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Abstract: Spatial restrictions of harvesting have been extensively studied due to a number of
environmental, social and legal regulations. Many spatial restrictions are defined by adjacency
constraints, for which a number of algorithms have been developed. Research into the unit restriction
model (URM) using a branch and bound algorithm focused on decreasing the number of adjacency
constraints in harvest scheduling models, since the early solvers have been limited by the number of
constraints and integer decision variables. However, this approach can lead to a loss of efficiency in
solving mixed integer models. Recent improvements in commercial solvers and personal computers
have made the reduction of constraints less relevant, since many solvers now accept an unlimited
number of constraints and decision variables. The aim of this paper was to compare the time efficiency
of solving unit restriction harvest scheduling models with different types of adjacency constraints
using a commercial solver. The presented results indicate that the type of adjacency constraints can
have a significant effect on the solving time and therefore could be a crucial factor of the time required
for developing forest plans. We note that pairwise adjacency constraints may be sufficient today for
addressing unit restriction forest harvest scheduling problems.

Keywords: harvest scheduling; forest planning; adjacency constraints; pairwise constraints;
analytical algorithms

1. Introduction

Mathematical programing methods such as linear or dynamic programing have been widely used
for harvest scheduling since the 1970s [1]. A number of different scheduling models have been created
since then. In the 1990s, the effective use of geographic information systems (GIS) [2] enabled forest
managers and researchers to include spatial requirements in the scheduling process. Without tracking
spatial detail, it would be impossible to fulfill certain environmental requirements because the spatial
structure of forest ecosystems significantly affects ecological processes [3]. In addition, contemporary
forest certification programs and wildlife habitat models allude to the spatial nature of forest activities.
Therefore, forest plans may need to recognize when and where harvest activities are scheduled in
order to meet the goals of a forest landowner and to suggest feasible sets of activities.

There are two widely known approaches to model the spatial harvest scheduling problem: area
restrictions models (ARM) and unit restrictions models (URM) [4]. In contrast with ARM, when
employing the URM approach, each potential harvest area is exactly predefined by the size of each
management unit. In the ARM model, management units can be aggregated to form larger potential
harvest areas. These types of restrictions on harvest unit configuration can lead to lower objective
function values in some cases [5]. The ARM model is more flexible with regard to the timing and
placement of harvests, and should theoretically produce forest plans with higher objective function
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values than when using the URM model. However, the ARM model is computationally difficult to use
for forest management that is typical for Central Europe, which constrains not only the maximum area
but also the maximum width and length of a harvest unit.

When incorporating spatial requirements into the harvest scheduling models, it is often necessary
to develop algorithms for specifying adjacency constraints. The traditional algorithm for problems
involving the URM model of adjacency consists of defining pairwise constraints for each harvest unit
and for all adjacent units. However, this approach could be limited by a maximum possible number
of constraints in commercial solving software [6]. For this reason, many researchers have tried to
develop different techniques for the reduction of adjacency constraints number. A branch and bound
algorithm is the most classical method of solving URM. There are two directions to reduce the size of
URM with adjacency constraints. The first one is the reduction of the number of adjacency constraints,
which can, however, lead to lower efficiency of a branch and bound algorithm [7]. The second one is
to reformulate adjacency constraints to increase the efficiency of the branch and bound algorithm [8].
McDill and Braze [9] present five groups of adjacency constraints types that encompass 14 constraint
types. Each of these types have different levels of reducing the number of constraints, which can lead
to different levels of efficiency of the branch and bound algorithm.

Some authors compared the efficiency of different adjacency algorithms (see for example [10]).
However, the efficiency of the algorithms is not the only crucial part of their practical utilization. There
is a rapid improvement of commercial mixed integer and integer programming solvers, and hence,
many solvers now accept an unlimited number of constraints [8]. Due to this, the structure of storing
spatial data and creating the adjacency constraints can be the most limiting factor for practical use of
decision support systems (DSS) today.

The spatial structure of forest stands or harvest units can be described using graph theory, which
is applied in many fields of human activities [11–13]. A graph representing the adjacencies of stands or
units is undirected, unweighted and can also be disconnected [13] depending on the real situation in
a forest area. Although graphical representation by way of a set of vertices and edges is the most well
known approach, it is not a suitable method for storing graph data in computers. For this purpose, the
most common way of data storing is an adjacency matrix [11]. Another common way of data storing is
an adjacency list [14]. These two graph representations have many differences that could affect the
total computing time of spatially dependent forest DSSs.

The main difference between the data storing approaches is in the time of adding or deleting one
edge from the vertex. In the case of the adjacency list, this time is equal to O pkqwhere k is the length
of the list containing the successors of vertex i. In the case of the adjacency matrix, the time needed
for adding or deleting one edge from the vertex is equal to O pnq where n is the number of vertices.
This can be effective only for a very dense graph where the total number of edges m “ Ω

`

n2˘ [14].
However, large numbers of adjacency relations are not very common in real forest structures [7].

The goal of this paper is to compare the time efficiency of employing the two concepts of
adjacency representation, which differ in the structure of data storage and the algorithm suitable
for creating constraints. The first concept is the development of conventional pairwise constraints
from an adjacency list. The second concept is the development of an adjacency matrix using three
analytical algorithms described by Yoshimoto and Brodie [6]. These algorithms are based on simple
linear algebraic operations. The results of these comparisons should confirm or refute the following
two assumptions for each selected type of adjacency constraints: (1) the number of harvest units affects
the time needed to solve the model; and (2) the number of adjacent harvest units affects the time
required to solve the model.

2. Materials and Methods

2.1. Model

A very simple harvest scheduling integer programing model was created for the purpose of the
paper. The model is presented below (Equation (1–4)).
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Maximize
N
ÿ

n“1

P
ÿ

p“1

vnpxnp (1)

subject to:
P
ÿ

p“1

xnp ď 1 @n P 1, . . . , I (2)

xnp ` xkp ď 1 @n P 1, . . . , N, @k P Ωn, @p P 1, . . . , P (3a)

MX ď A1 (3b)

xnp P t0, 1u (4)

The objective function (1) maximizes the volume harvested from all harvest units n “ 1, . . . , N
and from all periods p “ 1, . . . , P, while vnp parameter expresses the stand volume in m3. The first
constraint (2) ensures that each unit is harvested only once during the planned horizon, and the second
constraint (3a or 3b) is related to spatial restrictions of the problem. The set Ωn in inequality 3a includes
all adjacent units to the unit n. The matrix A is the adjacency matrix defined by

 

aij
(

, where aij “ 1
if unit i is adjacent to unit j, otherwise aij “ 0; X is a control vector of variables xnp, 1 is a pN ˆ 1q
unit vector, and M is called a modified adjacency matrix defined by

 

mij
(

where mij “ aij if i ‰ j and
mij “ Ai1 if i “ j (see [6] for more details).

The last constraint (4) specifies what values the decision variables xnp can acquire. A value of 0
means the unit n is not harvested in period p and is 1 otherwise.

Using pairwise constraints does not require a special type of algorithm to define the equations.
However, the original adjacency matrix of adjacency constraints (3b) can be simplified by any of the
three different analytical algorithms proposed by [6]. Each is based on the symmetry of the adjacency
matrix. The so-called triangular adjacency matrix (TAM) is created when the first algorithm is used.
This algorithm is based on the fact that the original adjacency matrix is diagonally symmetric. The row
adjacency matrix (RAM) is created using the second algorithm. Some rows in the original adjacency
matrix are redundant and can be deleted. The last type of the modified adjacency matrix is the row
triangular adjacency matrix (RTAM), a combination of TAM and RAM. The algorithms are specified
for reduction the number of constraints. However, this can lead to lower efficiency of the branch and
bound algorithm [7].

The example of an original adjacency matrix, simplified adjacency matrices of the mentioned
algorithms and relevant modified adjacency matrices [6] are presented below (Equation (5–8)). The
example is completely hypothetical.

Original and modified
adjacency matrices

without simplification
A “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1
0 0 0 0 1 0 0
0 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MX “

»

—

—

—

—

—

—

—

—

—

–

1 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 3 0 0 1
0 0 0 1 3 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x1
x2
x3
x4
x5
x6
x7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

—

—

—

—

—

—

—

—

—

–

1
2
2
3
3
1
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5)

Original and modified
adjacency matrices
simplified by TAM

A “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MX “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 1 1 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x1
x2
x3
x4
x5
x6
x7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

—

—

—

—

—

—

—

—

—

–

0
1
1
1
1
1
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6)
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Original and modified
adjacency matrices
simplified by RAM

A “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MX “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 2 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 3 1 0 1
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 1 1 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x1
x2
x3
x4
x5
x6
x7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

—

—

—

—

—

—

—

—

—

–

0
2
0
3
0
1
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7)

Original and modified
adjacency matrices

simplified by RTAM
A “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

MX “

»

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0
1 2 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 1 1 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x1
x2
x3
x4
x5
x6
x7

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ď

»

—

—

—

—

—

—

—

—

—

–

0
2
0
2
0
1
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8)

2.2. Data

For the purpose of the paper, we consider that each harvest unit has the same stand volume in the
first period. The growth multiplier of 0.05 was used for the increment in every next period. The total
number of time periods in the planning horizon was 3.

Following the goal of the paper, a large number of spatial forest structures had to be used. The
real spatial structures could not be used because of the input data unavailability. For this analysis, we
created random adjacency matrices representing different spatial structures. The random process of
generating the spatial forest structure is described in Figure 1.
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⎢
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⎡
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1 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0

 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 𝐌𝐌𝑋𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0 0
1 2 1 0 0 0 0
0 0 0 0 0 0 0
0 0 1 2 1 0 0
0 0 0 0 0 0 0

 0 0 0 0 1 1 0 
0 0 0 1 1 0 2 ⎦

⎥
⎥
⎥
⎥
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⎤

⎣
⎢
⎢
⎢
⎢
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The random process of generating the spatial forest structure was applied for different numbers of
harvest units (N = 100 to 500) and different average number of adjacency units (J = 1 to 10). The process
was repeated ten times for each combination. The 500 defined model instances were created this way.
Therefore, we developed 500 random landscapes for each set of modeling assumptions. This enabled
a determination of the dispersion of objective function values with respect to each combination of
modeling assumptions.

Four types of adjacency constraints were generated from the adjacency matrices created using the
four different approaches described above as follows: pairwise constraints and constraints from TAM,
RAM and RTAM. The instances of the described model were calculated on a personal computer with
Intel® Core™ (Santa Clara, CA, USA) processor with 3.40 GHz and 16.0 GB random-access memory,
which represents common computer equipment available today. The Gurobi® version 6.0.5 (Houston,
TX, USA) [15] optimization software was used with the default gap tolerance (0.01%). Two limits of
solving time (60 s and 120 s) were tested. If these limits were reached, the solving process stopped.
The algorithm for generating the spatial structures and for model development was programmed in
the Java programming language.

The amount of time required for all model instances, the final gap tolerance for all model instances,
and the number of instances solved within the time limit were measured. The total number of the
resulting constraints was determined as well. The standard deviation and coefficient of variation
for each common set of assumptions were calculated to understand how the solutions values might
be dispersed.

3. Results

The final results of the analysis are presented in Table 1–10. The calculated average values of the
solution time required, the final gap tolerance characteristics, and the number of solved instances in
the case of the 60 s and 120 s solving time limit are presented in Tables 1–5 (100, 200, 300, 400 and
500 harvest units) and Tables 6–10 (100, 200, 300, 400 and 500 harvest units), respectively.

In Table 1, we see that nearly all (9 of 10) attempts to solve the problem using pairwise constraints
were successful for all assumptions of the number of adjacent neighbors. This problem only involved
100 stands, yet several formulations using the TAM, RAM, and RTAM adjacency matrices were unable
to be solved in 60 s. From Tables 2–5 we see that the different constraint formulations prevent the
problem described in this research from being solved within 60 s when the number of stands assumed
increases. In this case, when the number of stands increased to 200, none of the formulations with
5 adjacent stands on average were able to be solved in 60 s. Table 3 suggests that a problem with 3
or more (on average) adjacency relationships associated with 300 stands is not solvable in 60 s using
any of the methods employed in this research. Table 4, when 400 stands are modeled, suggests that
only problems with 2.5 adjacent stands (on average) can be solved in 60 s. The results in Table 5 are
similar, when 500 stands are modeled, yet the problems with pairwise constraints were the only ones
somewhat consistently solved in 60 s. In this case, however, only 5 of 10 attempts were solved. In each
case, the smallest optimality gap (on average) was observed when using the pairwise constraints.

In Table 6, we see that all 10 attempts to solve the problem using pairwise constraints were
successful for all assumptions of the number of adjacent neighbors. This problem only involved
100 stands, yet several formulations using the TAM, RAM, and RTAM adjacency matrices were
unable to be solved in 120 s. From Table 7 onward, we begin to see that the different constraint
formulations prevent the problem described in this research from being solved within 120 s when the
number of stands assumed increases. Here, when the number of stands increased to 200, none of the
formulations with 5 adjacent stands on average were able to be solved in 120 s. In Table 8, one can see
that the pairwise constraint formulation was able to solve the problem (1 of 10 times) in 120 s when
300 stands were modeled and the average number of adjacent stands was 3.5 or 4. The other constraint
formulations seemed to require more than 120 s in these cases. In Table 9, one can see that the pairwise
constraint formulation was the only one of the four tested that was able to solve the problem (3 of
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10 times) in 120 s when 400 stands were modeled and the average number of adjacent stands was 3.
Table 10 suggests that a problem with 3 or more (on average) adjacency relationships associated with
500 stands is not solvable in 120 s, using any of the methods employed in this research.

It is clear from the tables that the complexity of the model instances increases not only with the
number of harvest units but also with the average number of the adjacent harvest units. This fact can
be seen in the behavior of all three measured characteristics for all four different types of adjacency
constraints. It can also be proclaimed that with the increasing complexity of the model instances,
the solution time and the final gap tolerance (the lower the gap tolerance, the better the result) also
increase, while the number of model instances solved under the time limit decreases.

Table 1. Solving time, gap tolerance and number of solved instances for 60 s time limit and
100 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

60 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

100

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.01 0.04 0.06 0.03 0.00 0.00 0.00 0.00 10 10 10 10
2.5 0.06 0.09 0.11 0.09 0.00 0.00 0.00 0.00 10 10 10 10
3.0 0.14 0.20 0.15 0.33 0.00 0.00 0.00 0.00 10 10 10 10
3.5 0.48 0.78 0.55 0.79 0.00 0.00 0.00 0.00 10 10 10 10
4.0 0.92 2.04 9.79 2.71 0.00 0.00 0.07 0.09 10 10 9 8
4.5 2.51 11.98 9.61 25.19 0.00 0.06 0.41 0.94 10 9 6 5
5.0 13.92 17.66 19.29 41.31 0.31 1.74 1.31 1.73 9 3 3 2

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 2. Solving time, gap tolerance and number of solved instances for 60 s time limit and
200 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

60 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

200

0.5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.01 0.04 0.04 0.03 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.09 0.17 0.14 0.16 0.00 0.00 0.00 0.00 10 10 10 10
2.5 0.36 0.62 0.87 1.99 0.00 0.00 0.00 0.00 10 10 10 10
3.0 2.66 8.30 9.08 19.71 0.00 0.00 0.07 0.00 10 10 7 10
3.5 23.76 20.78 35.30 29.04 0.00 0.02 0.08 0.17 10 8 7 4
4.0 25.31 - 31.37 - 0.14 0.61 0.88 0.78 7 0 1 0
4.5 44.56 - - - 0.62 2.54 2.56 2.44 5 0 0 0
5.0 - - - - 3.06 4.58 5.31 4.18 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 3. Solving time, gap tolerance and number of solved instances for 60 s time limit and
300 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

60 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

300

0.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.02 0.05 0.05 0.05 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.21 0.32 0.49 0.35 0.00 0.00 0.00 0.00 10 10 10 10
2.5 2.95 15.15 9.73 8.11 0.00 0.00 0.01 0.00 10 10 9 10
3.0 33.73 27.58 28.08 43.18 0.04 0.11 0.24 0.16 6 3 1 1
3.5 - - - - 0.22 0.38 0.60 0.44 0 0 0 0
4.0 - - - - 0.58 1.85 2.10 1.79 0 0 0 0
4.5 - - - - 2.13 3.00 3.73 2.99 0 0 0 0
5.0 - - - - 4.33 5.45 5.85 5.57 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.
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Table 4. Solving time, gap tolerance and number of solved instances for 60 s time limit and
400 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

60 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

400

0.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.03 0.07 0.06 0.06 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.28 0.72 1.35 0.58 0.00 0.00 0.00 0.00 10 10 10 10
2.5 4.93 29.76 34.66 20.88 0.00 0.02 0.07 0.01 9 6 4 8
3.0 - - - - 0.11 0.21 0.27 0.30 0 0 0 0
3.5 - - - - 0.10 1.28 0.86 1.25 0 0 0 0
4.0 - - - - 0.36 2.34 3.00 3.20 0 0 0 0
4.5 - - - - 1.17 5.11 4.80 4.70 0 0 0 0
5.0 - - - - 5.92 8.03 7.15 7.56 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 5. Solving time, gap tolerance and number of solved instances for 60 s time limit and
500 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

60 s Time limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

500

0.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.02 0.03 0.03 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.03 0.06 0.11 0.06 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.60 5.75 1.17 1.08 0.00 0.00 0.00 0.00 10 10 10 10
2.5 18.63 8.20 - 43.81 0.02 0.08 0.11 0.11 5 1 0 1
3.0 - - - - 0.14 0.40 0.36 0.41 0 0 0 0
3.5 - - - - 0.36 1.79 1.23 2.04 0 0 0 0
4.0 - - - - 1.98 4.04 3.27 3.56 0 0 0 0
4.5 - - - - 4.23 6.21 5.08 5.16 0 0 0 0
5.0 - - - - 6.90 7.81 8.16 8.17 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 6. Solving time, gap tolerance and number of solved instances for 120 s time limit and
100 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

120 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

100

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.02 0.05 0.04 0.05 0.00 0.00 0.00 0.00 10 10 10 10
2.5 0.07 0.08 0.11 0.08 0.00 0.00 0.00 0.00 10 10 10 10
3.0 0.14 0.27 0.29 0.16 0.00 0.00 0.00 0.00 10 10 10 10
3.5 0.35 0.83 1.67 1.19 0.00 0.00 0.00 0.00 10 10 10 10
4.0 0.78 15.42 2.87 5.95 0.00 0.00 0.00 0.00 10 10 10 10
4.5 3.41 19.48 25.42 36.51 0.00 0.24 0.10 0.00 10 9 9 10
5.0 8.78 43.26 30.26 67.50 0.00 0.37 1.03 1.37 10 8 5 3

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 7. Solving time, gap tolerance and number of solved instances for 120 s time limit and
200 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

120 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

200

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.01 0.03 0.04 0.04 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.09 0.11 0.20 0.11 0.00 0.00 0.00 0.00 10 10 10 10
2.5 0.31 0.83 0.63 3.21 0.00 0.00 0.00 0.00 10 10 10 10
3.0 2.49 9.07 8.46 11.19 0.00 0.00 0.03 0.00 10 10 8 10
3.5 24.17 27.89 51.97 38.59 0.00 0.08 0.14 0.12 10 7 5 6
4.0 34.97 77.55 - - 0.03 0.62 0.78 0.97 9 2 0 0
4.5 49.31 - - - 0.51 2.15 2.71 2.64 6 0 0 0
5.0 - - - - 2.92 3.71 4.62 3.85 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.
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Table 8. Solving time, gap tolerance and number of solved instances for 120 s time limit and
300 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

120 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

300

0.5 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.01 0.03 0.06 0.05 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.14 0.30 0.55 0.35 0.00 0.00 0.00 0.00 10 10 10 10
2.5 1.09 3.96 5.48 11.29 0.00 0.00 0.01 0.01 10 10 9 9
3.0 30.50 - 42.03 36.82 0.01 0.13 0.15 0.10 8 2 2 2
3.5 71.49 - - - 0.15 0.45 0.39 0.43 1 0 0 0
4.0 74.81 - - - 0.31 1.19 1.57 1.02 1 0 0 0
4.5 - - - - 1.40 3.02 3.47 3.15 0 0 0 0
5.0 - - - - 3.89 5.48 4.88 4.94 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 9. Solving time, gap tolerance and number of solved instances for 120 s time limit and
400 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

120 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

400

0.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.02 0.06 0.09 0.10 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.37 0.79 0.92 0.95 0.00 0.00 0.00 0.00 10 10 10 10
2.5 25.88 39.86 39.89 46.28 0.00 0.01 0.02 0.05 9 9 7 4
3.0 51.60 - - - 0.08 0.19 0.27 0.24 3 0 0 0
3.5 - - - - 0.34 0.53 0.68 0.63 0 0 0 0
4.0 - - - - 0.77 1.52 1.81 1.83 0 0 0 0
4.5 - - - - 2.33 4.21 4.14 4.18 0 0 0 0
5.0 - - - - 4.71 6.76 6.33 6.09 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

Table 10. Solving time, gap tolerance and number of solved instances for 120 s time limit and
500 harvest units.

Number of
Harvest

Units

Average
Number of
Adjacent

Units

120 s Time Limit

Average Time (s) Average Gap Tolerance (%) Number of Solved Instances

Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM Pairwise TAM RAM RTAM

500

0.5 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 10 10 10 10
1.0 0.01 0.03 0.03 0.03 0.00 0.00 0.00 0.00 10 10 10 10
1.5 0.03 0.08 0.11 0.10 0.00 0.00 0.00 0.00 10 10 10 10
2.0 0.65 0.95 2.47 1.76 0.00 0.00 0.00 0.00 10 10 10 10
2.5 51.64 75.65 61.45 32.58 0.03 0.00 0.05 0.00 3 3 3 1
3.0 - - - - 0.14 0.27 0.35 0.38 0 0 0 0
3.5 - - - - 0.38 0.88 1.18 0.92 0 0 0 0
4.0 - - - - 1.12 2.61 3.22 3.09 0 0 0 0
4.5 - - - - 3.83 5.08 4.76 5.24 0 0 0 0
5.0 - - - - 5.52 8.23 7.44 7.71 0 0 0 0

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

The calculated standard deviations and coefficients of variation of solving time for all
combinations are presented in Tables 11 and 12. One can observe that the higher complexity of
model instance is coupled with higher standard deviation and coefficient of variation of solving time.
Unfortunately, the lower number of solved model instances in some cases may cause discredit of the
calculated values. In addition, it is shown in previous tables that the chances to solve the various
models in real time decrease with increases in the model complexity. The results are not surprising,
since a time limit applied to more complex models does not allow the branch and bound algorithm to
sufficiently search the solution space. Therefore, the solutions reported after 60 or 120 s are expectedly
sub-optimal, leading to greater variation in the sample objective function values.
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Table 11. Resulting standard deviation (SD) and coefficient of variation (CV) of solving time for 60 s
time limit.

Num. of
Harvest

Units

Average
Number of

Adjacent Units

60 s Time Limit

Pairwise TAM RAM RTAM

SD CV SD CV SD CV SD CV

100

0.5 0.001 22.71 0.001 19.71 0.001 23.29 0.001 21.53
1.0 0.001 28.67 0.002 30.95 0.001 22.97 0.001 13.66
1.5 0.002 37.79 0.009 66.90 0.004 31.75 0.008 48.82
2.0 0.005 39.49 0.022 49.81 0.021 36.74 0.010 31.77
2.5 0.035 58.22 0.040 46.27 0.037 33.79 0.024 28.07
3.0 0.091 63.44 0.117 58.04 0.089 58.09 0.432 130.98
3.5 0.514 106.27 0.767 98.84 0.612 112.06 0.971 122.48
4.0 1.425 155.34 1.575 77.04 17.356 177.36 2.666 98.53
4.5 1.918 76.49 17.611 147.04 5.010 52.16 26.128 103.72
5.0 12.087 86.85 18.046 102.20 7.841 40.66 - -

200

0.5 0.001 18.28 0.001 25.30 0.001 22.58 0.001 19.64
1.0 0.001 19.56 0.001 10.20 0.002 17.08 0.001 12.66
1.5 0.007 50.41 0.040 109.16 0.034 77.52 0.017 56.61
2.0 0.055 64.04 0.061 34.96 0.049 33.99 0.038 23.81
2.5 0.178 49.11 0.614 98.66 0.572 65.63 3.392 170.35
3.0 3.374 126.75 8.927 107.62 6.952 76.54 18.389 93.32
3.5 7.909 33.29 7.498 36.09 19.082 54.06 22.970 79.11
4.0 10.832 42.80 - - - - - -
4.5 18.384 41.26 - - - - - -

300

0.5 0.001 15.15 0.001 25.58 0.001 25.55 0.001 17.82
1.0 0.000 4.79 0.002 14.34 0.003 17.64 0.002 12.94
1.5 0.009 50.12 0.041 82.30 0.017 34.79 0.038 70.28
2.0 0.086 41.24 0.219 68.38 0.320 65.16 0.199 56.49
2.5 4.472 151.83 18.135 119.71 16.912 173.80 7.012 86.47
3.0 22.721 67.36 7.515 27.25 - - - -

400

0.5 0.000 6.57 0.001 18.25 0.001 13.05 0.000 6.48
1.0 0.001 5.72 0.002 11.78 0.002 10.31 0.002 12.05
1.5 0.020 76.72 0.062 84.90 0.020 33.09 0.052 80.99
2.0 0.268 96.69 0.503 69.64 1.115 82.66 0.451 77.39
2.5 3.486 70.71 15.037 50.53 19.588 56.51 10.618 50.86

500

0.5 0.002 20.98 0.001 14.60 0.001 11.49 0.001 15.86
1.0 0.003 22.92 0.002 8.80 0.004 16.72 0.002 9.53
1.5 0.016 50.72 0.009 16.46 0.068 60.79 0.028 43.19
2.0 0.377 62.67 13.444 233.92 0.716 61.13 0.579 53.73
2.5 18.413 98.81 - - - - - -

Note: If one could not achieve the results by any algorithm (pairwise, TAM, RAM, RTAM), it means all values
were discredited. TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular
adjacency matrix; SD = standard deviation; CV = coefficient of variation.
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Table 12. Resulting standard deviation (SD) and coefficient of variation (CV) of solving time for 120 s
time limit.

Num. of
Harvest

Units

Average
Number of

Adjacent Units

120 s Time Limit

Pairwise TAM RAM RTAM

SD CV SD CV SD CV SD CV

100

0.5 0.000 13.74 0.001 22.69 0.001 20.47 0.001 17.91
1.0 0.000 8.38 0.001 18.30 0.002 28.97 0.001 14.64
1.5 0.002 34.07 0.002 18.73 0.007 50.42 0.006 45.25
2.0 0.016 82.97 0.032 63.00 0.031 69.78 0.026 51.48
2.5 0.046 70.67 0.045 54.52 0.032 30.33 0.017 21.70
3.0 0.045 33.12 0.273 102.55 0.405 137.81 0.096 61.43
3.5 0.196 55.84 1.246 149.45 2.391 143.35 1.403 117.55
4.0 0.868 111.53 20.973 136.00 3.496 121.94 9.187 154.48
4.5 1.863 54.57 26.337 135.18 42.423 121.64 36.784 100.76
5.0 5.634 64.14 27.493 63.55 57.093 76.00 44.420 65.80

200

0.5 0.001 19.58 0.001 23.36 0.001 22.47 0.001 20.98
1.0 0.000 7.70 0.002 21.36 0.001 10.49 0.005 40.46
1.5 0.007 72.68 0.027 89.44 0.031 74.21 0.027 69.58
2.0 0.081 88.21 0.054 49.04 0.139 68.14 0.056 48.62
2.5 0.109 35.73 0.747 90.11 0.577 91.60 8.176 255.08
3.0 1.719 69.12 8.784 96.88 47.533 562.06 9.554 85.35
3.5 18.903 78.22 44.796 160.59 37.452 72.07 28.349 73.47
4.0 34.588 98.92 - - - - - -
4.5 6.552 13.29 - - - - - -

300

0.5 0.000 7.02 0.001 24.10 0.001 12.28 0.001 14.30
1.0 0.002 30.64 0.002 16.41 0.002 14.51 0.003 17.10
1.5 0.005 41.89 0.013 39.24 0.046 75.31 0.024 48.24
2.0 0.147 105.69 0.127 42.05 0.417 75.40 0.214 60.92
2.5 0.792 72.52 7.864 198.57 36.789 671.39 35.097 310.88
3.0 25.937 85.04 14.713 - - - - -

400

0.5 0.001 10.78 0.001 17.72 0.001 12.40 0.001 10.95
1.0 0.002 20.32 0.003 15.01 0.005 25.23 0.003 14.73
1.5 0.016 64.17 0.049 78.61 0.070 80.37 0.060 60.40
2.0 0.300 80.17 0.818 102.94 1.014 110.74 0.836 88.30
2.5 36.264 140.13 44.675 112.08 19.493 48.87 21.056 45.50
3.0 21.129 40.95 - - - - - -

500

0.5 0.000 5.41 0.002 17.68 0.001 13.63 0.001 10.55
1.0 0.001 5.37 0.006 25.52 0.003 10.29 0.006 23.11
1.5 0.014 39.88 0.047 60.35 0.084 78.09 0.094 92.46
2.0 0.374 57.30 0.584 61.75 2.621 105.95 2.821 160.71
2.5 46.615 90.26 - - 48.235 78.50 - -

Note: If one could not achieve the results by any algorithm (pairwise, TAM, RAM, RTAM), it means all values
were discredited. TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular
adjacency matrix; SD = standard deviation; CV = coefficient of variation.

Only in the case of very simple spatial structures (where the average number of adjacent units
ranges from 0.5 to 2.0 units), all four types of adjacency constraints had the same effect on the solving
time, gap tolerance, and number of solved instances within the time limit (Table 1–10). These very
simple spatial structures can represent forest management areas with very low density of mature
forests stands.

The pairwise adjacency constraints were more successful in solving most instances than other
types of adjacency constraints. Even in the cases when the average time of solving was greater, the
final gap tolerance was lower or the number of solved instances within the time limit was higher. Even
in spite of the really low number of constraints obtained by TAM, RAM and RTAM (Table 13), the
pairwise constraints were more successful in solving these problems in a timely manner.
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Table 13. Resulting number of adjacency constraints obtained by different algorithms for different
types of spatial forest structures.

Number of
Harvest Units

Average Number
of Adjacent Units Pairwise TAM RAM RTAM

100
0.5 49 21 19 19
5.0 496 80 64 64

200
0.5 94 41 37 37
5.0 1012 162 130 128

300
0.5 153 66 57 56
5.0 1484 242 194 195

400
0.5 198 85 76 75
5.0 1981 323 256 256

500
0.5 248 108 98 95
5.0 2476 403 323 322

TAM = triangular adjacency matrix; RAM = row adjacency matrix; RTAM = row triangular adjacency matrix.

4. Discussion

Without adjacency restrictions represented by adjacency constraints in a harvest scheduling
model, a forest manager cannot be sure that the results of such a model are feasible in real management
situations. However, these constraints can dramatically complicate the process of developing a forest
plan [10], especially in the case of small-scale unit restriction models. In our case, the maximum area
of each harvest unit was not to exceed 2 hectares (yet could be 1 hectare in some countries), which
represents a very common planning situation in Central Europe. In other areas of the world, this scale
of problem could be similar to the arrangement and scheduling of group selection harvest patches,
where the patches should not touch within a given time frame in order to maintain the patch size
suggested in the silvicultural system [16]. In either case, the small-scale unit restriction problem is
a microcosm of larger-scale adjacency issues that involve restricting the maximum final harvest size
(e.g., 50 ha) within a given green-up period.

At the beginning of the computer-based spatial harvest scheduling in 1990’s, it was possible to
solve only small scheduling problems (i.e., small number of decision variables and constraints) because
of the limitations of personal computers and solvers. However, increasing computing speeds and
improved commercial solvers enable us to solve larger and larger problems [8]. It is generally known
that the power of computers has been growing exponentially, and solvers have also been dramatically
improved. In connection with this, the use of forest harvest scheduling DSSs has also dramatically
increased. For this reason, researchers should periodically re-analyze different practical and theoretical
aspects of harvest scheduling models. This service to society allows knowledge of the capabilities of
forest planning systems to grow and to become adapted within forest management organizations.

Few scientific papers have dealt with the effect of reducing the number of adjacency constraints by
different methods (see for example [6,7,17]). The number of adjacency constraints can be significantly
reduced as is confirmed and presented in this paper. This is especially true in the case of large problems
with complex spatial structures. As the number of constraints is reduced within a complex planning
problem, one would hope that the time required to solve the problem would also be reduced. We have
confirmed this hypothesis as well for the problem instances that were examined in this work. Therefore,
our contribution incrementally adds to the body of science associated with applied optimization in
this respect.

One of the first papers dealing with measuring the efficiency of adjacency constraints was
presented by Murray and Church [18]. They tested several different types of adjacency constraints
including pairwise constraints and TAM constraints presented above. The results of their analyses
showed that TAM had the lowest efficiency, which was also confirmed in this paper. Tóth et al. [19]
explored strengthening procedures for improving adjacency formulations of the area restriction forest
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planning problem. These efforts underscore the need to expand science in this area through the
development and analysis of new methods for addressing practical forest management problems. Our
work complements and adds to the growing body of science, yet due to the various types of forest
management problems encountered around the world, by no means represents the final word on the
subject. As the expectations of society evolve, the decision space within which forest managers can
operate changes. Therefore, we expect novel and creative methods for combinatorial problems will
continue to be assessed in association with efforts aimed at sustainable forest management.

The solving time and the final gap tolerance were also analyzed by McDill and Braze [10]. The
authors randomly generated hypothetical forests of four different age structures. They tested three
types of adjacency constraints: pairwise constraints, Type I constraints (encompassing several methods
leading to the same results and proposed by many authors) and NOAM constraints based on the
adjacency matrix proposed by Murray and Church [20]. The authors achieved the best results with
Type I constraints. This fact could not be confirmed or confuted by the results presented here, although
the algorithm based on the adjacency matrix had longer solution time as was presented before in the
Results section. This means that adjacency matrix algorithms do not have to be an optimal approach
for defining the adjacency relationships. On the other hand, the authors used another solver (CPLEX®

(Armonk, NY, USA)) and also a different type of computer, of which the latter is already outdated. It is
questionable if the results would be the same with currently used computers and software.

The solving time of harvest scheduling models is dependent not only on the inherent spatial
forest structure, but also on the number of planning periods, the length of each period, other types
of constraints related to the planning problem (e.g., a type of harvest flow constraints), the computer
employed, the software employed and its settings [21]. The input age structure can affect the model
complexity [9]. The evaluation of the effects of all these aspects was not the aim of this study. We
focused on the types of adjacency constraints, which are used in the DSS called Optimal [22,23]. Other
mentioned aspects should be analyzed individually in more detail.

As we stated before, one aspect of different types of adjacency constraints that has not been
studied yet, though it has an impact on real-life scheduling situations, is their consumption of computer
random-access memory. The consumption of memory can limit using DSSs aimed at spatial harvest
scheduling, for instance Optimal or Heureka [24]. In these cases, adjacency constraints can be created
directly from a database, in which the spatial information is saved in the form of pairwise adjacency
constraints. However, all spatial information must be uploaded to the computer memory at first, and
kept in the memory during the algebraic process when using the presented analytical algorithms.
Therefore, the amount of memory used to manage the data may take away memory available to
a solver in developing a forest plan. This may have varying effects on the ability and time required
to solve a problem, and likely depends on the data, computer, and software at the disposal of the
forest planner.

Following the assumptions we stated in the Introduction, we can confirm that the number of
harvest units affects the solving time of model instances, although the number of adjacent units has
a greater effect. On the basis of the presented results, we can recommend using the pairwise type of
adjacency constraints for solving unit restriction harvest scheduling models.

5. Conclusions

We presented an analysis of four different types of adjacency constraints used for solving unit
restriction harvest scheduling models. The first type was a traditional type of pairwise constraints,
while the other three types were adjacency constraints defined by three different analytical algorithms.
These algorithms were developed to reduce the total number of adjacency constraints, which can be
much greater in comparison to pairwise constraints. However, the reduction of constraints can decrease
the efficiency of branch and bound based algorithms, regardless of the demand for the greater computer
random-access memory consumption. As was shown, the reduction of constraints may no longer
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be needed, because today’s solvers are not limited by the number of constraints and the traditional
pairwise adjacency constraints are more effective for solving spatial harvest scheduling models.
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NOAM New Ordinary Adjacency Matrix
DSS Decision Support System

References

1. Dykstra, D.P. Mathematical Programming for Natural Resource Management; McGraw-Hill Book Company Inc.:
New York, NY, USA, 1984.

2. Baskent, E.Z.; Keles, S. Spatial forest planning: A review. Ecol. Model 2005, 188, 145–173. [CrossRef]
3. Kurtilla, M. The spatial structure of forests in the optimization calculations forest planning—A landscape

ecological perspective. For. Ecol. Manag. 2001, 142, 129–142. [CrossRef]
4. Murray, A.T. Spatial restrictions in harvest-scheduling. For. Sci. 1999, 45, 45–52.
5. Jamnick, M.S.; Walters, K.R. Spatial and temporal allocation of stratum-based harvest schedules. Can. J.

For. Res. 1993, 23, 402–413. [CrossRef]
6. Yoshimoto, A.; Brodie, J.D. Comparative analysis of algorithms to generate adjacency constraints. Can. J.

For. Res. 1994, 24, 1277–1288. [CrossRef]
7. Torres-Rojo, J.M.; Brodie, J.D. Adjacency constraints in harvest scheduling: An aggregation heuristic. Can. J.

For. Res. 1990, 20, 978–986. [CrossRef]
8. Crowe, K.; Nelson, J.; Boyland, M. Solving the area-restricted harvest-scheduling model using the branch

and bound algorithm. Can. J. For. Res. 2003, 33, 1804–1814. [CrossRef]
9. McDill, M.E.; Braze, J. Comparing adjacency constraint formulations for randomly generated forest planning

problems with four age-class distributions. For. Sci. 2000, 46, 423–436.
10. McDill, M.E.; Braze, J. Using the branch and bound algorithm to solve forest planning problems with

adjacency constraints. For. Sci. 2000, 47, 403–418.
11. Bondy, J.A.; Murty, U.S.R. Graduate Texts in Mathematics; Springer-Verlag Heidelberg: New York, NY,

USA, 2000.
12. Diestel, R. Graph Theory, 3rd ed.; Springer-Verlag Heidelberg: New York, NY, USA, 2005.
13. Benjamin, A.; Chartrand, G.; Zhang, P. The Fascinating World of Graph Theory; Princeton University Press:

Princeton, NJ, USA, 2015.
14. Mehlhorn, K.; Sanders, P. Algorithms and Data Structure—The Basic Toolbox; Springer-Verlag: Berlin/

Heidelberg, Germany, 2008.
15. Gurobi Optimizer Reference Manual 6.5. Available online: http://www.gurobi.com/documentation/6.5/

refman/java_api_overview.html#sec:Java (accessed on 1 December 2015).
16. Bettinger, P.; Johnson, D.L.; Johnson, K.N. Spatial forest plan development with ecological and economic

goals. Ecol. Model 2003, 169, 215–236. [CrossRef]

http://dx.doi.org/10.1016/j.ecolmodel.2005.01.059
http://dx.doi.org/10.1016/S0378-1127(00)00343-1
http://dx.doi.org/10.1139/x93-058
http://dx.doi.org/10.1139/x94-167
http://dx.doi.org/10.1139/x90-131
http://dx.doi.org/10.1139/x03-101
http://www.gurobi.com/documentation/6.5/refman/java_api_overview.html#sec:Java
http://www.gurobi.com/documentation/6.5/refman/java_api_overview.html#sec:Java
http://dx.doi.org/10.1016/S0304-3800(03)00271-0


Forests 2016, 7, 102 14 of 14

17. Hoganson, H.M.; Borges, J.G. Using dynamic programming and overlapping subproblems to address
adjacency in large harvest scheduling problems. For. Sci. 1998, 44, 526–538.

18. Murray, A.T.; Church, R.L. Measuring the efficacy of adjacency constraint structure in forest planning models.
Can. J. For. Res. 1995, 25, 1416–1424. [CrossRef]

19. Tóth, S.F.; McDill, M.E.; Könnyű, N.; George, S. A strengthening procedure for the path formulation of the
area-based adjacency problem in harvest scheduling models. Math. Comput. For. Nat. Res. Sci. 2012, 4, 27–49.

20. Murray, A.T.; Church, R.L. Constructing and selecting adjacency constraints. INFOR 1996, 34, 232–248.
21. Snyder, S.; ReVelle, C. Dynamic selection of harvest units with adjacency restrictions: The SHARe model.

For. Sci. 1997, 43, 213–222.
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