution within selected study 
areas.   



Forests 2017, 8, 389  5 of 21 

 

2.2. Landsat Image Acquisition and Pre-Processing 

For this study, Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) and Landsat 8 Operational Land Imager (OLI) data were acquired between the reference 
years of 1999 and 2016. Taking into consideration the high temporal and spatial resolution of the 
Landsat images, the sensor was considered the most suitable for this research. As presented in Table 
1, a total of 2775 terrain corrected (L1T) images with less than 30% cloud cover were obtained from 
the United States Geological Survey (USGS) archives. In order to decrease any possible noise and 
data gaps resulting from clouds and further atmospheric distortions, the number of satellite images 
to be used per classification was increased by considering data of two years for each map. This 
permitted to obtain a denser temporal coverage from the study region. Similar to Wohlfart et al. [28], 
Knauer et al. [29] and Gebhardt et al. [30], the FMASK (Function of mask) algorithm was applied over 
the Landsat images to identify and mask pixels classified as clouds shadows or no data (see Figure 
2). The FMASK algorithm was developed to automatically detect and mask clouds, cloud shadows 
and snow from Landsat images by taking the spectral and textural features into consideration based 
on probabilistic scores [31]. 

Table 1. Landsat data and number of processed scenes used in this study. 

Sensor Path/Row Acquisition Dates Number of Scenes Total

Landsat 5 TM 

224/77 07/1999–11/2011 116 

930 

224/78 04/1999–11/2011 108 
224/79 01/1999–11/2011 106 
225/76 01/1999–11/2011 112 
225/77 01/1999–11/2011 118 
225/78 01/1999–11/2011 121 
225/79 01/1999–9/2011 127 
226/76 02/1999–10/2011 122 

Landsat 7 ETM+ 

224/77 08/1999–07/2016 190 

1514 

224/78 08/1999–08/2016 177 
224/79 09/1999–08/2016 188 
225/76 07/1999–07/2016 198 
225/77 07/1999–08/2016 197 
225/78 07/1999–08/2016 194 
225/79 10/1999–08/2016 179 
226/76 08/1999–08/2016 191 

Landsat 8 OLI 

224/77 05/2013–08/2016 43 

331 

224/78 05/2013–08/2016 40 
224/79 07/2013–08/2016 42 
225/76 04/2013–07/2016 44 
225/77 04/2013–07/2016 41 
225/78 04/2013–07/2016 45 
225/79 04/2013–07/2016 43 
226/76 04/2013–08/2016 33 

Atmospheric corrections were performed with ATCOR-3 [32] for each Landsat scene to obtain 
physically comparable surface reflectance information, while also integrating topographic 
corrections by incorporating slope and elevation information from the Shuttle Radar Topography 
Mission. 
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Figure 2. Workflow of remote sensing data processing and classification procedures (source: adapted 
from Mack et al. [33]. 

2.3. Spectral-Temporal Landsat Time-Series Metrics 

The use of continuous spectral-temporal metrics not only has proven to solve problems related 
to data gaps (a consequence of clouds), but also has been applied extensively as a reliable approach 
for separating land cover/use classes [34–37]. A variety of different spectral-temporal metrics were 
estimated based on bi-annual Landsat stacks, characterizing different land cover classes for the most 
prominent phenological information. The procedure follows the approach as described in Mack et al. 
[33] and Wohlfart et al. [28]. The lack of temporal regularity of Landsat acquisitions constrains the 
direct quantification of phenological metrics. Therefore, several bi-annual spectral-temporal metrics 
were computed from the Landsat scenes in order to obtain proxies for seasonal information. For this 
study, several statistical image metrics were derived (percentiles of 10, 25, 50, 75, 90%) from Landsat 
(TM, ETM+, and OLI) observations based on the reflectances of the five bands (blue, green, red, near 
infrared and short-wave infrared). For each band and index, multi-year percentile differences (90% 
minus 10% and 75% minus 25%) were calculated. As described in Mack et al. [33] interannual 
minimum and maximum were neglected in order to decrease noise and further outliers. In addition, 
Normalized Vegetation Index (NDVI) percentiles were computed. Hence, a total of 35 multi-temporal 
spectral features were considered as input variables in the classifications. 

2.4. Estimation of Forest Cover between Years 1999–2016 

Forest/non-forest maps were produced for every year between 1999 and 2016, employing a 
random forest (RF) [38] classifier to generate inter-annual thematic change maps based on spectral-
temporal metrics (see Figure 2). For each reference year, training samples were randomly collected 
over the BAAPA area, resulting in a set of at least 100 homogeneous training polygons (as suggested 
by Congalton and Green [39]) for each of the five land cover/use classes “forest, croplands, grasslands, 
urban areas, and water”. Training and validation samples were well distributed over the study area 
to obtain the most representative coverage of land cover/uses in the region. Following the procedures 
of Wohlfart et al. [40], visual interpretation of very-high-resolution images (acquired from the 
historical imagery function of Google Earth between 1999 and 2016 [41]) was performed to define the 
classes of the training and validation samples. The interpretation was based not only on the image 
interpretation but also on local expert knowledge of the area. 

The RF algorithm has been increasingly applied to conduct land cover mapping due to its 
performance, user friendliness and computer proficiency [42–44]. RF is a decision tree algorithm 
which selects random subsets of learning samples and of variables to build multiple (default value of 
500) independent decision trees. Models were built and adjusted using the software R (version 3.3.1, 
R Foundation for Statistical Computing, Vienna, Austria) using its random forest package [45,46]. 
The pixel-wise classification applies the majority vote rule from aggregated decision trees to 
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determine the final category. In this study, RF models with 500 independent trees were built for each 
two-year composite, resulting in a total of eight individual models. Default values for the mrty 
parameters were used, which traditionally is p, where the number of predictors in the dataset is 
represented by p. In order to train the RF classifier, 60% of the reference dataset served as the training 
input, and the remaining 40% of the samples as the verification set. The quality of each classified 
image was described through overall accuracies, producers’ and users’ accuracies, and Kappa 
coefficients derived from the error matrix [47]. Finally, a non-forest mask was generated by grouping 
all non-classes. Forest patches with an area smaller than 0.5 ha were excluded from the analysis, 
considering the forest definition established by FAO [48]. 

In order to analyze the long-term differences of forest dynamics between protected areas (of 
different ownership) and among farm types (small, medium and large) a long-term (bi-temporal) 
analysis of change was conducted by comparing forest classifications results for the reference years 
of 1999–2000 and 2015–2016. 

2.5. Household Survey Data 

For this study, a household socio-economic survey (277 households) was conducted in the 
BAAPA region (see Figure 1c) in January 2016 over a period of one month. Due to the large size of 
the BAAPA region, three sample areas were chosen to conduct the survey; the ITAIPU watershed 
dam (10,000 km2) located in the north, the Ñacunday watershed (2500 km2), and the Tavapy district 
(436 km2) situated in the South (see Figure 2c). 

Respondents were stratified according to the size of their farm, following the categorization 
applied by the Ministry of Agricultural of Paraguay in its rural censuses [49]. Farmers with land size 
<20 ha represent the small-scale farmers group; farmers with land size of 20–50 ha represent the 
medium-scale farmers group; and farmers with land size >50 ha represent large-scale farmers. In 
general, the survey focuses more on aspects of the rural population (e.g., job, income, education level 
and land size) and their relationship with the forest (e.g., how they define “a forest” their knowledge 
of its functions, and its importance for their livelihood), their use of forest resources and services (e.g., 
firewood, construction and forest farming) and conservation programs (e.g., understanding and 
participation in such programs). For further detailed information on the household surveys methods 
and results, the interested reader is referred to Da Ponte et al. [18]. 

2.6. Combining Household and Remote Sensing Data 

Using cadastral information, long-term forest cover change results for the reference years 1999–
2000 and 2015–2016 were correlated to responses acquired from the field survey. For 106 of the 
interviewed farmers, cadastral data was obtained from the Paraguayan National Cadastral Service 
(SNC). Further, information was acquired on site during the field campaigns by measuring the limits 
of 39 farms while it was feasible to do so; for small-scale farms in particular, the topographic and 
weather conditions needed to be appropriate for doing so. This resulted in a number of 145 farms 
where both household survey and cadastral information was available for our comparative study. 
This sample size can be considered representative of the study region, since according to Yamane´s 
equation [50], 100 samples are required to achieve a sampling accuracy of approximately 90%. See 
Equation (1): = 1 + (e)  (1) 

where n represents the samples needed; N refers to the sample population; and e the sampling error 

(0.10). 
Changes in forest cover at the farm level were assessed by applying bi-temporal change 

detection analysis stratifying the changes into three categories: “forest loss”, “forest gain” and “no 
significant changes”. A farm was considered to fall into the category “no significant changes” if 
variations in forest cover occurred between 1 and 4 pixels (0–36 ha). 
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3. Results 

3.1. Forest Classification Accuracy 

In general, classification accuracies obtained from Landsat images between the years 1999 and 
2016 fluctuated from 85% to 93%, with Kappa coefficients ranging from 0.82 to 0.91 (see Table 2). The 
Landsat data set from 2001–2002 exhibited the highest accuracy, of which 94% of the pixels were 
classified correctly as forest. On the other hand, the lowest accuracy values were seen in the 2015–
2016 Landsat data sets, obtaining 88% and 87%, respectively. The lower classification values could be 
attributed to high spectral similarities between forest areas and dense crop fields (e.g., soybean and 
maize plantations). 

Table 2. Classification accuracies for each time step from 1999 to 2016. 

Time 
Period Overall KAPPA Producers 

Accuracy Forest 

Users 
Accuracy 

Forest 

Producers Accuracy 
Non-Forest 

Users 
Accuracy 

Non-Forest 
1990/2000 89.04% 0.85 90.15% 89.12% 89.87% 88.10% 
2001/2002 93.06% 0.91 94.13% 92.28% 92.86% 93.18% 
2003/2004 85.71% 0.82 86.74% 85.95% 84.67% 85.13% 
2005/2006 92.86% 0.90 93.75% 92.67% 92.88% 91.43% 
2007/2008 91.69% 0.89 93.09% 90.43% 91.15% 92.24% 
2009/2010 91.03% 0.87 91.15% 91.08% 89.87% 91.02% 
2011/2012 92.35% 0.89 94.88% 93.45% 90.72% 91.23% 
2013/2014 92.13% 0.89 92.78% 92.52% 91.36% 91.75% 
2015/2016 87.36% 0.83 88.40% 87.78% 87.04% 86.26% 

3.2 Forest Loss Rates 

In 1999/2000, over 31% (27,000 km2) of the BAAPA area was covered by forest. As presented in 
Table 3 and Figure 3, the largest forest areas in the region were located in the departments of 
Canindeyú and San Pedro, accounting for more than 48% (over 10,000 km2) of the total forest area in 
the BAAPA. The lowest levels of forest coverage were found in the departments of Paraguarí, Guairá 
and Concepción, together accounting for only 9% of the forest cover (around 2500 km2). In the years 
2001/2002, the forest cover in the BAAPA decreased to 29%, equivalent to 630 km2. The departments 
of Canindeyú, San Pedro and Alto Parana exhibited the highest relative forest loss of 79%, with more 
than 500 km2. In 2003/2004, deforestation rates increased drastically. Almost 9% (2300 km2) of the 
forest was being depleted, nearly four times as much as in previous years. Similar to the trends above, 
the highest rates of deforestation were concentrated in the departments of Canindeyú, San Pedro, 
and Alto Parana, together totaling over 56% (around 1300 km2) of the area loss. 

Following the year 2004, rates of deforestation gradually decreased from 4.9% (1200 km2) from 
2005/2006 down to 2.5% (549 km2) between 2011 and 2012, before increasing again slightly in 
2015/2016 (2.9%). Overall, by the year 2016, more than 27% (7500 km2) of forest cover was lost since 
1999, at an annual deforestation rate of 1.5% (442 km2) over the entire BAAPA area. The lowest 
deforestation rates were shown in the departments of Guairá (12.1%) and Paraguarí (2.4%) 
accounting for 1.5% (120 km2) of the total area deforested. In contrast, the departments of San Pedro 
and Canindeyú consistently evidenced the highest losses, with a total forest cover loss of 41% and 
33%, respectively. 
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Figure 3. Deforestation results in the BAAPA region between 1999 and 2016. 
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Table 3. Forest cover and forest cover loss in the BAAPA region from 1999 to 2017. 

Department  

Forest 
Cover 

(1999–2000 
km2) 

% 

Forest 
Cover 

(2001–2002 
km2) 

% 

Forest 
Cover 

(2003–2004 
km2) 

% 

Forest 
Cover 

(2005–2006 
km2) 

% 

Forest 
Cover 

(2007–2008 
km2) 

% 

Alto Paraná 3336 12.3 3210 11.8 2856 10.5 2747 10.1 2709 10.0 
Amambay 2414 8.9 2371 8.7 2353 8.7 2144 7.9 1998 7.3 
Caaguazú 3113 11.5 3069 11.3 2801 10.3 2658 9.8 2649 9.7 
Caazapá 2172 8.0 2169 8.0 1901 7.0 1801 6.6 1787 6.6 

Canindeyú 5812 21.4 5602 20.6 5036 18.5 4889 18.0 4692 17.3 
Concepción 1246 4.6 1236 4.5 1084 4.0 1027 3.8 940 3.5 

Guairá 916 3.4 891 3.3 862 3.2 860 3.2 856 3.1 
Itapúa 3086 11.4 3084 11.3 2833 10.4 2802 10.3 2730 10.0 

Paraguarí 357 1.3 324 1.2 347 1.3 335 1.2 327 1.2 
San Pedro 4735 17.4 4570 16.8 4124 15.2 3728 13.7 3383 12.4 

Total 27,187 100 26,526   24,197   22,991   22,071   

Department  

Forest 
Cover 

(2009–2010 
km2) 

% 

Forest 
Cover 

(2011–2012 
km2) 

% 

Forest 
Cover 

(2013–2014 
km2) 

% 

Forest 
Cover 

(2015–2016 
km2) 

% 
Total Forest 
Loss (km2) 

% 

Alto Paraná 2664 9.8 2609 9.6 2598 9.6 2528 9.3 808 24.2 
Amambay 1946 7.2 1911 7.0 1827 6.7 1808 6.7 606 25.1 
Caaguazú 2548 9.4 2487 9.1 2434 9.0 2322 8.5 791 25.4 
Caazapá 1768 6.5 1768 6.5 1732 6.4 1639 6.0 533 24.5 

Canindeyú 4427 16.3 4278 15.7 4091 15.0 3904 14 1908 32.8 
Concepción 916 3.4 901 3.3 890 3.3 876 3.2 370 29.7 

Guairá 834 3.1 816 3.0 806 3.0 805 3.0 111 12.1 
Itapúa 2705 9.9 2700 9.9 2678 9.9 2634 9.7 452 14.6 

Paraguarí 328 1.2 358 1.3 360 1.3 348 1.3 9 2.4 
San Pedro 3204 11.8 2963 10.9 2804 10.3 2754 10 1981 41.8 

Total 21,340  20,791  20,220  19,618  7569 27.8 

Figure 4 reveals a clear pattern concerning the effectiveness of the protecting reserves based on 
their style of governance (ownership). For instance, each protected area owned by a governmental 
entity (Gov) showed a decrease in total forest cover. The highest deforestation rates were found in 
the National Parks of Cerro Corá (4.5%), Ybytyryzú (3%) and San Rafael (2.9%), totaling almost 30 
km2. In contrast, each natural reserve under ITAIPU-IT (binational hydroelectric dam (partially 
owned by the government)) management exhibited increments on their forest cover, with natural 
restoration rates (natural reforestation) varying between 1% (in the Yvytyrokai) and 69% (Biological 
Reserve Mbaracayú). As for protected areas privately owned (Prv) (e.g., Mbaracayú and Morombí), 
no clear trend was found. While the Mbaracayú reserve exhibited a small increase in forest cover, 
(0.8%), the Morombí reserve, by contrast, presented the highest deforestation rates (4.7%) among all 
the protected areas in the BAAPA region. 
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Figure 4. Comparison of forest dynamics between protected areas based on the type of ownership: 
Prv. (Private ownership), Gov. (Governmental ownership) and IT (Owned by the ITAIPU 
hydroelectric dam). 

3.3. Forest Cover Change and Household Survey 

3.3.1. Demography and Influence on Forest Dynamics 

All interviews were conducted with the designated head (by the families) of each household. 
The vast majority of respondents were males (around 85%) with an age between 30 and 62 years. 
Ownership was mixed between Paraguayans and Colons (Brazilians), with the Paraguayans tending 
to own the smaller farms (82% Paraguayans), and Colons larger ones (83% Colons). The principal 
occupation of 91% interviewees was farmer, while a small share (9%) occupied positions in 
governmental institutions in addition to farming activities. Respondents’ main agricultural activities 
were soy bean production (mainly large-scale farmers), cattle ranching (mostly medium-scale and 
small-scale farmers) and subsistence agriculture (small-scale farmers in particular). When analyzing 
the dynamics of the forest at the farm level, Figure 5 shows that forest loss/gain are closely related to 
farm size. For instance, the majority of forest loss (62%) occurred on small-scale farmers’ properties. 
The percentage of farmers experiencing deforestation gradually decreases with an increased farm 
size, declining from 50% for medium-scale to 38% for large-scale farmers groups. Forest gain, on the 
other hand, is more common among large-scale farmers, accounting for 48% of the interviewees. On 
the contrary, small scale farmers exhibited the lowest percentage (23%) of respondents with an 
increment in their forest cover. Hence, when farm sizes increase, the percentage of farms showing 
forest cover gain increases as well. 
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Figure 5. Dynamics of the forest stratified by farm type. 

Figure 6 presents the distribution of the education level between farm types. Basically, education 
level increases slightly as farm sizes increases. The majority of farmers with higher education (a 
university degree) is found among the large-scale farmers group (32%). Small-scale farmers more 
frequently reveal lower levels of education, with 22% of the respondents having no school degree. 
Notwithstanding, a primary school education remains the most common level of education among 
all farm types with 65% (small-scale farmers), 61% (medium-scale farmers) and 40% (large-scale 
farmers) of respondents, respectively. Figure 7 presents strong tendency between a farmers’ 
education level and the dynamics of the forest on their parameters. The highest percentage of farmers 
exhibiting forest loss is found in the group with no school degree. 

 
Figure 6. Education level according to farm size of the respondents  
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Figure 7. Dynamics of the forest based on the education level of the respondents. 

This tendency gradually decreases as education level increases, down from 65% in the group 
with no formal education to 12% in the group with a college education. Furthermore, farmers with 
higher education (University degree) most commonly saw gains of forest cover on their property. 
This tendency decreases with decreasing education level, dropping from 68% (higher education) to 
20% (no education). 

3.3.2. Uses of Forest Benefits and Influence on the Forest Cover 

To capture the level of dependency on forest benefits by different farm types, interviewees were 
asked which products they obtained from the forest and how important they were to them. A total 
of 68% of the farmers remarked that they frequently benefited from the forest, and 92% stated that 
forests are very important for their livelihood. A deeper analysis of the results revealed a higher 
dependency of forest products among small (97%) and medium-scale (78%) farmers, whereas large-
scale farmers (44%) stated that they made use of the forest but not as intensively. The high reliance 
on forest products and services, in particular among the small-scale farmers group, can be attributed 
to a lack of other sufficient financial resources. Figure 8 presents the different uses of the forest 
according to farm type. Over 88% of the small-scale farmers group admit to collecting firewood from 
the forest. A total of 94% of this group stated that their main use was for subsistence, in particular 
cooking. On the other hand, only 40% of medium and 18% large-scale farmers claimed a certain level 
of dependency, in clear contrast to the above. Small (73%) and medium-scale (44%) farmers were 
more reliant on forest wood for construction (e.g., households, barns and fences construction) than 
large-scale farmers (16%). 

In rural areas, the vast majority of small households (in particular within the group of small-
scale farmers) own houses that are built with wood from the forest, while medium- and large-scale 
farms often present permanent homes. When asked about the cultural value of the forest, around 55% 
of large-scale farmers considered the forest’s main value to be recreational. However, this inclination 
is less frequent among medium- and small-scale farmers, of which only 22% and 4%, respectively, 
held the same opinion.  

Figure 9 presents how the forest cover of each farm group is affected by the use of forest benefits 
and products. For this analysis, we considered the percentage of farmers that acknowledged the use 
of the forest for any purpose (e.g., construction, firewood, agroforestry and recreation) and the spatial 
information from the forest cover of each farm. When analyzing the small-scale farmers group, 60% 
of the respondents presented forest loss, whereas only 26% and 14% showed forest gain or non-
significant changes. Similar trends were observed among medium-scale farmers, among whom a 
high percentage of respondents (58%) presented a decrease in their forest cover, in comparison to the 
ones showing increments (35%) or no changes (7%). In contrast, a much higher proportion of the 
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large-scale farmer’s group (53%) revealed forest gain. Overall trends disclose a correlation between 
the uses of forest by different farm groups and their influence on the forest cover. Whereas small- 
and medium-scale farms evidenced high rates of deforestation, large-scale farmers demonstrated 
more sustainable use of the natural resources. However, it is important to mention that main uses of 
forest benefits differed among farm groups, which could have an impact on the forest cover itself. As 
described previously, small- and medium-scale farmers exhibited a higher tendency to use the forest 
as a source of firewood and construction-wood, whereas large-scale farmers were more inclined to 
use the forest for recreational proposes. 

 
Figure 8. Main uses of forest related products based on farm type. 

 
Figure 9. Dynamics of the forest cover based on the level of dependency. 

3.3.3. Conservation Programs and Forest Cover Change 

To comprehend landowner’s perception about the willingness to conserve forests, farmers were 
asked if natural areas should be protected. In general, positive responses were obtained, with 99% of 
farmers expressing their support for protecting forests. Additionally, 88% of the farmers remarked 
on the importance of the forest and the negative effects of a disappearing forest, in particular on the 
prevailing natural resources, flora and fauna and water reservoirs. Overall, the interviewed farmers 
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exhibited high degrees of environmental awareness. Furthermore, 54% of respondents reported 
participating in environmental programs such as the Payment for Ecosystem Service (PES) program, 
reforestation programs and water courses protection programs. Particularly large-scale farmers (65%) 
participated in such programs followed by medium (47%) and small-scale (45%) farmers’ groups. 

To understand the influence of conservation programs on forest dynamics, respondents’ 
participation in environmental programs/workshops was reflected by the variations of the forest 
cover in each farm. Overall, results also highlighted that sustainable use of the forest was related with 
program participation. Of the group that reported not participating in any environmental workshops 
or conservation programs, 73% evidenced forest loss and only 9% an increase in forest cover. On the 
contrary, the fraction of properties experiencing forest loss decreased to 48% among participants in 
environmental programs, and the fraction of farmers with forest gains increased to 41%. When 
analyzing the results at a farm type level, small-scale farmers presented similar tendencies to the ones 
described above (see Figure 10). The percentage of famers exhibiting forest loss decreased from 73% 
to 48% for respondents involved in conservation/workshops programs. 

 
Figure 10. Relationship between conservation programs and forest cover change per-farm type. 

Additionally, forest cover increase was found among farmers with environmental education, 
accounting for 41% of the respondents in this group. Large-scale farmers revealed different patterns 
from the ones described previously. The group of respondents which attended workshops was higher 
among farmers with increases in their forest cover (59%) in comparison to the ones exhibiting forest 
loss (32%) in the same group. Trends among the non-participant group resemble the ones shown for 
small- and medium-scale farmers, where farmers exhibiting forest loss (50%) dominated. Overall, 
results revealed a clear pattern where environmental education has an influence on the dynamics of 
the forest. Farmers with environmental knowledge tend to experience less forest loss. 

4. Discussion 

4.1. Forest Cover Change Analysis 

The dynamics of the BAAPA forest and the perception of its benefits is a topic of great 
importance which has not been adequately studied so far. When analyzing changes of the forest 
cover, most studies were based solely on remote sensing [4,5,20] or field survey data [18]. To the 
knowledge of the authors, no research has combined both information types in the region. If the 
objective is to preserve natural resources, it is important to understand not only the historical 
distribution of the forest, but also the landowners’ perceptions of it [51,52]. In a first part, the present 
study focuses on how the forest cover has been changing over the last 17 years, using a multi-
temporal analysis approach. For this purpose, changes in the forest cover were assessed by applying 
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a RF classifier using spectral temporal metrics derived from a dense set of Landsat Imagery (TM, 
ETM+ and OLI/TIRS). In a second part, this study examines how different farmer groups perceive the 
forest and how their perceptions influence its dynamics, integrating remote sensing and household 
level data. 

Overall, change detection results revealed a total forest cover loss of 7500 km2 (almost 28% of its 
original cover) between 1999 and 2016. However, in comparison with studies conducted for the 
previous years, a decreasing trend in deforestation rates is observed. Huang et al. [13,20] 
demonstrated that between 1989 and 2000, the BAAPA forest lost almost 40% (over 13,500 km2) of its 
original cover, a figure nearly two times higher than deforestation figures found in this research. 
Inconsistencies with other studies regarding deforestation rates were found. For example, Da Ponte 
et al. [21] analyzed changes in the BAAPA forest between the years 2003 and 2013 based on Landsat 
images (OLI and ETM+). The study reported a total forest cover loss of 37% (around 33,039 km2) by 
the year 2003 and 30% (over 26,966 km2) in 2013. The present research, however, revealed lower forest 
coverage for the same period, of 28% (24,197 km2) and 23% (20,221 km2), respectively. Differences 
between findings could be related to sensors applied, input data (e.g., percentiles, vegetation indexes) 
and definition of forest. Similar trends were observed when comparing classification results with the 
ones obtained by the National University of Asuncion—UNA. For the year 2011, the UNA found 
natural forest coverage of 20% in the BAAPA, or almost 17,500 km2 [53]. Results from this study 
presented higher forest coverage values (around 23% (20,000 km2)) for the same period. It is worth 
noting that both studies assessed changes in the forest cover by applying bi-temporal-approaches 
considering only single scenes. Further spectral features such as percentiles derivation, vegetation 
indices, and a dense set of Landsat imagery were excluded from the analysis. The described data was 
already proven to be essential to achieving higher accuracy in land cover predictions and change 
detection assessment [28,37]. 

A detailed analysis of the time series indicates that deforestation rates seem to increase abruptly 
between the years 2002–2004 (almost four times higher than previous years) and gradually decrease 
again until the years 2015–2016, where slight increase is once again observed. This trend can be 
attributed to the Zero Deforestation Law (No. 2524/04) established in the year 2004, which banned 
the conversion of forest lands for other purposes [14]. According to farmers interviewed during the 
field survey, the Zero Deforestation Law was anticipated by rural communities and large landowners, 
who increased their deforestation activities before the deforestation law took effect. 

A clear difference in the effectiveness of conservation programs under different forest 
management regimes is observed. For instance, every natural reserve owned by the Government-
Gov presented a certain degree of forest loss within their boundaries. Reserves managed by the 
ITAIPU-IT hydroelectric, on the other hand, showed increases in forest cover, in some cases up to 71% 
of its total area (e.g., Mbaracayu reserve). ITAIPU is a binational hydroelectric company owned by 
the Paraguayan and Brazilian government. They invest economic resources to protect natural areas, 
but solely in areas located directly in their watersheds (as a part of their environmental mitigation 
program). Subsidies given directly by the government, in contrast, are rather scarce. According to 
several national environmental institutions (e.g., Guyra Paraguay, WWF, Fundacion Moises Bertoni), 
further support to protecting natural forest areas is needed. Until today, there still remains a strong 
weakness in the enforcement of environmental laws, policies and proper criteria to include 
stakeholder’s needs and concerns when implementing conservation programs [25]. 

4.2. Household Survey and Remote Sensing Data  

The analysis of forest cover change at the farm level in combination with results derived from 
field surveys permits comparing variations in forest surfaces along with the influence of change by 
different farm groups. Overall, results revealed a clear difference in the dynamics of the forest cover 
between farm types. In general, a higher proportion of small-scale farms presented forest loss 
compared with medium- and large-scale farmers. Similar tendencies were found in several reports 
from Peruvian environmental agencies (e.g., Ministry of Environment and Ministry of Agriculture 
and Irrigation) that tag small-scale farmers as the principal responsible group for over 90% of the 



Forests 2017, 8, 389  17 of 21 

 

deforestation activities that occurred in the Peruvian Amazon [54]. However, it is important to clarify 
that the total area of forest loss between farm types was not considered in this study. Therefore, even 
though small-scale farmers were shown to be the farm group most responsible for deforestation 
activities, the total forest area loss might not be as high compared to medium- and large-scale farmers. 
This study also analyzed the influence of education level on deforestation tendencies in the BAAPA. 
The percentage of farmers exhibiting forest loss decreases as education levels increase. Comparable 
trends were found among the Amerindian farmers in Honduras, where forest clearings tended to 
decline as education levels increased [55]. Additionally, according to Turner II et al. [56], a higher 
level of education could imply a better management of natural resources and a decrease in pressure 
on the forest.  

A clear correlation was observed between the various farm types and differing ways of using 
the forest. In general, results show a higher percentage of small- and medium-scale farmers 
demonstrating forest loss. The present trend is consistent with the results obtained in the 2016 field 
survey, which revealed a high dependency on forest benefits (in particular construction wood and 
fire-wood) by the same farm types. The extraction of forest goods without considering any concept 
of sustainability or management plans could greatly influence its continuity [14]. Similar to the trends 
discussed above, a correlation between the tendencies found among large-scale farmers and results 
obtained in the 2016 survey was observed. The majority of large-scale farmers stated that their main 
use of the forest was recreational; correspondingly, their properties did not show evidence of intense 
harvesting. Results in our study demonstrated not only that large-scale farms presented the lowest 
percentage of respondents exhibiting forest loss, but also that the same group showed the highest 
percentage of respondents with increases in their forest cover. However, it is important to remark 
that the level of use of forest goods is highly associated with the level of income and daily subsidence 
needs (housing and cooking in particular), from each farm group. According to the main results 
obtained in the survey, the level of reliance on forest products varies with farm size; dependency on 
the forest tends to increase as farm size decreases. Whereas medium- and large-scale farmers are 
inclined to see the forest as an additional source of income, small-scale farmers, on the contrary, rely 
directly on forest products for subsistence. 

Lastly, this study related the influence of environmental education on the variation in forest 
cover between farm types. The properties of farmers that participated in environmental 
programs/workshops were less likely to exhibit forest loss. However, at least for small- and medium-
scale farmers, the percentage of farms showing forest loss was overwhelming. Large-scale farmers 
presented different trends, the majority of farms demonstrating increases in forest cover, which can 
be related to their increased participation in environmental programs. 

Finally, it is important to take notice of certain biases on the input data that might have 
influenced the outcomes of this study. Firstly, the responses of the survey could have been influenced 
by the background of the interviewer, problems with environmental authorities and personal 
thoughts over the nature of the research itself. The present study combined remote sensing data with 
the available cadastral information for the area as far as possible. However, since most of the cadastral 
data was not accessible (in particular for small-scale farmers), field measurements relied on the 
knowledge of the farmer regarding the boundaries from their farm. Lastly, the distribution of the 
samples was dependent on the cadastral information; therefore, the representation for the study area 
could have been biased. 

5. Conclusions 

The results of this study provided a description of deforestation trends over the BAAPA region 
between 1999 and 2016. The correlation of household and remote sensing data permitted the 
obtainment of relevant information with regards to farmers’ influence on the dynamics of the forest 
at the farm level. Based on the major findings and discussions in this study, the main conclusions are 
described as follows: 
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 Results of the forest change detection analysis based on Landsat imagery revealed a total forest 
cover loss of almost 7500 km2 between the years 1999 and 2016, which represents almost 27% of 
its cover.  

 The outcomes of the time series analysis presented a drastic increase in deforestation rates 
between the years 2001–2002 and 2003–2004, almost four times the deforestation rates observed 
for previous years (2300 km2). According to local farmers, the present trend could be attributed 
to the upcoming Zero Deforestation Law in the country, which influenced the rapid 
deforestation before the law was applied.  

 Forest cover change analysis in protected areas demonstrated a clear difference between their 
effectiveness. Whereas protected areas under the ITAIPU hydroelectric management regime 
presented increases in forest cover, protected areas managed by the Government, on the 
contrary, showed a decrease in their forest cover in each of the reserves.  

 According to the 145 households interviewed, forest dynamics at the farm level is related to farm 
types. While the frequency of farmers presenting forest loss increases as farm sizes decreases, 
forest gains, on the contrary, increase as farm sizes increases as well.  

 Education level has been shown to have an influence on the dynamics of the forest at the farm 
level. Overall, results demonstrated that, as education level increases, the percentage of famers 
exhibiting forest loss decreases. When considering forest gain, on the other hand, a higher 
percentage of farms with increases in forest cover can be found among the group with higher 
education. 

 The level of dependency on forest products by different farm groups affects the status of their 
forest. Higher levels of dependency resulted in a higher percentage of farmers presenting forest 
cover loss. 

 Environmental programs provide a certain degree of influence on changes in the forest cover at 
the farm level. Among the groups participating in environmental programs and workshops, a 
lower percentage of respondents showed forest loss on their properties than for comparable 
groups that did not attend the workshops. 

Further studies could make use of higher resolution imagery to increase the accuracy of the 
results, in particular when considering an assessment of forest cover change at the farm level. In 
addition, absolute values of deforestation between farm types should be addressed in future studies 
to assess what the actual impact of different farm types on the forest cover is. Moreover, it would be 
interesting to consider additional dynamic information on the state of the forest (such as yearly forest 
degradation and regeneration rates) which would add more information with regards to the pressure 
exerted by different farm types on forest resources. The use of multi-temporal information, along 
with ground data, are key components to designing and supporting conservation strategies and 
policies. It is crucial to consider not only the outlook of rural population but their influence on the 
behavior of natural resources over time, as well. 
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