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Abstract: Forecasts of prices can help industries in their risk management. This is especially true
for Japanese logs, which experience sharp fluctuations in price. In this research, the authors used
an exponential smoothing method (ETS) and autoregressive integrated moving average (ARIMA)
models to forecast the monthly prices of domestic logs of three of the most important species in Japan:
sugi (Japanese cedar, Cryptomeria japonica D. Don), hinoki (Japanese cypress, Chamaecyparis obtusa
(Sieb. et Zucc.) Endl.), and karamatsu (Japanese larch, Larix kaempferi (Lamb.) Carr.). For the 12-month
forecasting periods, forecasting intervals of 80% and 95% were given. By measuring the accuracy of
forecasts of 12- and 6-month forecasting periods, it was found that ARIMA gave better results than
did the ETS in the majority of cases. However, the combined method of averaging ETS and ARIMA
forecasts gave the best results for hinoki in several cases.
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1. Introduction

Fluctuations and low levels of log prices in Japan are a challenge for forest owners in managing
forests. As a result, processing mills experience difficulties in ensuring a stable supply of suitable logs.
Additionally, the mismatch between the supply of and demand for logs leads to sharp fluctuations
in log prices, such as that observed in the former half of 2012 [1]. In other words, log prices not only
affect the profitability of forest owners, logging companies and sawmills, but might also affect the
daily operations in sawmills. Therefore, having information on future log prices can be useful for
the aforementioned parties in their risk management. For example, information about potential price
fluctuations will perhaps allow suppliers and users of logs to adjust their supply and demand. When
private suppliers of logs feel it is difficult to adjust their supplies due to small size of their operations
and the need to cover daily maintenance costs, state-owned forests managers might play an important
role by adjusting their supplies of logs. However, forecasts of log prices in Japan have rarely been
provided, though analyses on fluctuations in the prices of Japanese logs started long ago.

The impacts of various supply and demand factors on log prices have been studied and the
existence of seasonal fluctuations confirmed as early as in the late 1920s [2]. Log prices are found to be
at their lowest in June and July and to reach their peak in October and November due to the seasonal
nature of construction (spring and autumn were peak times), but, in 1910–1920’s, seasonal fluctuations
have become less pronounced, about 1% of the annual average prices [2]. Recently, a monthly seasonal
price index for logs of different origins (e.g., Mainland Japan, North America, Hokkaido, South Asia,
and Taiwan) in Tokyo and Osaka markets has been calculated [3], but, in response to this research,
it was noted that the seasonal increase in autumn is rather limited and should not be expected, because
the general commodity market is thought to be more important [4]. Since the 1960s, not only the
seasonal fluctuations, but the trend movement in log prices with the changes in supply and demand
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has also been analyzed [5–8]. The cyclical fluctuations and their relationship with the diffusion index,
apart from demand and supply, have also attracted the attention of researchers [9]. The number of
months from one valley to the next valley were calculated to show the cycles of timber prices [9].
In the 1980s, a decomposition method, which was developed by Economic Planning Agency, Japan,
originating from the Census Method II approach (US Census Bureau), was used in analyzing the
trend, cycle, and seasonal movements for log price time series along with their influencing factors [10].
In the 2000s, the X-12-ARIMA approach, developed by U.S. Census Bureau and mainly used for
seasonal adjustment, was adopted to decompose the price time series into trend components, seasonal
components, and irregular components for nine forest products in two private auction markets in the
Kyushu region [11]. A recent study in the field analyzed the relationship between monthly prices
and log inventory in sawmills and stated that pest damage is the reason for low prices from June to
August [12]. Although the aforementioned research studies paid attention to price fluctuations, few
forecasts could be found among them. In the 1970s, a two-step foresting approach was once adopted
in which the price time series was decomposed into the following components: secular trend variation,
which is determined by stock supply; seasonal variation, which is caused by the seasonal change in
activities in construction; cyclical fluctuation, which is largely caused by business cycle; and random
variation, which is fitted into an AR mode. These components were then combined together using
the models established in the above stages for forecasting. As for the forecasting period, two years of
monthly forecasts were provided, as were the lower and upper limits of forecasts at the 70% level, but
the methods used to calculate these lower and upper limits were not explained [7]. Moving average
(MA), autoregressive moving average (ARMA), and seasonal autoregressive integrated moving average
(ARIMA) models were once used for fitting price time series of some sawnwood and logs, and it was
concluded that the most reasonable forecast results were obtained by using the seasonal ARIMA [11],
even though only a simple form of the ARIMA model was considered.

Short-term forecasting of a time series is possible because each time series has its own pattern of
movements. To do a forecast well, a good grasp of the situation is important, and forecasters need to
make subjective judgments at times. Therefore, statistical forecasting can be described as “the blend of
art and science” [13], and the objective of time series forecasting is “to discover the pattern in the historical
data series and extrapolate that pattern into the future” [14]. More complicated models are not considered
in this research because model simplicity is preferred, though exponential smoothing method (ETS)
and ARIMA have evolved into complicated forms already.

ETS and ARIMA have made great progress since the 1990s [14,15]. The free software R [16] and
the package forecast [17] make specifying parameters and comparing models much easier. ETS’s model
framework has made progress by introducing the state space model as well as other developments,
such as stochastic models, likelihood calculation, prediction intervals, and procedures for model
selection [15].

In this research, by applying the latest model specification and selection instruments and the
algorithm in software R (R Core Team, Vienna, Austria), we analyze the movements in prices of
domestic Japanese sawlogs—sugi, hinoki, and karamatsu. We then forecast log prices 12 months ahead
by using ETS and ARIMA. In addition to point forecasts, we give forecast intervals at the 80% and 95%
levels. Additionally, we apply valuations for forecast accuracy to forecast results given by ETS and
ARIMA and concluded that, in most cases, ARIMA obtains better forecasts than ETS does.

2. Materials and Methods

2.1. Study Objects and Their Data

Forests in Japan cover about 67% of the total area and, due to aggressive planting since 1950s,
the area of planted forests in Japan extends to over 10 million ha, which is 40% of the total forest area.
Due to the low level of harvest volume compared to the growth level, the total forest stock keeps
increasing, and the average growing stock per hectare comes to over 190 m3 [18]. In Japan, most forest
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owners and sawmills are small in scale. It is difficult for small owners to provide a steady supply of
logs, and it is difficult for small mills to produce kiln-dried sawnwood to compete against foreign
sawnwood. Increasing costs, which are partly driven by increasing wages, are another factor for the
low competitiveness of domestic logs and sawnwood. The production of logs declined to 15 million m3

by 2002 from 51 million m3 in 1967, when Japan opened the door to foreign timber products. After the
efforts of the Japanese government and wood industry to promote domestic wood, the self-sufficiency
rate of wood recovered from its lowest point of 18.2% in 2002 to 31.2% in 2014 [19].

The top three species for log production in Japan—sugi, hinoki, and karamatsu—are mainly
harvested from the planted forests. In 2014, the production volumes for these three species are
11.19 million m3 (56% of the total log production), 2.40 million m3 (12%), and 2.37 million m3 (12%),
respectively [20]. The main prefectures for sugi production are Miyazaki, Akita, Oita, and Kumamoto;
the top producers for hinoki are Okayama, Kochi, Ehime, and Kumamoto; and for karamatsu, they are
Hokkaido, Iwate, and Nagano (see Figure 1). Sugi and hinoki sawnwood are mainly used in housing
construction, and karamatsu sawnwood is mainly used as packaging materials for the storage and
transportation of commodities.
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Figure 1. Top production regions of sugi, hinoki, and karamatsu logs. The darkest color shows the
production regions for karamatsu; the brightest color for production regions of sugi; while others
for hinoki.

Logs of different diameters and lengths might have different usages, which translates into different
prices. In this research, we analyze sugi, hinoki, and karamatsu logs in their most common diameters
and lengths for sawnwood processing. For sugi and hinoki, the diameter is 14–22 cm, for karamatsu,
it is 14–28 cm; the length considered for the logs of the three species is 3.65–4.00 m [20]. The prices are
monthly volume-weighted average prices for all grades of logs that are used in processing sawnwood
under the above-stated diameters and lengths. Our objective is to provide short-term forecasts; thus,
considering the data availability, we think that monthly data are suitable.

Given that 2002 was the year when domestic log production decreased to its lowest point since
1960 and subsequently increased, monthly data from January 2002 to September 2015 are used in this
research. The current value for monthly prices for logs was sourced from the Ministry of Agriculture,



Forests 2016, 7, 94 4 of 19

Forestry and Fisheries (MAFF) [20]. Japan experienced deflation after the mid-1990s. However,
the situation has changed since 2012, when Abenomics policies began to be implemented. Considering
the possible impacts of general price level changes on the movements in log prices, we introduced the
Corporate Goods Price Index (CGP) to adjust the monthly log prices to a constant value as that in 2010.

2.2. Methods

In the short-term forecasting of monthly prices of logs, we applied ETS and ARIMA, two typical
forecasting approaches, though many methods have been proposed and applied in the field [14,21–27],
and there are “as many forecasting methods as there are forecasters” [28]. Further, the naïve (or seasonal
naïve, shortened as Snaïve) method was also introduced as a reference for measuring the accuracy of
forecasting. Because we only used the time series data of monthly log prices and no other variables were
included (e.g., housing starts on the demand side, forest resources on the supply side), our research is a
univariate time series analysis. Root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) are calculated in measuring the accuracy of forecasting results.

2.2.1. Naïve Method and Snaïve Method

Company managers or business people occasionally use simple methods to forecast, and these
methods can be useful. Using the average value (the mean) of historical data might be useful for time
series that fluctuate around some constant value. For a random walk time series, without any trend
and seasonality, a naïve method might be useful in which the most recent observation is taken as a
forecast for the next period or periods. For a seasonal time series, a Snaïve method might be useful;
by which the actual value in the same period of the previous year is taken as a forecast for that period
in this year. In measuring the accuracy of forecasting, the naïve or seasonal Snaïve method was used
as a reference for that of ETS and ARIMA, because we think that ETS and ARIMA at least should make
forecasts with errors as small as naïve or Snaïve method.

2.2.2. ETS

The ETS forecasting approach was proposed in the 1950s and used in inventory control [29–31].
The simple ETS has the following form:

ŷt`1|t “ ŷt|t´1 ` αpyt ´ ŷt|t´1q, or ŷt`1|t “ αyt ` p1´ αqŷt|t´1 (1)

where yt is a time series, ŷt|t´ 1 is the forecast value for yt by taking account of all previous values,
y1, y2, . . . , yt´1, and α is a smoothing parameter between 0 and 1. For longer-range forecasting by
the simple ETS, the forecast formula could be written as ŷt`h|t “ ŷt`1|t, h = 2, 3, . . . , where h means
h periods ahead [15,32].

The most suitable method for a specific time series varies with trend and seasonality. The trend
component includes five possibilities: None (N), Additive (A), Additive damped (Ad), Multiplicative
(M), and Multiplicative damped (Md). The seasonal component includes three possibilities: None (N),
Additive (A), and Multiplicative (M). By combining the trend and seasonal components, in total, this
results in 15 methods. If considering additive and multiplicative error terms, there will be 30 methods.
The formulae for recursive calculations and point forecasts have been well summarized and can be
accessed openly [32]. The package forest in R was used in applying exponential smoothing to the three
time series, and AIC (Akaike’s Information Criterion) corrected, AICc, which is appropriate for small
sample bias, was adopted for model selection [32,33]. Finally, the best method was chosen by the
lowest AICc value.

2.2.3. ARIMA

A time series is weakly stationary if neither the mean nor the autocovariances depend on the
time t [34]. Economic time series, such as log price, are usually not stationary because the mean and
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autocovariances sometimes vary with time t. When differencing the time series, the resulting time
series, which represents the changes in the series, is usually stationary. The original time series is
called a unit root process in this case. ARIMA can be used to describe these types of time series.
By adding the seasonality, a general form for ARIMA can be described as ARIMA (p, d, q) (P, D, Q)m,
where (p, d, q) is the non-seasonal part of the model; (P, D, Q) is the seasonal part; p and P are orders
of AR (autoregressive part); d and D are the degrees of first differencing; q and Q are orders of MA
(moving average part); and m is the number of periods in a year. For monthly prices, m is 12 [14,32].

In this research, we first confirmed the situations of autocorrelation and partial autocorrelation in
the time series, which was helpful in choosing the order of AR and MA. Then, we tested stationarity
and determined the meaningful degrees of first differencing. We tried the possible orders of AR
and MA and degree of integration. The best ARIMA models were selected according to their AICc
statistics. However, we stopped at one degree of differencing the time series. Differencing twice makes
it difficult to explain the economic meaning of the time series and leads to wider forecasting intervals.
The unit root test was implemented to examine the stationarity of both the original time series and the
differenced time series. Finally, a diagnostic check of the residuals in ARIMA models was conducted
to justify model estimations.

2.2.4. Forecasting Intervals

In addition to point forecasts, we need to present forecasting or prediction intervals to show
the range of values within which we believe the actual values to fall with some level of probability.
Forecasting intervals show the extent of variability and uncertainty, which can be calculated from
variances. Under the Gaussian model assumption, the errors are Gaussian and 100 ˆ (1 ´ α)%
forecasting intervals can be calculated by:

µn`h|n ˘ zα{2
a

varn`h|n (2)

where µ is the forecast mean or point forecast at h periods ahead; zα{2 is the α{2 significant point in a
Gaussian distribution; and var is variance [15]. As shown in statistics textbooks, when the probability
level is 0.95, z would be 1.960; when the probability level is 0.80, z would be 1.282.

Forecasting intervals become wider when the forecast periods increase because uncertainty
increases with time. Error term will not affect the point forecasts because its expectation value is zero,
but it plays an important role in calculating variances and forecasting intervals.

2.2.5. Measures of Forecasting Accuracy

Forecast error is generally defined as et “ yt ´ ŷt, or the difference between the observation and
the forecast at time t. This definition is good for one-step forecast. In the case of h-periods-ahead
forecasts, ŷt` 1, ŷt`2, . . . , ŷt`h, it is meaningless if et is summed because positive and negative errors
cancel each other out. Thus, a proper summation of the errors is needed. In our research, three
accuracy measures were calculated: RMSE, MAE, and MAPE. The former two are scale-dependent
measures, and the last is a percentage point error. Of course, smaller measurement values show more
accurate forecasts.

The formulae of these measures are as follows:

RMSE “
b

meanpe2
t q; MAE “ meanp

ˇ

ˇ

ˇ

ˇ

et

ˇ

ˇ

ˇ

ˇ

q; MAPE “ meanp
ˇ

ˇ

ˇ

ˇ

100et{yt

ˇ

ˇ

ˇ

ˇ

q (3)

3. Results

3.1. Seasonal Characteristics

Seasonality in a time series reflects a pattern of ups and downs over a fixed period of time.
In Japan, different regions have different climate characteristics, and each region could have its own
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pattern. The pattern would also affect logging, sawmilling, and the demand for sawnwood, such
as demand due to seasonal wood house construction. In the summer season in southern Japan, it is
hot and heavy rain can make logging difficult, can damage the road for transportation, and affect
the harvest volume. In Northern Japan, rain can be a problem in summer, but in winter, heavy snow
leads to lower logging productivity. This pattern of impacts stemming from changes in weather
conditions might lead to a seasonal movement in prices for logs. According to industry experts,
however, seasonal price fluctuations are most affected by the presence of pests, which damage the
quality of logs. Therefore, sawmills try to adjust their log stock and control their acquisition of new
logs in spring and summer to avoid or lessen pest damage. Therefore, log prices are low in summer
but increase starting from autumn. In contrast, abnormal weather conditions such as extremely heavy
snow or rainfall or typhoons affect supply and, thus, prices. When abnormal weather conditions occur,
prices will also change due to the related changes impacting supply and demand. These types of price
changes should be considered as irregular movements.

Now, we discuss the actual seasonal changes in price for the three species of logs. According to the
annual changes against individual months shown in Figures 2a and 3a, a pattern of decreasing prices
in spring to summer and increasing prices from autumn to winter was found for sugi and hinoki across
the majority of years examined. For both species, the prices usually reach their lowest point in June
and July and start to increase in August. In Figures 2b, 3b and 4b, the changes in mean price values
were shown by averaging the subseries of the same month for the years 2002–2015. This figure does
not show their magnitude in terms of seasonality because irregular movements were also included,
but a general overview can be obtained by their changing mean levels. The means of the prices for
sugi and hinoki decreased from February to July and increased from August to October or November;
therefore, the prices for both sugi and hinoki are seasonal. As for karamatsu, as shown in Figure 4a,b,
no obvious pattern of price fluctuations can be found, though August witnessed the lowest level of
mean price, in contrast to the findings for sugi and hinoki. This difference among the three species
may be caused by the differences in usage and production areas. As aforementioned, hinoki and sugi
sawnwood are mainly used in wood house constructions, but karamatsu sawnwood is mainly used
in packaging materials for the transportation of commodities. Wood house construction is seasonal,
but other industrial production experiences far less seasonality. Another reason might be the different
degree of pest damage. The majority of karamatsu logs are harvested in Hokkaido, which is located
in Northern Japan, where summer is short and not intensely hot, and, as such, pest damage is not a
serious problem for karamatsu logs.
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price for sugi logs experienced a decrease and reached its lowest level during the world financial 
crisis of 2008–2009. However, its prices started to recover after 2010. In October 2013, the national 
plan to raise consumption tax from 5% to 8% in April 2014 was communicated to the public. Together 
with the impacts of the devalued yen, which started several months earlier, a rush demand for 
domestic wood occurred. Thereafter, sugi prices spiked temporarily and then sat at a higher level 
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3.2. Trend and Cycles

The movements for a time series are usually said to be made up of four components—i.e., trend,
cyclical, seasonal, and irregular components—but for convenience in short-term forecasting, trend
and cycle are usually combined to make trend. Trend is usually defined as a long-term movement
(e.g., [35]). As shown in Figures 5–7 sugi, hinoki, and karamatsu each display a different trend. The price
for sugi logs experienced a decrease and reached its lowest level during the world financial crisis of
2008–2009. However, its prices started to recover after 2010. In October 2013, the national plan to
raise consumption tax from 5% to 8% in April 2014 was communicated to the public. Together with
the impacts of the devalued yen, which started several months earlier, a rush demand for domestic
wood occurred. Thereafter, sugi prices spiked temporarily and then sat at a higher level than those in
the years since 2008. In comparison, the price for hinoki logs is still experiencing pressure to decrease.
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There is a decreasing demand for homes having the esthetic appearance of traditional Japanese-style
houses in which hinoki wood is required. An increasing amount of laminated wood made of other
species is now used in housing construction: this has impacted the price of hinoki logs. In the 1960s,
the gap between hinoki and sugi prices grew due to the increasing demand for hinoki. Since 1990,
the gap has shrunk. Figure 6 shows a decreasing trend in hinoki log prices. Similar to that of sugi,
the hinoki log price rose sharply during the period from October 2013 to January 2014. However,
the high prices did not last long. Therefore, the spikes during this time should be considered as an
irregular movement. The time series as in Figure 7 showed the karamatsu log price fluctuating with a
different pattern. The karamatsu log price also declined after 2002, but it fell to its lowest point in 2006.
After 2006, it experienced sharp fluctuations but a recovery could be seen. By September 2015, it had
recovered to its price of 2000.
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Overall, in the long term, hinoki appears to show a decreasing trend, but it is difficult to say
that sugi or karamatsu is experiencing a declining, increasing, or converging trend to some constant
value. However, if we shorten the period to only recent years, we may find that the mean price is
increasing for karamatsu since 2006 and that the mean price in the period since October 2013 is higher
than that from 2008 to 2012, implying a recovering trend for sugi. These findings can be obtained by
loess-smoothing the trend obtained from decomposing the time series.
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3.3. ETS Forecast Results

In using ets function in the package forecast under the R software environment, the results were
shown in the form of (E, T, S), representing the error, trend and season components, respectively.
The results for sugi, hinoki and karamatsu log prices are, respectively, (M, N, A), (M, Ad, A) and
(M, N, N). All of these time series have multiplicative errors. Hinoki log price shows a damped trend,
whereas sugi and karamatsu display no trend. As for the seasonality, the results show that sugi and
hinoki experience additive seasonal movements in prices, but seasonal changes cannot be found in the
karamatsu log price, which supports the aforementioned argument regarding seasonal characteristics.
The smoothing parameters for sugi are α = 0.9999 and γ = 0.0001; for hinoki, they are α = 0.9999,
β = 0.1412, γ = 0.0001, and H = 0.8007; and for karamatsu, α = 0.9999. A high α value shows that
time series values are highly affected by the previous value. A small γ value shows that the seasonal
component does not change much over the years. Given that the expectation of error is zero, both the
additive and multiplicative error methods gave the same forecasts but different forecast intervals.

The above estimated parameters can be substituted into the corresponding formulae in the
component form [32] to obtain the final models; for sugi, its result for ETS (M, N, A) is as follows:

yt “ plt´1 ` st´mqp1` εtq, lt “ lt´1 ` αplt´1 ` st´mqεt, st “ st´m ` γplt´1 ` st´mqεt (4)

For hinoki, ETS (M, Ad, A) is as follows:

yt “ plt´1 `∅bt´1 ` st´mqp1` εtq, lt “ lt´1 `∅bt´1 ` αplt´1 `∅bt´1 ` st´mqεt,
bt “ ∅bt´1 ` βplt´1 `∅bt´1 ` st´mqεt, st “ st´m ` γplt´1 `∅bt´1 ` st´mqεt

(5)

For karamatsu, ETS (M, N, N) is as follows:

yt “ lt´1p1` εtq lt “ lt´1p1` αεtq (6)

In the formulae, lt stands for the level or smoothed value of the time series at time t, b for
slope, s for seasonal component, m for number of periods in a year (here, m = 12), α, β, γ and H
for smoothing parameters, st´m for the seasonal component for the same month of the previous
year. Figures 5a, 6a and 7a show the results by ETS for sugi, hinoki and karamatsu, respectively, while
Figures 5b, 6b and 7b show the results by ARIMA. The right parts in both sets of figures show the
results for the forecasts and the forecast intervals at probability levels of 95% (wider and brighter
shadow area) and 80% (narrower and darker shadow area), respectively, for the 12 months ahead
(see Table 1 for 12-months-ahead forecast and forecast interval values).
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Table 1. Point forecasts and forecast intervals at 80% and 95% level. Unit: Yen. ETS, exponential smoothing method; ARIMA, autoregressive integrated moving average.

Log Month
ETS ARIMA

Point Forecasts Low 80% High 80% Low 95% High 95% Point Forecasts Low 80% High 80% Low 95% High 95%

Sugi

15 October 13,045 12,704 13,386 12,523 13,567 12,913 12,604 13,223 12,440 13,387
15 November 13,189 12,704 13,674 12,447 13,931 13,072 12,525 13,620 12,235 13,910
15 December 13,151 12,556 13,746 12,241 14,061 13,129 12,427 13,832 12,055 14,204

16 January 13,058 12,372 13,744 12,009 14,107 12,753 11,944 13,562 11,516 13,990
16 February 12,972 12,207 13,738 11,802 14,143 12,489 11,593 13,384 11,119 13,858

16 March 12,827 11,991 13,663 11,549 14,106 12,442 11,466 13,418 10,949 13,935
16 April 12,716 11,816 13,615 11,340 14,092 12,367 11,315 13,419 10,759 13,976
16 May 12,534 11,576 13,492 11,069 13,999 12,175 11,051 13,298 10,456 13,893
16 June 12,260 11,249 13,270 10,715 13,804 11,888 10,697 13,079 10,067 13,709
16 July 12,122 11,063 13,181 10,502 13,741 11,888 10,634 13,142 9970 13,806

16 August 12,368 11,261 13,476 10,675 14,062 12,213 10,899 13,527 10,203 14,222
16 September 12,720 11,563 13,877 10,951 14,489 12,628 11,256 13,999 10,530 14,725

Hinoki

15 October 17,909 17,409 18,408 17,145 18,672 18,366 17,711 19,022 17,364 19,368
15 November 17,989 17,207 18,772 16,792 19,187 18,804 17,691 19,917 17,102 20,507
15 December 18,039 17,027 19,051 16,492 19,587 19,322 17,853 20,791 17,076 21,568

16 January 18,113 16,897 19,328 16,254 19,971 19,256 17,514 20,998 16,591 21,920
16 February 17,952 16,553 19,351 15,812 20,092 18,848 16,894 20,803 15,859 21,838

16 March 17,346 15,781 18,910 14,953 19,739 17,886 15,763 20,009 14,639 21,132
16 April 16,801 15,088 18,515 14,180 19,423 17,046 14,787 19,305 13,591 20,501
16 May 16,336 14,486 18,186 13,507 19,166 16,261 13,889 18,633 12,633 19,889
16 June 15,966 13,990 17,942 12,944 18,988 15,614 13,146 18,081 11,839 19,388
16 July 16,131 14,036 18,226 12,927 19,335 15,606 13,055 18,157 11,705 19,508

16 August 16,758 14,545 18,971 13,374 20,142 16,041 13,416 18,665 12,027 20,054
16 September 17,320 14,991 19,650 13,757 20,883 16,389 13,699 19,079 12,275 20,503

Karamatsu

15 October 11,546 11,342 11,750 11,234 11,858 11,546 11,363 11,729 11,266 11,826
15 November 11,546 11,257 11,835 11,105 11,987 11,546 11,287 11,805 11,150 11,942
15 December 11,546 11,193 11,899 11,005 12,087 11,546 11,229 11,863 11,061 12,031

16 January 11,546 11,138 11,954 10,922 12,170 11,546 11,180 11,912 10,986 12,106
16 February 11,546 11,090 12,002 10,848 12,244 11,546 11,136 11,956 10,920 12,172

16 March 11,546 11,046 12,046 10,781 12,311 11,546 11,097 11,995 10,860 12,232
16 April 11,546 11,006 12,086 10,720 12,372 11,546 11,061 12,031 10,805 12,287
16 May 11,546 10,969 12,123 10,663 12,429 11,546 11,028 12,064 10,754 12,338
16 June 11,546 10,934 12,158 10,609 12,483 11,546 10,996 12,096 10,706 12,386
16 July 11,546 10,900 12,192 10,559 12,533 11,546 10,967 12,125 10,660 12,432

16 August 11,546 10,869 12,223 10,511 12,581 11,546 10,938 12,154 10,617 12,475
16 September 11,546 10,839 12,253 10,464 12,628 11,546 10,911 12,181 10,576 12,516
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3.4. ARIMA Forecast Results

These three time series are not stationary, as shown by their actual values in their left parts in either
both sets of figures; their levels changed and did not converge to some constant value. The Augmented
Dickey-Fuller (ADF) test, a unit root test, was implemented [36,37]. Package tseries in R was used in
which the null hypothesis is that the time series has a unit root and is not stationary, and an alternative
hypothesis we adopted in this case study is that it is “stationary”. For sugi, Dickey-Fuller = ´1.860
(p-value = 0.635); after differencing, Dickey-Fuller = ´7.142 (p-value < 0.01). For hinoki, Dickey-Fuller
= ´2.655 (p-value = 0.303); after differencing, Dickey-Fuller =´6.918 (p-value < 0.01). For karamatsu,
Dickey-Fuller = ´3.252 (p-value = 0.082); after differencing, Dickey-Fuller = ´6.307 (p-value < 0.01).
p-values above 0.05 in the ADF tests for the original time series show that the null hypothesis that
original time series is not stationary and cannot be rejected by a 5% significant level, i.e., providing
no evidence against the need for differencing, but that after differencing, p-values become less than
0.01, showing that further integration of a 2nd order can be rejected, and the 1st differences become
stationary at a 1% significance level. That is, a degree of one is suitable for the integrated part of the
ARIMA models.

By implementing the Arima function in the package forecast, we obtained the following result for
sugi as the best model due to its lowest AICc: ARIMA (2, 1, 0) (2, 1, 1), representing two non-seasonal
autoregressive terms, two seasonal autoregressive terms, and one seasonal moving averages term.
Their coefficients and standard errors are, respectively, 0.457 (0.079), ´0.245 (0.085), ´0.595 (0.145),
´0.441 (0.118), and ´0.367 (0.165). All of them are significant at a 1% significance level, though in
forecasting, it is not important to pursue significance parameters. When summarizing this result,
the following model can be obtained.

Yt “ 1.457Yt-1´ 0.702Yt-2 ` 0.245Yt-3 ` 0.405Yt-12´ 0.590Yt-13 ` 0.284Yt-14´

0.099Yt-15 ` 0.154Yt-24´ 0.224Yt-25 ` 0.108Yt-26´ 0.038Yt-27 ` 0.441Yt-36´

0.643Yt-37 ` 0.310Yt-38´ 0.108Yt-39 ` et´ 0.367et-12

(7)

By fitting it into the ARIMA model, we obtained the best hinoki log price model as ARIMA (2, 1, 1)
(0, 1, 2), with two non-seasonal autoregressive terms, one non-seasonal moving average term, and two
seasonal moving average terms. Their coefficients and standard errors are: 1.306 (0.087), ´0.398 (0.076),
´0.932 (0.057), ´1.104 (0.092), and 0.352 (0.109). All of these parameters are also significant at a 1%
significance level. The model is as follows:

Yt “ 2.306Yt-1´ 1.704Yt-2 ` 0.398Yt-3 ` Yt-12´ 2.306Yt-13 ` 1.704Yt-14´ 0.398Yt-15`

et´ 0.932et-1´ 1.104et-12 ` 1.029et-13 ` 0.352et-24 ´ 0.328et-25
(8)

The best karamatsu log price model has the form as ARIMA (0, 1, 0), with no seasonal terms,
autoregressive terms, or moving average terms. This type of time series is usually called a random
walk [35]. The model can be written as:

Yt “ Yt-1 ` et (9)

3.5. Diagnostic Check of Residuals in ARIMA Models

Finally, we need to verify the adequacy of our ARIMA models by checking their residuals.
By fitting a model, we can obtain fitted values and residuals. For a forecasting model, we have
observed values and forecasts based on previous observed values, and the differences are residuals:
et “ yt ´ ŷt. Residuals should have two properties: uncorrelated and zero mean [32]. Correlations
between residuals mean that the model is not fitted well because patterns remained in the residuals
and should be included in the model. In addition, if the mean of residuals is not zero, then the forecasts
are biased. It would be better also to check two other properties for ideal residuals: constant variance
and normal distribution [32].
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For the three ARIMA models, we first checked residuals’ correlations. Figure 8 shows residuals
and their autocorrelations and partial autocorrelations with lags of up to 36 for the sugi log price. No
pattern can be found in Figure 8a, though some irregular residuals existed. Figure 8b,c show that no
significant correlations were confirmed. The situations for hinoki were similar. Figure 9 showed the
analysis of the prices for karamatsu logs. Similarly, some irregular residuals were found in Figure 9a,
but no pattern was confirmed. Two significant autocorrelations and partial correlations, respectively,
were found by checking Figure 9b,c but most of them with a lag over 20. This result can be ignored by
considering it an accidental result. We then implemented an ADF test, and the Dickey-Fuller results
were ´5.992, ´5.360, and ´6.283, respectively, for sugi, hinoki, and karamatsu. For all of the cases,
p-value <0.01, which shows that they are stationary. Finally, we implemented the Box-Ljung test [38].
The results for sugi, hinoki, and karamatsu are χ2 = 22.660 (p-value = 0.540), 15.874 (p-value = 0.893),
and 32.014 (p-value = 0.127), which means that these residuals were not distinguishable from a white
noise series.
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3.6. Measuring the Accuracy of Forecasts 

To measure the forecast accuracy, we divided our data set into two parts: sample data and out-
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Table 2 shows 10 valuations of forecast errors of 12-months-ahead forecasts. Firstly, data from 
October 2014 to September 2015 were taken as out-of-sample data, while the data from January 2002 
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the forecast period and deleting the last datum in the series every time and moving backward, we 
obtained nine sets of sample data and out-of-sample data. Thus, the second sample data were from 
January 2002 to August 2014, and out-of-sample data were from September 2014 to August 2015. 
Snaïve was used for sugi and hinoki accuracy valuations, but a naïve method was used for karamatsu 
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Figure 9. Residuals and their autocorrelations in karamatsu ARIMA model: (a) Plot of residuals; (b)
autocorrelations with lags of up to 36 for the sugi log prices; (c) partial autocorrelations with lags of up
to 36 for the sugi log prices.

3.6. Measuring the Accuracy of Forecasts

To measure the forecast accuracy, we divided our data set into two parts: sample data and
out-of-sample data. We dealt with two forecast periods here: 12 months and 6 months. We established
the objective of the research as being to forecast monthly prices and acknowledged the forecasting as
being short-term; therefore, being able to forecast one year ahead or some months (less than 12 months)
ahead accurately is important. The errors for forecasting sugi, hinoki, and karamatsu log prices for
12 months ahead by ETS and ARIMA were shown in Table 2. As for other lengths, from one to
five months, from seven to 11 months, the results for sugi and hinoki were shown in supplementary
materials (Tables S1–S10).

Table 2 shows 10 valuations of forecast errors of 12-months-ahead forecasts. Firstly, data from
October 2014 to September 2015 were taken as out-of-sample data, while the data from January 2002 to
September 2014 were taken as sample data. In the next nine valuations, by keeping 12 months as the
forecast period and deleting the last datum in the series every time and moving backward, we obtained
nine sets of sample data and out-of-sample data. Thus, the second sample data were from January
2002 to August 2014, and out-of-sample data were from September 2014 to August 2015. Snaïve was
used for sugi and hinoki accuracy valuations, but a naïve method was used for karamatsu because the
karamatsu log price did not show obvious seasonality.

As shown in Table 2, MAPE, MAE, and RMSE have similar results in comparing the accuracy of
forecasts among ETS, ARIMA, and Snaïve method to sugi and hinoki or naïve method to karamatsu;
i.e., when MAPE value is the smallest for a method among the three methods, MAE and RMSE values
are also smallest for this method. Valuation 1 was the case in which the most recent sample data and
out-of-sample data were used. For the sugi log price, ETS had a smaller error than ARIMA, but both
ETS and ARIMA had larger errors than the Snaïve method. The results showed the error ranged from
3.96% to 5.57% by MAPE, from 504 Yen to 685 Yen by MAE, and from 670 Yen to 748 Yen by RMSE. For
the hinoki log price in Valuation 1, its forecast accuracy was much better. The smallest forecast errors
were from ARIMA, which were 1.64% by MAPE, 282 Yen by MAE, and 332 Yen by RMSE. The ETS
results were not as good as those of ARIMA but were better than those of the Snaïve method. As for
the karamatsu log price in Valuation 1, ETS and ARIMA resulted in the same errors as the naïve method.

By comparing the errors for sugi and hinoki over 10 valuations, Valuations 9 and 10 gave the largest
errors due to the impact of the irregular level of prices at the end of 2013. Among the 10 valuations,
it can be found that for sugi, ETS had smaller errors twice (i.e., for Valuations 1 and 8); for hinoki, ETS
had a better error only once (i.e., for Valuation 4); and in all other cases ARIMA showed smaller errors
for sugi and hinoki. As for karamatsu, ETS and ARIMA had the same errors as those by naïve method,
except in the two valuations due to the rounding errors (i.e., Valuations 7 and 9).
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Table 2. Forecast errors for 12-months-ahead forecasts. “Kara.” stands for karamatsu. The smallest error
among the three methods is shown in bold letters. Snaïve method is applied to sugi and hinoki, while
the naïve method to karamatsu. MAPE, mean absolute percentage error; MAE, mean absolute error;
RMSE, root mean square error.

Valuations
MAPE (%) MAE (Yen) RMSE (Yen)

Snaïve/Naïve ETS ARIMA Snaïve/Naïve ETS ARIMA Snaïve/Naïve ETS ARIMA

1
Sugi 3.96 4.77 5.57 504 578 685 670 697 748
Hinoki 19.01 3.25 1.64 3273 545 282 4065 626 332
Kara. 2.20 2.20 2.20 252 252 252 285 285 285

2
Sugi 4.99 3.33 2.37 639 416 300 872 457 347
Hinoki 19.74 2.44 1.74 3401 418 301 4094 479 378
Kara. 1.93 1.93 1.93 220 220 220 261 261 261

3
Sugi 5.82 3.24 2.26 740 407 289 967 455 360
Hinoki 19.90 3.29 2.52 3432 571 436 4101 708 516
Kara. 1.26 1.26 1.26 142 142 142 151 151 151

4
Sugi 6.53 3.33 2.05 825 426 263 1045 498 342
Hinoki 19.60 5.45 8.84 3386 940 1523 4091 1035 1577
Kara. 1.42 1.42 1.42 158 158 158 208 208 208

5
Sugi 7.25 2.75 2.38 913 354 309 1126 429 395
Hinoki 18.92 14.06 6.07 3278 2429 1051 4069 2607 1139
Kara. 1.17 1.17 1.17 132 132 132 147 147 147

6
Sugi 7.98 2.32 1.74 1007 301 225 1218 373 284
Hinoki 18.23 15.43 7.50 3166 2678 1304 4043 2977 1442
Kara. 1.19 1.19 1.19 135 135 135 160 160 160

7
Sugi 8.92 2.64 1.60 1125 346 211 1323 445 319
Hinoki 17.46 15.54 8.20 3046 2720 1432 3990 2854 1592
Kara. 1.95 1.96 1.95 220 221 220 257 258 257

8
Sugi 10.04 3.17 3.43 1266 400 444 1418 456 512
Hinoki 16.51 34.81 22.13 2922 6161 3926 3890 6397 4029
Kara. 3.39 3.39 3.39 380 380 380 402 402 402

9
Sugi 11.51 12.42 5.86 1457 1571 738 1571 1588 782
Hinoki 15.37 40.29 24.09 2841 7177 4305 3767 7642 4520
Kara. 3.11 3.10 3.11 348 346 348 377 375 377

10
Sugi 13.05 16.79 12.67 1675 2125 1602 1830 2204 1653
Hinoki 14.08 65.79 30.81 2759 11,862 5573 3622 12,709 5931
Kara. 1.16 1.16 1.16 129 129 129 170 170 170

MAPE, MAE, and RMSE are metrics that are used to summarize the errors for the whole forecast
periods. When changing the length of forecast periods, the results expressed by these metrics might
also change. Forecasters occasionally need to know the forecast for the next 6 months rather than the
next 12 ones. Hence, we also measured the accuracy of forecasts in 6-months-ahead forecasts 10 times.
Similarly, we kept the length of 6 months for out-of-sample data and, for each time, deleted the last
datum and moved the dataset backward to obtain a new dataset. Similarly to the results in Table 2,
in the majority of cases of 6-months-ahead forecasts for sugi and hinoki log prices, ARIMA had smaller
errors than ETS and, as for the karamatsu log prices, ETS and ARIMA had the same errors as those
obtained when using the naïve method (Table 3). Similarly, the errors from the earliest sample data for
hinoki by ARIMA, as shown in Valuation 10, were also high compared with other valuations for hinoki
by ARIMA: 9.18% by MAPE, 1602 Yen by MAE, and 1680 Yen by RMSE.
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Table 3. Forecast errors for 6-months-ahead forecasts. “Kara.” stands for karamatsu. The smallest error
among the three methods are shown in bold letters. Snaïve method is applied to sugi and hinoki, while
naïve method to karamatsu.

Valuations
MAPE (%) MAE (Yen) RMSE (Yen)

Snaïve/Naïve ETS ARIMA Snaïve/Naïve ETS ARIMA Snaïve/Naïve ETS ARIMA

1
Sugi 3.47 2.87 2.25 414 345 273 427 362 299
Hinoki 7.63 2.34 2.99 1264 388 496 1460 409 521
Kara. 0.44 0.44 0.44 50 50 50 71 71 71

2
Sugi 3.13 4.09 2.63 370 483 312 404 519 330
Hinoki 11.29 4.54 1.46 1889 751 240 2162 776 284
Kara. 0.39 0.39 0.39 44 44 44 44 46 46

3
Sugi 2.85 6.33 6.70 336 752 798 391 791 821
Hinoki 16.58 5.92 1.12 2817 980 187 3345 1057 221
Kara. 1.49 1.49 1.49 170 170 170 171 171 171

4
Sugi 3.17 4.12 2.83 388 493 344 460 567 372
Hinoki 22.13 7.12 2.09 3806 1194 350 4387 1294 404
Kara. 2.54 2.54 2.54 290 290 290 297 297 297

5
Sugi 3.78 3.99 2.16 480 487 268 590 599 311
Hinoki 27.70 4.72 1.91 4779 798 325 5274 958 356
Kara. 2.55 2.55 2.55 290 290 290 315 315 315

6
Sugi 2.98 5.06 3.70 387 641 472 538 705 513
Hinoki 30.42 2.54 2.08 5268 434 359 5553 563 395
Kara. 1.44 1.44 1.44 163 163 163 177 177 177

7
Sugi 4.45 2.59 4.08 594 333 531 847 398 579
Hinoki 30.38 1.59 2.25 5282 275 392 5560 332 422
Kara. 1.42 1.42 1.42 161 161 161 203 203 203

8
Sugi 6.84 2.86 2.58 907 381 342 1166 434 402
Hinoki 28.19 3.27 2.41 4914 570 421 5371 610 478
Kara. 0.99 0.99 0.99 112 112 112 164 164 164

9
Sugi 8.78 3.28 2.82 1143 436 374 1310 491 455
Hinoki 23.22 4.97 3.23 4046 867 564 4737 928 634
Kara. 1.28 1.28 1.28 142 142 142 158 158 158

10
Sugi 9.88 3.81 2.06 1262 502 274 1405 577 393
Hinoki 17.07 4.54 9.18 2967 793 1602 3772 909 1680
Kara. 2.47 2.47 2.47 274 274 274 285 285 285

ETS and ARIMA occasionally give rather different forecast results as shown in Table 1. It is
difficult to say which method is definitively better than the other, even though ARIMA makes forecasts
with smaller errors in most cases in this research. Therefore, in order to find a method by which
we can forecast prices with smaller errors, we attempted another method in which we combined
the forecasts from ETS and ARIMA to obtain average point forecasts for sugi and hinoki. Karamatsu
is not dealt with because it is a random walk, and ETS and ARIMA gave the same point forecasts
with the naïve method. The forecast errors by using this combined method are shown in Table 4.
For 12-months-ahead forecasts, in Valuations 4, 5, and 6 for hinoki log prices and Valuation 8 for sugi log
prices, the errors by the combined method were the smallest among Snaïve, ETS, ARIMA, which are
shown in Table 2, and this combined method is based on all three error metrics. For 6-months-ahead
forecasting, in Valuations 10 for the hinoki log price, the results from the combined method were the
best based on all three error metrics. For most cases, errors from the combined method were found
to fall between those observed for ETS and ARIMA models. In other words, the forecasts using the
combined method were not the worst forecasts and were occasionally better than both the ETS and
ARIMA forecasts.
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Table 4. Forecast errors using average method for 12- and 6-months ahead forecasts.

Valuations
12-Months-Ahead 6-Months-Ahead

MAPE MAE RMSE MAPE MAE RMSE

1 Sugi 5.09 620 714 2.56 309 329
Hinoki 2.18 369 414 2.66 442 456

2 Sugi 2.85 357 394 3.36 398 421
Hinoki 1.96 337 409 2.85 469 509

3 Sugi 2.72 344 398 6.52 775 805
Hinoki 2.91 503 604 2.88 475 552

4 Sugi 2.66 342 415 3.32 399 461
Hinoki 1.70 293 323 4.61 772 836

5 Sugi 2.42 314 400 2.76 337 422
Hinoki 4.16 718 768 3.23 548 640

6 Sugi 1.99 258 320 4.38 556 605
Hinoki 4.02 698 797 2.02 346 431

7 Sugi 2.07 273 374 3.17 410 471
Hinoki 11.87 2076 2216 1.57 274 337

8 Sugi 1.26 163 213 2.71 360 413
Hinoki 28.47 5043 5211 2.84 496 537

9 Sugi 9.14 1155 1176 3.05 405 471
Hinoki 32.19 5741 6077 4.10 715 775

10 Sugi 14.73 1863 1922 2.91 385 477
Hinoki 48.30 8717 9317 2.34 408 410

4. Discussion

As the saying goes, all forecasts are wrong, but some might be useful. In this research, we
used the national average log price data of sugi, hinoki, and karamatsu; ETS and ARIMA methods;
and the package forecast in software R [16]. We checked the seasonality, the trend, and obtained
12-months-ahead forecasts for sugi, hinoki, and karamatsu. The fact that Japanese sugi and hinoki log
prices are seasonal but karamatsu prices are not is well reflected in the ETS and ARIMA models. In most
cases, ARIMA gave better results than ETS for sugi and hinoki. These findings are useful for the
short-term forecasting of Japanese domestic log prices. Actually, though ETS and ARIMA adopt
different modeling and estimation strategies and algorithms, additive error ETS models are all special
cases of ARIMA models, while the non-linear ETS models cannot find equivalents in ARIMA [32]. Our
ETS models all have multiplicative errors; therefore, the best models by ETS and ARIMA in this case
do not have equivalents to each other. For karamatsu log prices, the forecasts by ETS and ARIMA are
the same as the ones by the naïve method, but their forecasting intervals are different.

Because forecasting deals with stochastic issues, no one can be sure about their forecasts. Showing
forecasting intervals is a good way to reflect the extent of possible variations. If actual prices are
approaching the upper or lower limits, this should raise a high alert in terms of risk management.
Providing such data would be useful to avoid the mismatch between supply and demand and, thus,
the sharp fall or rise of log prices.

This research used univariate time series analysis for forecasting. Sometimes, structural time
series models are useful for forecasting, as they incorporate terms of interest into the model, though
one has to forecast or assume those terms first. In the case of forecasting price, however, it becomes
complicated. According to economics theory, the price of a commodity is an endogenous variable
that is determined by the relationship between supply and demand in the market. Price shifts with
the changes in income, consumers’ preferences, cost of production elements, technological changes,
prices of other related commodities, among other factors. Prices can be forecasted by taking these
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factors into account. For example, Organization of the Petroleum Exporting Countries (OPEC) quota,
OPEC production, and industrial stock level of oil can be used to forecast short-term oil price [39].
However, there are not many empirical studies on price forecasting by using structural time series
models, perhaps due to the difficulties in quantifying the related factors and those factors must be
forecasted prior to forecasting prices. With univariate forecasting approaches, the only variable is
log price in this research, which makes forecasting simple and sometimes useful. Of course, the ETS
method simply decomposes a time series into trend, seasonal, and error components without taking
other elements into account, such as cyclical movements. As for ARIMA models, it might be a good
idea to add exogenous variables to the model [40,41]. Furthermore, it is also worthwhile to apply
equilibrium, structural, and reduced form models in forecasting the prices of Japanese logs.

Abenomics, a policy that went into effect in Japan in December 2012, ensured that corrections to
the excessive yen appreciation were made. In addition, when the plan to raise consumption tax from
5% to 8% in April 2014 was communicated to the public in October 2013, a spike in demand for wood
house construction led to sharp increases in sugi and hinoki log prices from October 2013 to January
2014. After this period, hinoki log prices dropped to their earlier level, whereas sugi log prices dropped
and fluctuated at a higher level than previously. These contextual changes made short-term forecasts
from this specific period uncertain. Fortunately, concerns that increased tax would case an economic
recession have not become a reality. These price fluctuations in sugi and hinoki can be taken as irregular
movements. That is, the structural changes in the logs market in Japan have not occurred.

However, any factors that affect demand and supply, including any changes in the international
and domestic economic environment, might affect prices. The impact of the increase in consumption
tax (from 8% to 10%) in the near future and fluctuations in exchange rates were not discussed in the
research. Another important issue is the impact of the general price level. Constant price data were
used in the research. Given the low inflation value, it did not make a difference in comparison to
using current value log prices. Using a constant value mitigated the impact of general price changes.
However, it will be necessary to recalculate the forecasts during periods of higher inflation. In addition,
impacts of changes in the international market and policy are also not dealt with in the research.
Incorporating influencing factors into forecasts of log prices should also be a focus of further research.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/1999-4907/
7/5/94/s1.
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