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Abstract: Fires are a key disturbance of boreal forests. In fact, they are the main source of renewal and
evolution for forest stands. The variability of fire through space and time results in a diversified forest
mosaic, altering their species composition, structure and productivity. A resilient forest is assumed to
be in a state of dynamic equilibrium with the fire regime, so that the composition, age structure and
succession stages of forests should be consistent with the fire regime. Dense spruce-moss stands tend,
however, to diminish in favour of more open stands similar to spruce-lichen stands when subjected
to more frequent and recurring disturbances. This study therefore focused on the effects of spatial
and temporal variations in burn rates on the proportion of open stands over a large geographic area
(175,000 km2) covered by black spruce (Picea mariana (Mill.) Britton, Sterns, Poggenb.). The study
area was divided into 10 different zones according to burn rates, as measured using fire-related data
collected between 1940 and 2006. To test if the abundance of open stands was unstable over time and
not in equilibrium with the current fire regime, forest succession was simulated using a landscape
dynamics model that showed that the abundance of open stands should increase progressively over
time in zones where the average burn rate is high. The proportion of open stands generated during a
specific historical period is correlated with the burn rate observed during the same period. Rising
annual burn rates over the past two decades have thereby resulted in an immediate increase in the
proportion of open stands. There is therefore a difference between the current proportion of open
stands and the one expected if vegetation was in equilibrium with the disturbance regime, reflecting
an instability that may significantly impact the way forest resources are managed. It is apparent from
this study that forestry planning should consider the risks associated with the temporal variability
of fire regimes on the forest ecosystem, as the resulting changes can have a significant impact on
biodiversity and allowable cut estimates.
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1. Introduction

The boreal forest is the largest forest area in Canada. In Eastern Canada, it is dominated mainly
by black spruce-moss stands that are composed solely of black spruce (Picea mariana (Mill.) Britton,
Sterns, Poggenb.) or of a combination of black spruce, jack pine (Pinus banksiana Lamb.) or balsam
fir (Abies balsamea (L.) Mill.). There is a transition area between the forest tundra in the north and
the black spruce-moss forest in the south: the black spruce-lichen woodland, which is composed of
stands that are less dense as well as less productive [1]. By definition, Spruce-lichen woodlands are
open-structure forests with a lichen cover of over 40% [2,3]. A number of studies have shown that
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the lesser abundance of dense spruce-moss stands in favour of more open stands that are similar to
spruce-lichen stands [2,4–6] is related to recurring disturbances [2,4–6], at least in regions where dense
and open stands co-occur [7].

According to Turner et al. [8], landscapes can be divided into three categories according to
the extent and frequency of the disturbances to which they are subjected. Landscapes traditionally
considered to be in equilibrium with the disturbance pattern in place are characterized by small
(compared to the size of the landscape in question) and locally infrequent disturbances. They also
return to a state of equilibrium more rapidly in fact than the length of the disturbance cycle. Stable
systems are characterized by medium-sized disturbances occurring on an intermediate basis. These
systems return to a stable state in a moderate amount of time, equivalent to the length of the disturbance
cycle. Potentially unstable systems are characterized by substantial disturbances (compared to the size
of the area in question) occurring more frequently. Furthermore, unstable landscapes take longer than
the span of the disturbance cycle to return to their original state.

The variability of fire regimes through space and time results in a diversified mosaic of
species, altering their composition, structure and productivity [9]. In fact, forest composition [10,11],
structure [12,13] and productivity [5,14] are all related to the fire regime. For boreal forests, forest
succession models used for forest planning assume that, without harvest, the vegetation currently
found in an area is adapted to its natural disturbance regime [15–19]. For instance, the concept of
fire cycle is used in forest ecosystem management to define a minimum target value of old-growth
forests to maintain in a landscape [17] or a maximum rate of clear-cut harvesting [16]. The fire cycle
corresponds to the time required to burn an area equivalent to the study area [20] and in boreal
forests of eastern Canada, this fire cycle varies between one and a few centuries. It is therefore
defined at a time scale somewhat larger than that used for forest management planning. Significant
temporal and even regional variations in burn rates observed in the boreal forest [16,21–26] however
cast doubt on an unquestioned use of this assumption. Namely, an important increase in the burn
rates of a number of areas in the North American boreal forest has been observed over the past few
decades [25–28] and such an increase should possibly be accounted for when designing sustainable
forest management strategies.

The primary objective of this study was to analyze the impact of the variation in fire frequency on
the openness of the forest. We wished to assess whether the forest presents a greater abundance of open
stands in areas where the current burn rate surpasses rates recorded in the recent past. We therefore
tested the hypothesis that the abundance of open forest stands varied according to variation in decadal
burn rate. In order to do so, we used a transition matrix model to assess succession. Matrix models are
probability models [29–31] used to predict the long-term demographic dynamics of a population about
which we have little information [29,32]. Transition matrices represent the probability of different
states within systems evolving into other types at a certain moment in time. The succession of the
different states depends solely on the current state of the system [30,33]. When undisturbed, these
different states always evolve towards a stable long-term equilibrium, independent from a system’s
initial state [18,30]. Thanks to this characteristic, we were able to assess whether there is in fact an
equilibrium between the current proportion of open stands and the current burn rate by simulating
the evolution of the abundance of open stands using a landscape dynamics model spanning 150 years
and by testing the stability of the proportion of open stands over time.

2. Materials and Methods

2.1. Study Area

The area that was under study (Figure 1) is located in the province of Quebec (Canada), extending
from 49˝ N to 53˝ N latitude and from 70˝ W to 76˝ W longitude around Lake Mistassini. This area
covering approximately 175,000 km2 is predominately covered in the south by black spruce-moss
forest and by black Spruce-lichen woodland in the north. The forest mainly reflects the influence of the
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physical and climate characteristics of the area, as well as the impact of repeated fires [14]. Essentially,
the area is marked by lower burn rates in the south (<0.30% year´1, based on data gathered on fires
between 1940 and 2009 [25], and by higher burn rates in the north (between 0.30% and 1.2% year´1)
(Figure 1; Table 1). The characteristics of these different fire regimes were established for 10 separate
areas (fire zones) by Mansuy et al. [25]. Together with the fire regime, the climate, and particularly
the temperature (number of growing degree-days above 5 ˝C) are key factors to the stands’ density
and productivity [14]. The forest is denser and more productive in the southwest sector (growing
degree-days starting at 1200 ˝C¨ year´1) than in the northeast sector (800 ˝C¨ year´1) (Figure 1; Table 1).
The average annual temperature is 1.9 ˝C in the southwest sector and ´6.0 ˝C than in the northeast
sector [25].
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Figure 1. Burn rates [25] and degree-days [34] for the study area. The hatched area lies outside of
the spruce-moss bioclimatic domain [9] or a regional burn rate could not be estimated [25]. The
northern limit of commercial forests was set in 2002 by the Ministère des Ressources Naturelles et de la
Faune [35].

Table 1. General information on the 10 fire zones of the study area.

Region Area (km2)
Degree Day
(˝C¨ year´1)

Burn Rate
(%¨ year´1) [25]

Abundance of Open Stands
(Median) in 2006 (%)

A 18,525 900 1.11 89
B 35,157 1000 0.78 88

C1 4265 900 0.67 54
C 42,468 940 0.48 85

D1 6492 800 0.42 81
D 14,291 1010 0.37 93
E 11,522 1130 0.28 44

G1 15,043 1000 0.16 34
G 13,509 1200 0.14 28
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2.2. Forest Data

This area straddles the northern limit for timber allocations as established by the Ministère des
Forêts, de la Faune et des Parcs (MFFP) [35] in 2002. This northern limit more or less follows the 51st
parallel (Figure 1). The forest data used in this study stem from two different inventory programs: the
northern forest inventory program for the area above this limit, and the regular inventory program
to the south. These two programs were homogenized in 2006 by the MFFP in order to generate
forest maps that included surficial deposits, moisture regime, forest cover type (softwood, deciduous,
or mixed), understory vegetation, cover density class, development stage, potential vegetation and
disturbance of origin over an area of at least 8 ha [25,36]. South of the 51st parallel, forest maps were
based on the interpretation of aerial photographs, which were taken between 1990 and 2001, and
updated in 2006 by the MFFP to account for recent disturbances. North of the 51st parallel, forest
vegetation was classified from satellite images (Landsat 2005), while aerial photographs at the scale of
1:40,000 were used to map surficial deposits and moisture regimes.

In our study, we used 945 permanent and temporary sample plots that predominantly consisted
of black spruce and jack pine (with a 75% minimum basal area coverage per species in one plot).
A total of 248 temporary and 291 permanent sample plots are located north of the 51st parallel.
Temporary sample plots were measured in 2006 and 2007 with the northern forest inventory program
and permanent sample plots were remeasured between 1990 and 2001 during the third regular forest
inventory program. Plots are evenly distributed across the study area ([14]: their Figure S1). Within
each sample plot (of 400 m2), the species and trunk diameter measured at breast height (DBH) was
noted for each merchantable tree (DBH > 9 cm). Three to five dominant or co-dominant trees (taller
than two-third of the canopy height [36]) were randomly selected to record their age (core at 1 m
height) and total height.

2.3. Data on Forest Fires

The annual burn rate corresponds to the annual area burned, divided by the total terrestrial area
(excludes lakes and other water bodies, but includes forested peatlands). The annual areas burned
have been used to calculate the burn rate for each region [25]. The history of the areas burned within
our study area comes from the spatial database from the MFFP for the period of 1940 to 2006. The fire
map has been compiled from various sources: satellite images, aerial photographs, maps and archives.
Therefore, the older fires listed are likely to be incomplete and cover about 14% of the territory north
of the study area, and instead of having dates of the fires being accurate within one year, they fall
within a range of 5 or 10 years [37]. In order to account for the variability of the information sources
regarding burned areas, a floating average for a 7-year period (average cycle of repetition of large
fires), as described by Gauthier et al. [37], was applied to obtain the annual burn rate. This method
produced 61 different annual burn rates for each fire zone, from which 10,000 random draws were
conducted to estimate the frequency distribution of the annual burn rate for each fire zone. A regional
average burn rate was also calculated for three separate twenty-year periods (1947–1966, 1967–1986,
and 1987–2006) in order to detect any temporal variations.

2.4. Description of the Landscape Dynamics Model

The structure of the forest landscape is the result of complex interactions between geomorphology,
climate, disturbances and natural succession. We used a forest landscape dynamics model, the
“Vermillion Landscape Model” or VLM [38] to simulate the landscape dynamics. VLM, which has been
described in detail in [38–41], has been implemented in the SELES modelling tool (Spatially Explicit
Landscape Event Simulator [42]) by Fall [38] to be compatible with forest map data produced by the
MFFP of Québec. Different versions of this model have been used to study the sustainability of forest
management strategies in northern temperate or boreal forests of Québec in interaction with fire, insect
defoliation, natural succession and road building [38–41,43]. The landscape is described by a set of
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raster layers (e.g., forest type, stand age, and soil drainage). Processes that influence forest dynamics
(fire, natural succession, and logging) are described as landscape agents (submodels) that modify
properties of raster cells through time. VLM has been simplified to meet the objective of our study by
keeping only succession and fire as active landscape agents (File S1).

2.4.1. Landscape Description in VLM

The VLM model uses raster layers as inputs. Due to its considerable size, the territory was divided
into cells or pixels of 16 ha (400 ˆ 400 m2) in order to correspond to twice the average size of the forest
polygons of the study area. The analyses performed as part of our study focused on the opening of
black spruce stands, because shade-intolerant stands that are predominantly composed of softwood
conifers represented by jack pine are much less abundant [14]. The territory was therefore stratified
according to three criteria: dominant species, degree of cover opening and age class. Because mapping
north of the 51st parallel was performed using satellite images, without the identification of coniferous
species and estimation of stand age, it was first necessary to estimate the stands’ species composition
(distinguishing between black spruce and jack pine) and age class.

Species dominance within target populations (and therefore within forest map polygons) was
first estimated using two logistic regression models calibrated by Rapanoela et al. [14] for the same
study area and with the plot dataset described above (Section 2.2). As black spruce largely dominates
in the study area, Rapanoela et al. [14] first assumed that all stands were composed of black spruce by
default. The first regression model was then used to estimate the probability of jack pine occurrence
mainly as a function of elevation, drainage, developmental stage and understory cover ([14]: Table 2):
jack pine tends to occur more frequently on dry to mesic sites of low elevation, with a developmental
stage qualified as “regenerated” or “young” and in sites dominated by lichens in the understory
vegetation. Probability of jack pine dominance is more related to the presence of coarse soil deposits,
often on hilly areas in the northwestern part of the study area.

Table 2. List of variables selected with logistic regression to explain the variability of abundance of
open stands by fire zones and increase in open stands after 150 years of simulations with a forest
succession model in interaction with natural disturbances.

Abundance of Open Stands Probability of Increase of Open Stands

Variables Estimate (SE) Wald χ2 Variables Estimate (SE) Wald χ2

Degree day 0.0078 (0.0007) 106.7 Last frost day 0.0595 (0.0109) 29.8
Degree day ˆ burn rate ´1.058 (0.217) 23.9 Total precipitation ´0.00886 (0.0019) 22.0

Burn rate 794 (207) 14.7 Burn rate 1.248 (0.269) 21.6

The age of forest polygons was estimated using two methods. South of the 51st parallel, the age of
some stands could be determined by the date of the last disturbance indicated on the forest maps and
it has been recalculated by subtracting the year of origin of the disturbance (fire or cutting) from the
year of production of the forest map (2006). For other polygons where a date of last disturbance was
not available, the age was estimated by a non-parametric method (k-NN) [44]. This calculation
method consists of estimating unknown values for forest attributes within an area unit (target
polygon) by averaging the values of attributes of similar reference surface units (inventory plots) [45].
Baseline predictors were the cartographic attributes (Section 2.2) and climatic variables. Climatic
variables were chosen for their potential impact on succession dynamics and forest productivity in
the study area [14,46]. BioSIM 9 [34] was used to estimate these climate variables for each forest
polygon within the study area. BioSim adjusts data from the closest weather stations to account
for differences in exposure, elevation, latitude and longitude between these stations and the stands
targeted. The similarity between the characteristics of the reference polygons and the target polygon
(year) was calculated using the Gower distance [47]. We followed the process described by [14] for
the variable selection to keep only one variable among correlated variables and to remove variables
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that do not significantly explain distances between target and reference polygons. The number
k of nearest neighbours was chosen by minimizing the root mean squared error of the estimates
(RMSE), determined by cross-validation [44,48]. The prediction quality of the age of stands was
assessed with the coefficient of determination between predicted and observed ages and the absence
of bias. With this procedure, stand age was estimated from the weighted average of 16 nearest
neighbours, neighbourhood being assessed with Gower distances estimated with nine variables: six
stand cartographic attributes (development stage, cover density class, potential vegetation, surficial
deposit, slope and elevation) and three climatic variables (total annual radiation (MJ¨ m´2¨ year´1),
annual snow precipitation (mm¨ year´1) and aridity index (mm¨ year´1, sum of the difference between
Thorthwaite’s potential evapotranspiration and monthly precipitation [49])). The RMSE (6.7 year)
largely exceeded the mean residual bias (´1.4 year) and the fit to observed values was considered
acceptable, with a coefficient of determination of 26%.

Two classes were considered when assigning dominant species type, that being shade-tolerant
conifers (Rt) and shade-intolerant conifers (Ri), and two classes of canopy openings, that is, open
(O) and closed stands (C). The types of canopy opening were determined according to the forest
standard mapping of the Nordic Ecoforest Inventory Program: stands where the cover percentage of
the canopy of commercial species is greater than 40% (“A”, “B” and “C” density classes) were classified
as closed, and those where the cover percentage was less than 40% (“D” and “L” density classes) were
classified as open. For each fire zone, we simulated the evolution of 4 separate strata: strata closed
and open composed of shade-tolerant or shade-intolerant conifers (RtC; RtO; RiC; RiO). Age values
were regrouped into six 20-year age classes (0 to 20 (10), 21 to 40 (30), 41 to 60 (50), 61 to 80 (70), 81 to
100 (90), and >100 year old (100+)).

2.4.2. Succession Submodel

We used the approach developed by Fall et al. [38] to design an empirical semi-Markov model of
succession. This approach is based on the hypothesis that trends in the distribution of stand patterns
by age reflect the current succession process and will continue in the future [50]. First, we assumed
that stands within the same fire zone follow the same succession dynamic [46]: a transition matrix was
therefore calibrated for each fire zone. The transition probabilities were estimated by age groups based
on 20-year periods for each of the four strata (RtC; RtO; RiC; RiO) in a fire zone based on the forest
map of the territory. Following a fire, the age of the cell is reinitiated and the composition of a stand
after a fire is randomly selected from the abundance of strata in each fire zone for the first age group
(0–20 years). A cell can change succession paths randomly over time, with probabilities being derived
based on how the strata are represented in the fire zone for its corresponding age group.

2.4.3. Fire Submodel

The empirical distribution of the annual burn rate (Section 2.4) was used to simulate the annual
burn rate. The number of fires followed a negative exponential distribution. For each fire, a spark
cell was selected at random, and the fire is propagated in all directions until it encounters an obstacle
(water body or recent burn) and the number of cells defined by the planned fire area is reached. Recent
burns could reburn from the next simulation period.

2.4.4. Simulation Runs

Simulations of the evolution of the abundance of open stands were performed to cover a 150-year
time frame by five-year periods. Such a time period corresponds to the beginning of the conversion
of even-aged stands to uneven-aged stands [51,52] and to the forest management planning horizon
in Quebec. The number of simulations was set at 100. In our case, after 150 years, the coefficient of
variation applicable to the abundance of open stands was less than 0.4% after 100 simulations in all
fire zones.
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2.5. Interpretation of Simulation Results

The primary objective of this study was to explain the abundance and variation over time of areas
with open stands, according to fire zones, climate variables, physical variables, and burn rates.

If there is an equilibrium between the vegetation and disturbance rate, the breakdown of the
land area into strata should remain approximately constant through time. We therefore measured
the absence of equilibrium by subtracting the abundance of open stands after 150 years (as per our
simulation) from the numbers observed in 2006 for each fire zone. We then attempted to explain the
difference between the initial and final proportions. As we had 100 simulations, we built frequency
distributions of these differences by fire zone to express the probability that the abundance of open
stands could change.

We also tried to explain the abundance of open stands observed at the simulation start (in 2006).
A stand’s age is equivalent to the time elapsed since its original disturbance. Variations in the
abundance of open stands by age group apparent in the empirical semi-Markovian succession models
for each fire zone should explain the absence of a stable equilibrium between the vegetation and fire
regime. The abundance of open stands for three age groups (0–20 years, 20–40 years and 40–60 years)
as observed in 2006 was therefore calculated to identify and explain any trends in three burn rate
temporal periods (1947–1966, 1967–1986, and 1987–2006) (Section 2.4) as a function of biophysical
variables (see Sections 2.2 and 2.3). We then applied with this data a backward selection model for
variables, using the LOGISTIC procedure from SAS. All independent variables were tested and those
that contributed the least to the model were eliminated, according to a 5% threshold. The best model
was selected with the Akaike information criterion (AIC) and the adjusted coefficient of determination
(adjusted R2) [53].

3. Results

The study area can be divided into two zones according to the abundance of open stands observed
in 2006 for each fire zone (Figure 2). Indeed, open stands are less abundant in areas located in the
southern areas covered by the study (average abundance of less than 50% in D, E, G, and G1 areas),
while they dominate the northern portions of the territory (A, B, C, C1, and D1 areas), precisely where
the burn rate is higher (>0.3% year´1) (Figure 1). This division also coincides with a climatic transition
zone with a colder climate zone in the north (A, B, C, C1, and D1 areas) and warmer in the south
(D, E, G, and G1 areas) (Figure 1). The division between the two zones straddles the northern limit for
timber allocations.
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3.1. Temporal Variation in the Abundance of Open Stands

Simulations using the landscape dynamics model show a sometimes substantial variation in the
abundance of open stands over the 150-year period covered for virtually all ten fire zones (Figure 3).
In the area dominated by open stands, only the D1 area seemed to show an equilibrium between the
abundance of open stands and the disturbance rate. However, the abundance of open stands seems
to increase by more than 10% over 150 years in two other fire zones (areas A and C1). Both of these
zones are in fact located the furthest north among the areas covered by the study. The increase is not
as significant for B and C areas that abut the area dominated by closed stands (Figure 3). In the area
dominated by closed stands, only the D area seems to show a substantial increase in the abundance of
open stands and this feature is related to the fact that this area is one that has sustained the highest
burn rate between 1940 and 2006 in this fire zone (Figure 1).
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Figure 3. Dynamics of the average abundance of open stands in fire zones dominated by open
stands (a); and in fire zones dominated by closed stands (b) with 100 simulations over 150 years of a
forest succession model in interaction with natural disturbances. (c) Box and whisker plots representing
the frequency distributions of the differences between final and initial abundances of open stands
of 100 simulations over 150 years. Cumulative frequencies of positive changes were regrouped into
frequency classes (more than nine out of ten: 0.90–0.99; more than two out of three: 0.66–0.90; and
approximately half the time: 0.33–0.66).
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3.2. Long-Term Change in Abundance of Open Stands

A transition matrix has been calibrated for each fire zone based on the empirical strata’s abundance
distribution by age groups. The existence of different transition rates for each age group within a fire
zone may partly explain the changes observed in the abundance of open stands during the simulations
(Figure 3). The classification of open stands by date of origin (1947–1966, 1967–1986, and 1987–2006)
shows the actual changes in their relative abundance over long periods (Figure 4a). A general increase
in the abundance of open stands was recorded between 1987 and 2006, except for the D1 area. Where
burn rates are the highest (in A, B, C1, D, and D1 areas), with the exception of the C fire zone, the
increase was higher (up to 70%) between 1987 and 2006 (Figure 4a). This increase in the abundance of
open stands observed during the past 20 years is related, with one exception (in the area C), with a
recent increase in the regional burn rate (Figure 4b).

Forests 2016, 7, 103  9 of 17 

 

3.2. Long‐Term Change in Abundance of Open Stands 

A  transition matrix  has  been  calibrated  for  each  fire  zone  based  on  the  empirical  strata’s 

abundance distribution by age groups. The existence of different transition rates for each age group 

within a fire zone may partly explain the changes observed in the abundance of open stands during 

the simulations (Figure 3). The classification of open stands by date of origin (1947–1966, 1967–1986, 

and 1987–2006) shows the actual changes in their relative abundance over long periods (Figure 4a). 

A general increase in the abundance of open stands was recorded between 1987 and 2006, except for 

the D1 area. Where burn rates are the highest (in A, B, C1, D, and D1 areas), with the exception of the 

C fire zone, the increase was higher (up to 70%) between 1987 and 2006 (Figure 4a). This increase in 

the abundance of open stands observed during the past 20 years is related, with one exception (in the 

area C), with a recent increase in the regional burn rate (Figure 4b). 

 

Figure 4. Average abundance of open stands by fire region for three 20‐year periods (1947–1966, 1967–

1986, and 1987–2006) (a); and corresponding regional burn rates by periods (b). 

3.3. Factors Responsible for the Variation in the Abundance of Open Stands 

The abundance of open stands observed at the simulation start (2006) by fire zone is explained 

mainly by the number of degree‐days and the average burn rate (Table 2). The abundance of open 

stands exceeds 50% when the degree‐days of growth are lower than 1000 °C∙year−1 or when the burn 

rate is above 0.5% year−1 (Figure 5). The logistic model explains 60% of the regional variation in the 

abundance of open stands (Figure 6). 

The increase in the abundance of open stands after 150 years of simulations is explained mainly 

by the total precipitation, the  last day of frost and the burn rate (Table 1). The  increase was more 

significant in the A and C1 areas, which are drier and/or cooler (total precipitation < 900 mm∙year−1; 

average  last  day  of  frost  >  170  Julian  day),  and/or when  the  burn  rate  is  higher  (>0.5%  year−1). 

According to the simulation results (Figure 3c, Figure 7), the abundance of open stands increases in 

more than 90% of the simulations in the A and C1 areas and in more than two‐third of the simulations 

in B, C, D, and D1 areas. 

Figure 4. Average abundance of open stands by fire region for three 20-year periods (1947–1966,
1967–1986, and 1987–2006) (a); and corresponding regional burn rates by periods (b).

3.3. Factors Responsible for the Variation in the Abundance of Open Stands

The abundance of open stands observed at the simulation start (2006) by fire zone is explained
mainly by the number of degree-days and the average burn rate (Table 2). The abundance of open
stands exceeds 50% when the degree-days of growth are lower than 1000 ˝C¨ year´1 or when the burn
rate is above 0.5% year´1 (Figure 5). The logistic model explains 60% of the regional variation in the
abundance of open stands (Figure 6).
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Figure 5. Relationship between the abundance of open stands by fire zone and degree-days of growth
(a) and burn rate (b). Continuous lines refer to the logistic regression presented in Table 2.
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Figure 6. Predicted vs. observed abundance of open stands by fire zone. Predicted values stem from
the logistic regression presented in Table 2.

The increase in the abundance of open stands after 150 years of simulations is explained mainly by
the total precipitation, the last day of frost and the burn rate (Table 1). The increase was more significant
in the A and C1 areas, which are drier and/or cooler (total precipitation < 900 mm¨ year´1; average
last day of frost > 170 Julian day), and/or when the burn rate is higher (>0.5% year´1). According
to the simulation results (Figure 3c, Figure 7), the abundance of open stands increases in more than
90% of the simulations in the A and C1 areas and in more than two-third of the simulations in B, C, D,
and D1 areas.
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4. Discussion

4.1. Correlation of Fire Frequency with the Abundance of Open Stands

The abundance of open stands by fire zone is mainly explained by the burn rate and the regional
climate [12] (Figure 2), but also by the periodic variations in the burn rate. Our results show that the
vegetation is not in equilibrium with the disturbance regime in all regions and that it may respond
immediately to changes in the fire burn rate over a time scale shorter than that of fire cycle (Figure 4).
This vegetation/fire regime discrepancy (or lack of resilience) is accentuated when the degree-days
of growth are low (less than 1000 ˝C¨ year´1) and/or when the burn rate is higher than 0.5% year´1.
These results are consistent with the analysis of Chapin et al. [54] on the resilience of boreal forests and
changes in forest composition: these forests are resilient to disturbances but when biophysical factors
become strongly limiting to forest species, these forests start to lack resilience and their composition
may change gradually. Some of the fire zones of our study area are indeed subject to a rather cold
climate that does not help trees get established after a disturbance [55,56]. Simulations showed that
the abundance of open stands should increase over a 150-year period in all fire zones, except for area
E, if the burn rate remains equivalent to that observed between 1987 and 2006. As the importance of
the simulated changes is related to climate (Figure 4, Table 2), they are predicted to occur over a clear
north–south gradient (Figure 7).

The burn rate is defined as the mean annual area burned in a given territory [20,57]. In fact,
the burn rate varies according to the area being calculated and the periods of time selected being
covered by the calculation [58]. This can lead to considerable variability of burn rate values or to their
overestimation [59,60] that obscures the influence of fire regimes on the actual distribution of ecological
patterns [61]. Landscape dynamics models often apply the assumption that fire regimes do not change
for long periods of time, while significant variations in burn rates are observed from one year to the
next, and from one decade to the next [58,62]. Our analysis indicates that periodic variations of the
burn rate between 1947 and 2006 (Figure 5) had an immediate impact on the abundance of open stands
(Figure 4). Such variations have also been observed throughout the entire study area and are related to
the recent increase in the burn rate (1987 to 2006), except for area C. The increase in the abundance
of open stands in this fire zone is probably due to a greater amount of precipitation because of the
higher altitude that may have mitigated the severity of fires [63,64]. Indeed, when fires are less severe,
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they do not entirely consume the soil’s organic matter, and the absence of mineralized soil limits the
regeneration of seeds [1,65–68]. Conversely, severe and more frequent fires promote the regeneration
of pioneer species, such as jack pine. This is what is occurring in area A, where a higher proportion of
jack pine has been noted by Rapanoela et al. [14], even though the stand density there is less [14] due
to more frequent deficient postfire recovery [46].

Our results are based on simulations with empirical models: they are not based on an
understanding of the underlying processes that drive forest succession. The semi-Markovian transition
matrices used in the present study were calibrated from forest maps and therefore suffer from the
defects of chronosequences, in which time is substituted by space [69,70]. They reflect past average
effects of underlying processes that occurred at specific times and these effects may not exactly
repeat themselves in the future. For instance, Markovian transition matrices are aspatial and ignore
the importance of local neighbouring effects on forest succession [71]: if the abundance of open
forest changes with time, local effects (historical legacies) should also change, which would impact
the prediction of successive forest succession events. Forest succession is also conditioned by fire
severity [65–68] that has been shown to be related to specific fire events [72]. As a consequence,
changes of abundances and their variability, as simulated here (Figure 3c), cannot be used for predictive
purposes (for instance to account for climate change effects [73]). Therefore, the present results served
to demonstrate that the abundance of open forest stands has indeed increased in response to a recent
increase in burn rates and to show the existence of a state of non-equilibrium over a relatively short
time scale (in comparison with black spruce longevity), in line with the variability of the burn rate.

4.2. Natural Dynamics of the Spruce-Moss Forest and Lichen Woodland

The boreal forest is a vast ecosystem that was formed about 8000 years ago. From north to south,
it encompasses four bioclimatic domains: forest tundra, Spruce-lichen woodland, spruce-moss forest
and the balsam fir-white birch domain [9,74,75]. The spruce-moss forest is part of the sub-area of the
boreal forest, where stands are relatively dense. Forest cover is essentially dominated by black spruce,
and fire is the primary disruption that causes forest renewal [76,77]. Spruce-lichen woodland and
spruce-moss forest used to be considered two separate communities [9,75,76]. The existence of these
two communities under the same environmental and climatic conditions has led to the conclusion
that the Spruce-lichen woodland and spruce-moss forest are stable alternative states [1,78]. However,
our findings challenge this notion of stability, at least at the regional level and over a short time scale
of decades.

Ecosystems can move from one state to another due to a severe disruption that acts directly on
state variables [79]. State variables are quantities that change rapidly to ecologically relevant time
scales, such as the density of the population [79]. In closed spruce-moss stands, the opening of stands
is attributed to a poor regeneration of the main species after several disturbances [2,6,78,80] that leads
a burned area unable to recover from a disruption [81]. If regeneration is good, the amount of black
spruce should increase during the first 90 years and decline thereafter [52]. After 100 years but before
200 years have lapsed, the recruitment of young plants initiates the beginning of a structural change [82]
and stands become irregular [52,83]. In our study area, the rate of regeneration is particularly slow
and stand density is low [46,84]. Mansuy et al. [46] estimated that in our study area, it takes an average
of 25 years for a majority of burned-over areas to reach a regenerated stage, and 45 years for stands
over 7 m in height to dominate burned sites. The increase in plant density seems to happen gradually
since the time of the last fire [85] and therefore, the abundance of closed stands is favoured by a low
burn rate (Figure 4). The openness of the forest in connection with a temporarily higher burn rate
demonstrates a potential instability of the spruce-moss forest, since a temporal change in the fire
regime triggers a change in the forest mosaic, by altering the abundance of open and closed stands.
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4.3. Vulnerability and Adaptation to Disturbance Regimes

The vulnerability of boreal forest ecosystems depends on the extent of their adaptive capacity and
resilience to disturbances. In terms of resilience, it is assumed that the boreal forest is locally vulnerable
to the loss of forest cover resulting from permafrost degradation [56], successive disturbances [78,86],
or drought [87]. However, the persistence of wide landscapes of greater canopy opening caused
by an increase in the burn rate could result in a long-term major change in the composition and
structure of the spruce-moss forest, with a greater dominance of the less dense stands in the landscape.
Consideration of species adaptation is key to effective and sustainable forest management [88]. Indeed,
when assessing the risk of changes in stands or productivity losses [14,37], management decisions
should be taken in a view to try to reduce the vulnerability of ecosystems. Following this study, a
vulnerability threshold can be established with regard to the proportions of open stands in a landscape
composed of spruce-moss stands (Figure 5), based on tolerance to change. The proportion of closed
landscapes and acceptable biodiversity losses related to a decrease of closed stand abundance [89] will
depend on forest management objectives.

5. Conclusions

Our objective was to evaluate if the closure of the forest was unstable over time and not in stable
equilibrium with the current fire regime. As the proportion of open stands is explained mainly by
the frequency of fires and the regional climate, but also by the periodic variations of the burn rate,
our results showed that vegetation responds quickly to occasional changes in the fire activity. When
the burn rate is higher, there is a significant increase in the abundance of open stands. The recent
increase in the burn rate over the past two decades has led to a greater abundance of open stands,
which can already be observed in the current landscape. It is apparent from this study that forestry
planning should consider the risks associated with the temporal variability of fire regimes on the
forest ecosystem, as the resulting changes can have a significant impact on biodiversity and allowable
cut estimates.

Supplementary Materials: The supplementary materials of this paper are available online at
www.mdpi.com/1999-4907/7/5/103/s1. File S1: Programming code used for the landscape dynamics
model. SELES is required to run such code and is available upon request by contacting its author, Andrew
Fall (andrew@gowlland.ca, http://www.gowlland.ca/). Furthermore, we could not share all the data used for
the simulations as forest maps and inventory plots are owned by the Ministry of Forests, Wildlife and Parks
of Quebec. The programming code comes however with a sample dataset. Any interested person can access
the data as we did: this data is available upon request by contacting inventaires.forestiers@mffp.gouv.qc.ca
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