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Abstract: In temperate agricultural watersheds, the rehabilitation of tree vegetation in degraded
riparian zones can provide many ecosystem services. This study evaluated ecosystem service
provision potential following the conversion of non-managed herbaceous buffers to hybrid poplar
(Populus spp.) buffers in three watersheds (555–771 km2) of southern Québec (Canada), with
contrasting agricultural land uses. To extrapolate services at the watershed level, total stream length
where hybrid poplars could be established was calculated using GIS data from hydrological and land
cover maps. After nine years, a 100% replacement of herbaceous buffers by hybrid poplar buffers
along farm streams could lead to the production of 5280–76,151 tons of whole tree (stems + branches)
biomass, which could heat 0.5–6.5 ha of greenhouses for nine years, with the potential of displacing
2–29 million litres of fuel oil. Alternatively, the production of 3887–56,135 tons of stem biomass
(fuelwood) could heat 55–794 new farmhouses or 40–577 old farmhouses for nine years. Producing
fuelwood in buffers rather than in farm woodlots could create forest conservation opportunities on
300–4553 ha. Replacing all herbaceous buffers by poplar buffers could provide potential storage of
2984–42,132 t C, 29–442 t N and 3–56 t P in plant biomass, if woody biomass is not harvested. The
greatest potential for services provision was in the Pike River watershed where agriculture is the
dominant land use. A review of the potential services of poplar buffers is made, and guidelines for
managing services and disservices are provided.

Keywords: multifunctional agroforestry; biomass bioenergy; woodlot biodiversity conservation;
carbon, nitrogen and phosphorus storage; fossil fuel displacement; non-point source pollution;
stream network; heating value and efficiency; novel ecosystems; Magog, Eaton and Pike Rivers

1. Introduction

Despite the relatively small land area they occupy in watersheds, riparian zones have a
disproportionate influence on water, solutes and energy fluxes between terrestrial and aquatic
environments, making these ecotones biogeochemical hotspots at the landscape level [1–3]. The
role of riparian zones as buffers for the mitigation of diverse stream pollutants (nitrogen (N),
phosphorus (P), pesticides, harmful bacteria and sediments) generated by agricultural activities
has been increasingly acknowledged over the last three decades [4–9]. Riparian ecotones are also
keystone landscape elements for aquatic, wetland and terrestrial biodiversity, because they possess
distinctive characteristics, such as broad hydrological gradients, frequent disturbances (flood/drought
cycles, storm flow, streambank failure) and a generally high level of soil fertility [10]. Thus, the use
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of riparian buffers for biodiversity enhancement or protection is another important conservation
practice in agricultural landscapes. A large body of evidence suggests that riparian forest buffers
strongly influence aquatic habitat quality, as they contribute to stream channel formation, bank stability,
instream habitat creation, and water temperature regulation [11]. The value for conservation of forested
buffers on farmland has also been well established for native plant communities, small mammals,
birds, reptiles and amphibians [12–14].

In temperate ecosystems, streamside forests were historically the main interface between upland
areas and the aquatic environment. However, many farm streams have completely lost their forest
cover, as land owners sought to maximise arable land area. Today, several of these streams are only
buffered by a narrow strip of herbaceous vegetation, often dominated by ruderal species and having
little conservation value [15,16]. This loss of forest vegetation along farm streams has had an impact
on ecosystem functions, processes and biodiversity, thereby reducing the quality and diversity of
ecosystem services provided by riparian ecotones and freshwater ecosystems. For example, riparian
deforestation in agricultural areas often results in channel narrowing, which leads to a reduction
in aquatic habitats and in the instream uptake of agricultural pollutants, such as N [17]. Equally,
atmospheric CO2 mitigation through carbon (C) storage in biomass was found to be 25 times lower
in herbaceous dominated riparian zones compared to mature riparian forests of the Coastal plain
ecoregion (United States) [18]. Consequently, promoting the protection of streamside forests and
forest buffer rehabilitation will not only benefit water quality and biodiversity, but global warming
mitigation can also be an outcome, as riparian buffers are increasingly recognised as multifunctional
features of agricultural landscapes [19–21].

Allowing forest to re-grow naturally along deforested farmland streams may contribute to
restoring some ecosystem services related to riparian buffers. However, there is growing evidence
that natural succession along several farm streams has been interrupted, with forest species
regeneration being poor or absent, even after decades following livestock exclusion or protection
from cultivation [15]. Climate change may also put additional pressure on the riparian ecotones of
farmland by increasing the intensity, frequency and duration of natural disturbances, which would
be particularly detrimental to already degraded and stressed riparian ecotones and the streams they
protect [22]. Consequently, in the absence of adequate rehabilitation strategies, farmland streams and
riparian ecotones could be particularly vulnerable to climate change [22].

Many riparian ecotones of agricultural areas have crossed an ecological threshold beyond which
the recovery to historical conditions or functions, through natural processes, seems improbable [15]; a
situation that poses particular challenges, while providing new opportunities for riparian rehabilitation
projects. The interacting effects of natural disturbances, herbivore pressure and human-induced
disturbances or stressors (channel straightening, surface and sub-surface drainage, soil cultivation,
livestock browsing and trampling, pesticide drift, high nutrient inputs) seriously alter hydrological
connectivity, soil biogeochemistry and erosion patterns along riparian zones, which weaken
species-environment relationships and affect spatial patterns of plant biodiversity [4,15,23,24]. The
creation of novel ecosystems in the riparian zones of farmlands for providing ecosystem services
would appear to be a more feasible objective than restoration to historical conditions [25].

One of several possible rehabilitation strategies would be the establishment of multifunctional
riparian agroforestry systems with fast-growing hybrid poplars, which are well adapted to various
riparian environments and other disturbed sites [26–28]. Such systems have the advantage of restoring
a forest cover within a decade, which is beneficial for both animal and plant biodiversity [29–31].
Poplar buffers would also provide the opportunity to produce wood or biomass for heating and create
a new sink for atmospheric CO2 [32–36]. The production of this new woody biomass on farmland could
reduce the harvesting pressure on remaining natural woodlots, thereby providing forest conservation
opportunities [37,38]. Additionally, because they are high nutrient demanding trees [39], poplars
planted in buffers become fast-growing sinks for N and P at the stream/cultivated field interface,
which will contribute to reducing NO3 and P leaching losses from farm fields to streams [35,40].
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Although many studies have focused on ecosystem services provided by poplar buffers at the
farm-scale over the last two decades [27,30–32,35,40–48], none has quantified the potential of this type
of riparian buffer for providing ecosystem services at the watershed scale. Such data are essential,
as they will contribute to driving policy changes regarding the management of riparian buffers in
agricultural landscapes.

The first objective of this study was to evaluate ecosystem service provision related to the
conversion of non-managed herbaceous buffers to hybrid poplar buffers in three watersheds of
southern Québec (Canada), with contrasting agricultural land uses. This evaluation only focuses on
ecosystem services for which precise data are known: (1) wood and biomass production, which could
further be used as residential heat energy or as an alternative to fuel oil for the greenhouse growers
industry; (2) C storage in plant biomass; (3) N and P storage in plant biomass; and (4) indirect forest
conservation value associated to avoided fuelwood harvest in farmland woodlots. The second objective
of this study is to provide an extensive review of the potential ecosystem services and disservices
related to the establishment of poplar riparian buffers in agricultural areas. Recommendations to
optimise potential services, while mitigating potential disservices, are also provided.

2. Materials and Methods

2.1. Watershed Description and Geographic Information for Non-Forested Stream Length on Farmland

To scale up ecosystem service provision at the watershed level, we studied three watersheds
of the southern Québec region (Canada) that represent a gradient in their percentage of agricultural
land use, but also a gradient in soil fertility (crop productivity) and climate/elevation [49,50]:
(1) the Magog River watershed; (2) the Eaton River watershed; and (3) the Pike River (“Rivière aux
Brochets”) watershed (Figure 1). The Magog River and Eaton River watersheds belong to the Estrie
administrative region of Québec and to the Appalachian geological region [49]. In these watersheds,
agricultural activities are concentrated in a few large valleys, although pastures and hayfields (the
dominant agricultural land use) are common on the gentle slopes that characterize the landscape of
the region [49]. The soils of the Magog River and Eaton River watersheds are mainly characterized by
a thick till deposit and both watersheds drain into the Saint-François River, which further drains into
the St. Lawrence River [49]. The Magog River watershed is characterized by a continental subhumid
moderate climate and a growing season of 180 to 190 days [49]. It is also the case for the western part
of the Eaton River watershed, while the eastern part of this watershed (located at higher elevation),
is characterized by a continental subpolar subhumid climate and a growing season ranging from
170 to 180 days [49]. The Pike River watershed is situated in the Montérégie administrative region of
Québec. Geologically, it is located at the transition zone between the St. Lawrence lowlands and the
Appalachians [51]. The topography of the Pike River watershed is nearly flat, the growing season
(190–200 days) is longer than in the Magog River and Eaton River watersheds, and annual row crops
agriculture is a dominant land use [49]. Most of the Pike River watershed is covered by a thick till
surface deposit and its hydrological network drains into Lake Champlain [49]. A continental subhumid
moderate climate characterizes this watershed [49].

Data obtained from watershed organisations (COGESAF and Organisme de bassin versant de la baie
Missisquoi) and the regional offices of the Ministère de l’Agriculture de l’Agroalimentaire et des Pêcheries
du Québec (MAPAQ) were used in determining the watershed boundaries and in the estimation of
the land area covered with annual and perennial crops (including pastures) based on 2014 data.
A summary of the watershed area occupied by annual and perennial crops is presented in Table 1.
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Figure 1. (a) Regional map of the study area indicating important cities in the studied watersheds;
(b–d) Maps of the studied watersheds indicating agricultural and forest land use, and hydrological
network. Elevation (asl) is 85 m at Bedford, 215 m at Magog and 240 m at Cookshire.

Table 1. Watershed area occupied by annual and perennial crops and pastures in 2014 for the three
studied watersheds in Southern Québec.

Watershed Watershed Annual Crops Perennial Crops
and Pastures

Total Cultivated
Area

Area (ha) ha % ha % ha %

Magog River 77,076 681 1 2433 3 3114 4
Eaton River 64,787 2148 3 6403 10 8551 13
Pike River 55,500 17,376 31 8757 16 26,133 47

To extrapolate ecosystem services related to riparian agroforestry systems at the watershed level,
we needed to calculate total stream length where hybrid poplars could potentially be established. We
assumed that all stream reaches that were not bordered by a forest cover and that were located in the
agricultural zone had potential for the implementation of poplar buffers. We also assumed that all
those non-forested stream reaches were currently buffered by non-managed herbaceous buffers, which
is the most widespread conservation practice in agricultural riparian areas across southern Québec [15].
First, forest cover maps (1:20,000) from the study area were obtained from the Ministère des Forêts, de la
Faune et des Parcs (Géoboutique Québec, QC, Canada). These forest cover maps were created with the
software ArcGIS–Arc MAP 10 provided by Esri (New York, NY, USA). Watershed boundaries were
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then delineated using geographic information collected from watershed and agricultural land cover,
and added to these maps. Thereafter, for each watershed, the geomatic tools of ArcGIS were used to
measure the stream length of each perennial and intermittent stream for the entire watershed. The
same was done for the length of streams that were only located in the agricultural land cover and
not bordered by a riparian forest. These stream length data were cumulated for each of the studied
watersheds (Table 2). Determination of perennial and intermittent stream length was based on data
from the Cadre de référence hydrologique du Québec [52], which excludes ephemeral streams, as well as
drainage and road side ditches.

Table 2. Perennial, intermittent and total stream length for the entire watershed and for the agricultural
areas (with no riparian forest cover) of three watersheds of Southern Québec.

Watershed
Perennial stream length Intermittent stream length Total stream length

Watershed
(km)

Agricultural
(km)

Agricultural
(%)

Watershed
(km)

Agricultural
(km)

Agricultural
(%)

Watershed
(km)

Agricultural
(km)

Agricultural
(%)

Magog
River 373 50 13 435 64 15 808 115 14
Eaton
River 469 64 14 610 118 19 1080 183 17

Pike River 238 103 43 551 336 61 790 439 56

2.2. Ecosystem Service Provision Related to Increasing Poplar Riparian Agroforestry

2.2.1. Unit Conversion, Timeframe, Agroforestry Model Implemented and Assumptions Related to
Site Fertility

Our published data on ecosystem service provision related to the conversion of non-managed
herbaceous buffers to hybrid poplar buffers are presented based on a surface area of one hectare [35,42].
The projected poplar agroforestry system that was used for our extrapolations at the watershed level
corresponds exactly to the one that was studied at the site level. The buffer strips we planted and
studied have a width of 4.5 m on each streambank (3 rows of poplars, parallel to the stream, with a
1.5 m spacing between rows and a 3 m spacing between trees within a row), with an initial density of
2222 stems/ha [35,42]. Consequently, one hectare of hybrid poplar buffer corresponds to a 4.5 m wide
buffer that would be established on each streambank along 1.11 km of stream. In other words, a 0.9 ha
agroforestry system could be established on each kilometer of non-forested agricultural stream. All the
ecosystem services extrapolations to the entire watershed will be based on the following calculations:

Watershed ecosystem services “ pEcosystem services{km of streamqˆkm of stream (1)

Calculations were done for the first poplar rotation, with trees assumed to be harvested after 9
years. Additionally, we assumed that site fertility (or productivity) is expected to vary between the
selected watersheds. However, across the same watershed site productivity is assumed to be constant
in terms of hybrid poplar growth, and representative of sites for which we have precise data. This
assumption is based on the fact that soil types and texture vary little within the agricultural areas of
each watershed [51,53,54]. For the Magog River watershed, data collected at the Magog site, a relatively
low fertility site, were used for extrapolation [35,42]. For the Eaton River watershed, data from the
St-Isidore-de-Clifton site, a moderate fertility site, were used for extrapolation [35,42]. For the Pike
River watershed, where row crop agriculture dominates, data from the Brompton site, a high fertility
site, were used for extrapolation [35,42]. Across all studied watersheds, agricultural soils are loams
(varying from sandy loam to clay loam) [51,53,54], which are ideal for hybrid poplar cultivation [55].

2.2.2. Wood and Woody Biomass Production

Stem wood and woody biomass production services refer to the quantity of stem wood volume
(m3) and the dry aboveground woody biomass that could be produced from poplar riparian buffers
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based on previous research results obtained after 9 growing seasons in the study area [42]. Wood
and biomass production data are mean values obtained from three hybrid poplar clones of different
parentages: Populus deltoides ˆ P. nigra (D ˆN-3570), P. maximowiczii ˆ P. balsamifera (M ˆ B-915311)
and P. canadensis ˆ P. maximowiczii (DN ˆM-915508).

2.2.3. Increase in Carbon, Nitrogen and Phosphorus Storage in Plant Biomass

Carbon, N and P storage services are related to the total stocks of C, N and P that are stored in
all biomass components (aboveground, belowground and detrital) of the poplar buffers, minus the
C, N and P stocks stored in the different biomass components of non-managed herbaceous buffers.
The storage increase values associated to poplar buffer agroforestry were taken from our recent study
that was done after 9 growing seasons [35]. Storage increase data are mean values obtained from three
hybrid poplar clones of different parentages (see Section 2.2.2).

We did not consider the potential soil C loss or gain associated with poplar agroforestry because
the literature suggests that afforestation, with trees from the Salicaceae family, does not produce
significant soil C enrichment on a general basis [43,56–61]. However, as part of a land use change
process, hybrid polar afforestation on agricultural land can result in soil C loss, on the short-term, but,
on the mid-term, soil C stocks generally recover to levels prior to afforestation [62].

2.2.4. Energy for Heating Farmhouses

To evaluate the number of farmhouses that could be heated with energy derived from poplar
woody biomass, we need to know the biomass feedstock required to heat a single average-sized house
over 9 years. Based on data from the Canada Mortgage and Housing Corporation [63], the energy required
to heat an average-sized detached house (186 m2 or 2000 square feet) for southern Québec has been
estimated at 110 GJ/year for old houses (built before 1990) and at 80 GJ/year for new houses (built
after 1990). The energy content of hybrid poplar on an oven-dry biomass basis (GJ/t) was adjusted by
the average moisture content of biomass prior to combustion. As suggested by McKenny et al. [64],
we have used Kenney’s Lower Heating Value (LHV) equation [65] to adjust the higher heating value
(HHV) of hybrid poplar wood for energy losses due to moisture removal:

LHV “ HHV´p0.2205ˆ h´p2.45ˆMCq{p1´MCqq (2)

where h represents the hydrogen content and MC the moisture content in the wood prior to combustion.
Based on the review of Sannigrahi et al. [66], we assumed that the HHV of hybrid poplar wood is 19.38
GJ/t, while its hydrogen content is 5.7%. We also assumed that moisture content of hybrid poplar
wood prior to combustion is 20%, which is the upper limit of moisture content recommended for
log burning in wood stoves or furnaces [67]. Based on these assumptions, hybrid poplar LHV was
estimated at 16.79 GJ/t of dry biomass.

Different types of heating systems exist for wood log burning and their energetic efficiency varies
highly (Table 3). As no data is available about the relative proportion of those different heating systems
across farmhouses of southern Québec, we used the mean efficiency value estimated in Table 3 (60.6%).
The dry biomass required to heat one average-sized house in southern Québec during a single year
was calculated as follows:

Biomass “ Heating energy requirement{pBiomass LHVˆHeating system efficiencyq
For new houses : p80 GJ{house{yearq{p16.79 GJ{tˆ 0.606 q “ 7.86 t{house{year

For old houses : p110 GJ{house{yearq{p16.79 GJ{tˆ 0.606 q “ 10.81 t{house{year
(3)

Therefore, the usable energy in hybrid poplar biomass is approximately 10.18 GJ/t. Based on
these calculations, a single new detached house would require about 70.7 tons of dry biomass over
a 9-year period to satisfy its energy needs for heating, while an old detached house of the same size
would require 97.3 tons. For the biomass supply of residential heating systems, only stem wood from
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hybrid poplar buffers was considered (no branch biomass), as farmhouse owners would likely harvest
and burn wood logs and not wood chips. This is because around 90% of woodlot owners in southern
Québec harvest wood strictly manually with the use of a chain-saw [68], suggesting that very few of
these owners have the equipment required to produce wood chips following a whole-tree harvest.

Table 3. Efficiency of different common types of residential heating systems that use wood logs as a
feedstock [63,69]. Advanced furnaces/boilers and advanced stoves refers to appliances certified as
low-emissions by the EPA or according to the CSA B415.1 standards.

Wood Heating System Lower Efficiency (%) Upper Efficiency (%) Mean Efficiency (%)

Furnaces/boilers 45 55 50
Advanced furnaces/boilers 55 65 60

Conventional stoves 50 65 57.5
Advanced stoves 65 85 75

All systems 60.6

Because heating system efficiency and LHV are proportionally related to the hybrid poplar
biomass requirement of an average-sized house (Equation (3)), a sensitivity analysis was conducted to
determine how changes in those parameters could impact the number of farmhouses heated with a
fixed quantity of poplar biomass. The sensitivity analysis was conducted for heating system efficiency
values ranging from 40% to 90%. The upper efficiency value would be representative of less common
appliances, such as masonry heaters, which have an efficiency of up to 90% [70], while the lower
efficiency value (40%) would be representative of a poorly located conventional wood stove. LHV
ranging 10–18 GJ/t have been selected because HHV of poplar species found in natural ecosystems
and plantations range 13.50–19.38 GJ/t [66].

2.2.5. Energy for Heating Greenhouses and Potential for Fossil Fuel Displacement

Woody biomass can be an interesting energy source to displace fossil fuel in the greenhouse
growers industry of southern Canada [64]. Based on data provided by the Syndicat des producteurs
en serre du Québec [71], the dry woody biomass feedstock required to heat one hectare of greenhouse
would be approximately 1295 t/year. In the province of Québec, most greenhouses use fuel oil for
heating (R. Fortier, Industries Harnois, personal communication), with an average consumption
estimated at 500,000 L/ha/year [71]. Consequently, over 9 years, a total of 11,655 tons of dry
woody biomass would be required to heat one hectare of greenhouses, which could contribute to
the displacement of 4.5 million litres of fuel oil. As wood chips derived from short-rotation woody
crops is a desirable feedstock for biomass boiler heating systems in the greenhouse industry [64], a
whole-tree (stems + branches) harvest scenario in poplar buffers is assumed. Such a harvest scenario
would also maximise nutrient exportation from agricultural riparian zones because branch biomass
is the second-most important N and P storage pool in hybrid poplar buffers during the dormant
season [35].

2.2.6. Forest Conservation Opportunities

Producing fuelwood biomass (wood logs) in hybrid poplar buffers could reduce the need
to harvest fuelwood in farm woodlots, which could indirectly create opportunities for forest
conservation [38]. Because fuelwood harvest is the dominant form of production activity in private
forests of the studied areas [72], such an opportunity for conservation could easily be implemented. In
the Estrie region (Magog River and Eaton River watersheds), 88% of private forest owners harvest
fuelwood, compared to 81% in the Montérégie region (Pike River watershed) [68]. Consequently, to
determine potential woodlot area that could be set aside for conservation following the replacement of
forest derived fuelwood by hybrid poplar fuelwood produced in riparian buffers, we need to quantify
the fuelwood biomass productivity of privately owned natural forests in the studied watersheds,
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and compare it to hybrid poplar buffer productivity. The forest biomass productivity was only
calculated for merchantable stem wood biomass (10 cm diameter at the small end), because tree tops
and branches are assumed to remain non-harvested given the growing uncertainty related to forest
residue harvesting and the future sustainability of site fertility in natural ecosystems [73]. As already
mentioned, landowners would mainly use a chain-saw to harvest fuelwood in their woodlot or riparian
buffer, limiting their capacity to use branch biomass as a bioenergy feedstock.

In the Montérégie region, which contains the Pike River watershed, the mean annual productivity
(merchantable wood only) of privately owned forests has been recently estimated at 2.86 m3/ha/
year [74], while for the Estrie region (Magog River and Eaton River watersheds), the mean productivity
of privately owned forests has been estimated at 3.20 m3/ha/year [75].

For proper comparisons between poplar buffer fuelwood productivity and natural forest fuelwood
productivity, we needed to convert data from natural forest productivity to a dry biomass basis, because
hybrid poplar wood has a much lower specific gravity than most native tree species found in southern
Québec [76,77], but similar energy content per mass unit compared to other woody species [66]. To
make such a stem volume to stem biomass conversion, we calculated a volume to biomass conversion
factor, using a weighted arithmetic mean of specific gravity, which was based on specific gravity
of the different species (or species group) [77] and their relative abundance in terms of standing
volume obtained from regional forest inventory data [74,75]. Details of calculations are presented
in the Supplementary Files (Table S1) and volume to biomass conversion factors, in terms of mean
specific gravity, are presented in Table 4. In this study, the term “specific gravity” refers to the green
specific gravity, based on the botanical standard of the oven-dry weight of the stem divided by its
green volume (stem volume of a freshly cut tree) [78].

Table 4. Productivity, in terms of allowable cut (m3/ha/year), of natural privately owned forest in the
study area and for the three studied watersheds [74,75], and its conversion into stem wood biomass
productivity (t/ha/year). The assumed stem wood biomass productivity of hybrid poplar buffers is
also indicated (based on data from Fortier et al. [42]).

Region Watershed
Forest Volume

Yield
(m3/ha/year)

Mean Green
Specific Gravity

(t/m3)

Natural Forest
Stem Wood

Biomass Yield
(t/ha/year)

Hybrid Poplar
Stem Wood

Biomass Yield
(t/ha/year)

Estrie
Magog River 3.20 0.45 1.44 4.2
Eaton River 3.20 0.45 1.44 9.8

Montérégie Pike River 2.86 0.48 1.37 15.8

2.3. Riparian Agroforestry Scenarios

We examined three riparian agroforestry scenarios related to the replacement of herbaceous
buffers by multi-clonal hybrid poplar buffers along (1) 100%; (2) 25%; and (3) 10% of stream length
located in agricultural areas of the studied watersheds. The 100% scenario provides an estimate of
the full potential of poplar riparian agroforestry to provide ecosystem services at the watershed scale,
while the two other scenarios represent more probable levels of adoption of a best management practice
by farm owners (10% for low adoption; 25% for moderate adoption). An overview of the different
assumptions made for ecosystem services calculation is provided in Table 5.

Table 5. Overview of assumptions made for the extrapolation of ecosystem services provided by hybrid
poplar buffers at the watershed scale.

Parameters and Conditions Assumptions

General
Vegetation cover in non-forested agricultural riparian buffers Non-managed herbaceous vegetation
Available land for tree buffer establishment Along all non-forested perennial and intermittent stream sections

located in agricultural areas
Time frame 9 years after hybrid poplar buffer establishment
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Table 5. Cont.

Parameters and Conditions Assumptions

Riparian agroforestry system implemented
Multi-clonal hybrid poplar buffer 3 poplar clones with different parentages (Dˆ N, DNˆM, Mˆ B)
Buffer width 4.5 m on each streambank (3 three rows wide, 1.5 m spacing

between rows)
Tree density 2222 stems/ha
Rotation length 9 years
Harvest type Clear-cutting

Wood and biomass production
Hybrid poplar productivity in riparian buffers Remains constant across each watershed, but varies between

watersheds
Whole tree biomass yield (stems + branches) 5.7–21.4 t/ha/year (depending on the watershed)
Stem wood biomass yield 4.2–15.8 t/ha/year (depending on the watershed)

C, N and P storage
Biomass C, N and P storage C, N and P stocks in all biomass components of poplar buffers

minus C, N and P stocks in all biomass components of non-managed
herbaceous buffers

Soil C storage No change related to poplar buffer establishment

Energy for heating farmhouses
Average size of houses 186 m2 (2000 ft2)

Heating energy requirements 110 GJ/house/year for houses built before 1990 (Old houses)
80 GJ/house/year for houses built after 1990 (New houses)

Heating system efficiency 60.6%
Type of biomass Hybrid poplar wood logs (stem biomass only)
Hybrid poplar lower heating value 16.79 GJ/t
Moisture content of poplar wood 20%

Energy for heating greenhouses and fossil fuel displacement
Biomass requirement for heating GH 1295 t/ha/year (dry)
Type of biomass Wood chips from hybrid poplar (stem + branch biomass)
Fuel oil requirements 500 000 l/ha of GH/year

Forest conservation opportunities
Type of biomass harvested in farm woodlots Stem wood (wood logs)
Stem wood biomass yield of natural private forestland 1.37-1.44 t/ha/year (depending on the watershed)
Characteristics of biomass harvested in farm woodlots Same energy and moisture content as hybrid poplar biomass

3. Results and Discussion

3.1. Potential for Hybrid Poplar Riparian Buffers to Provide Ecosystem Services at the Watershed Scale

For the three studied watersheds, the potential for ecosystem service provision varies greatly for
each km of stream where hybrid poplar buffers could replace non-managed herbaceous buffers
(Table 6). This trend is related to the assumed difference in agricultural riparian zone fertility
(productivity) that likely exists between the three watersheds. For each stream km where poplar
buffers would be implemented, greater ecosystem service provision potential is expected in the Pike
River watershed, where annual row crops are the dominant form of agriculture (Table 1), followed by
the Eaton River and Magog River watersheds, where perennial crops and pasture are the dominant
forms of agriculture (Table 4).

While ecosystem services per stream km are expected to be higher in the Pike River watershed
(Table 6), this watershed has also the greatest proportion and length of streams bordered by agricultural
land use, with 439 km of streams, representing 56% of total stream length for the entire watershed
(Table 2). This situation strongly contrasts with the Magog River and Eaton River watersheds, where
115 km and 183 km of streams are bordered by agricultural land use, which respectively represent
14% and 17% of total stream length in these watersheds. Consequently, despite its smaller size in
terms of watershed area (Table 1), there is a much greater ecosystem service provision potential in the
Pike River watershed nine years following the replacement of herbaceous buffers by hybrid poplar
buffers (Table 7).
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Table 6. Potential ecosystem service provision after 9 years following the replacement of non-managed herbaceous buffers by hybrid poplar buffers along 1 km of
stream in three watersheds with contrasted soil fertility. The biomass produced along streams could be used to heat farmhouses instead of fuelwood harvested in
natural woodlots, allowing an opportunity for conservation. Alternatively, poplar biomass could be used to heat greenhouses and contribute to displace fossil fuel use.

Watershed (Paired
Site/Fertility Class) 1

Buffer
Area

(ha/km)

Wood
Volume

(m3/km) 2

Biomass (t/km) 2 Biomass Storage Increase Home Heating
(Houses/km) 3,4 Greenhouse 3,4

Woody Stem C (t/km) N (t/km) P (t/km) New Old Heating
(ha/km)

Fuel Oil
Displaced

(L/km)

Forest
Conservation

(ha/km)

Magog River (Magog/low) 0.9 104 46 34 26.1 0.26 0.03 0.48 0.35 0.004 17,795 2.6
Eaton River

(St-Isidore/moderate) 0.9 249 108 80 56.6 0.57 0.05 1.12 0.82 0.009 41,600 6.1

Pike River
(Brompton/high) 0.9 405 173 128 96.0 1.01 0.13 1.81 1.31 0.015 66,985 10.4

1. For paired site descriptions and data see Fortier et al. [35,42]; 2. Wood volume and biomass production services are mutually exclusive; 3. Heating energy for houses and heating
energy for greenhouses are mutually exclusive; 4. The number of farmhouses or the area of greenhouses heated have been calculated based on the heating energy requirement over a
total of 9 years (see Sections 2.2.4 and 2.2.5).

Table 7. Potential ecosystem service provision after 9 years following the replacement of 100%, 25% or 10% of non-managed herbaceous buffers by hybrid poplar
buffers along perennial and intermittent streams of the three studied watersheds.

Buffer
Scenarios

Watershed and
Stream Type

Stream
Length

(km)

Buffer
Area (ha)

Wood
Volume

(m3)

Woody Biomass (t) Biomass Storage Increase Houses Heated 1 Greenhouses 1

Whole
Tree

Stem
Wood C (t) N (t) P(t) New Old

Heat
Energy

(ha GH)

Fuel Oil
Displaced

(L)

Forest
Conservation

(ha)

100% Perennial
Magog River 50 45 5221 2312 1702 1307 13 1.3 24 18 0.20 892,761 131
Eaton River 64 58 15,998 6923 5112 3636 36 3.0 72 53 0.59 2,672,804 394
Pike River 103 93 41,720 17,890 13,188 9898 104 13.1 186 136 1.54 6,907,519 1070
Intermittent

Magog River 64 58 6701 2968 2185 1677 16 1.7 31 22 0.25 1,145,802 169
Eaton River 118 106 29,453 12,745 9411 6694 67 5.5 133 97 1.09 4,920,871 726
Pike River 336 302 135,862 58,260 42,947 32,233 338 42.5 607 442 5.00 22,494,317 3483
All streams

Magog River 115 103 11,921 5280 3887 2984 29 3.0 55 40 0.45 2,038,563 300
Eaton River 183 164 45 ,451 19,668 14,523 10,330 103 8.6 205 149 1.69 7,593,675 1121
Pike River 439 395 177,582 76,151 56,135 42,132 442 55.6 794 577 6.53 29,401,836 4553
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Table 7. Cont.

Buffer
Scenarios

Watershed and
Stream Type

Stream
Length

(km)

Buffer
Area (ha)

Wood
Volume

(m3)

Woody Biomass (t) Biomass Storage Increase Houses Heated 1 Greenhouses 1

Whole
Tree

Stem
Wood C (t) N (t) P(t) New Old

Heat
Energy

(ha GH)

Fuel Oil
Displaced

(L)

Forest
Conservation

(ha)

25% Perennial
Magog River 13 11.3 1305 578 426 327 3.2 0.3 6 4 0.05 223,190 33
Eaton River 16 14.5 3999 1731 1278 909 9.1 0.8 18 13 0.15 668,201 99
Pike River 26 23.2 10,430 4473 3297 2475 26.0 3.3 47 34 0.38 1,726,880 267
Intermittent

Magog River 16 14.5 1675 742 546 419 4.1 0.4 8 6 0.06 286,450 42
Eaton River 30 26.6 7363 3186 2353 1674 16.7 1.4 33 24 0.27 1,230,218 182
Pike River 84 75.6 33,965 14565 10,737 8058 84.6 10.6 152 110 1.25 5,623,579 871
All streams

Magog River 29 25.8 2980 1320 972 746 7 0.8 14 10 0.11 509,641 75
Eaton River 46 41.1 11,363 4917 3631 2582 26 2.1 51 37 0.42 1,898,419 280
Pike River 110 98.8 44,395 19,038 14,034 10,533 111 13.9 198 144 1.63 7,350,459 1138

10% Perennial
Magog River 5 4.5 522 231 170 131 1.3 0.13 2.4 1.8 0.02 89,276 13
Eaton River 6 5.8 1600 692 511 364 3.6 0.30 7.2 5.3 0.06 267,280 39
Pike River 10 9.3 4172 1789 1319 990 10.4 1.31 18.6 13.6 0.15 690,752 107
Intermittent

Magog River 6 5.8 670 297 218 168 1.6 0.17 3.1 2.2 0.03 114,580 17
Eaton River 12 10.6 2945 1275 941 669 6.7 0.55 13.3 9.7 0.11 492,087 73
Pike River 34 30.2 13,586 5826 4295 3223 33.8 4.25 60.7 44.2 0.50 2,249,432 348
All streams

Magog River 11 10.3 1192 528 389 298 2.9 0.30 5.5 4.0 0.05 203,856 30
Eaton River 18 16.4 4545 1967 1452 1033 10.3 0.86 20.5 14.9 0.17 759,368 112
Pike River 44 39.5 17,758 7615 5613 4213 44.2 5.56 79.4 57.7 0.65 2,940,184 455

1. The number of farmhouses or the area of greenhouses heated have been calculated based on the heating energy requirement over a total of 9 years (see Sections 2.2.4 and 2.2.5).
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Over nine years, replacing all herbaceous buffers by hybrid poplar buffers along both perennial
and intermittent streams (100% replacement scenario) would increase timber (or woody biomass)
production by 11,921 m3 (3887–5280 t), 45,541 m3 (14,523–19,668 t) and 177,582 m3 (56,135–76,151 t)
in the Magog River, Eaton River and Pike River watersheds respectively (Table 7). Because replacing
non-managed herbaceous buffers by hybrid poplar buffers leads to significant gains in C, N and P
storage in vegetation biomass [35], increases in C and nutrient storage potential could reach 2984 t C,
29 t N and 3.0 t P in the Magog River watershed, 10,330 t C, 103 t N and 8.6 t P in the Eaton River
watershed, and up to 42,132 t C, 442 t N and 55.6 t P in the Pike River Watershed, under the 100%
replacement scenario (Table 7). This increase in C storage in the Pike River watershed over nine
years (42,132 t C) is approximately equivalent to the gas emissions of 32,500 average-sized passenger
vehicles during one year (each travelling 18,000 km/year) [79]. In the Pike River watershed, P losses
from agricultural land have been estimated at 0.39 kg/ha/year for hayfields and pastures, and at
2.48 kg/ha/year for corn (Zea mays) fields (or 3.51 kg/ha and 22.3 kg/ha over nine years) [80]. Thus,
an increase in biomass P storage of 55.6 t associated to poplar buffer implementation would be
equivalent to P losses from 15,800 ha of hayfield or pasture, or from 2500 ha of cornfields over 9 years.
Nitrogen losses from agricultural land have been established at 27 kg N/ha/year or 243 kg N/ha over
9 years in the nearby Beaurivage watershed (40% annual row crops, 60% pasture/hayfield) in southern
Québec [81]. Based on these values, increasing N storage by 442 t N with poplar buffers in the Pike
River watershed would be equivalent to the N losses from 1800 ha of cultivated land over nine years.

The large-scale implementation of tree riparian buffers would be an excellent contribution to
improving water quality and to rehabilitating stream habitats in southern Québec. All watersheds
from this region have a high to very high conservation priority because they support diverse fish
communities and very productive aquatic ecosystems, while being threatened by high levels of
anthropogenic stressors [82]. Environmental problems related to cyanobacterial blooms are of special
concern in the Pike River watershed and in its receiving water body, the Missisquoi Bay of Lake
Champlain. Phosphorus enrichment in this bay is a major factor contributing to cyanobacteria
proliferation; a factor mostly related to agricultural activities in the watershed [83]. More than a
decade ago, cyanobacterial blooms and elevated cyanotoxin concentrations in the water led to public
health warnings for swimming and for fish and water consumption from the lake, resulting in beach
closings, but also in the desertion of local campgrounds and commercial sites [84]. In summer 2015,
cyanobacterial blooms in Missisquoi Bay still made the headlines of national news [85], suggesting that
issues of water pollution by excess nutrient inputs from cultivated land have not yet been resolved.

However, increasing nutrient storage in the vegetation biomass of poplar buffers may only
have a partial effect on P exports from the Pike River watershed, as 82% of annual P discharges
occur outside of the growing season, during spring snowmelt and spring or autumn rainfall events
on bare agricultural soils [83]. For agricultural non-point source pollution control, additional best
management practices should be used to complement riparian buffer establishment. These could
include building up soil health (no tillage or reduced tillage, crop rotation), in-field water control
(upland filter strips, controlled drainage), and below-field water control (constructed wetlands) [86].
A strategy which aims at establishing efficient riparian buffers for water quality protection should
also consider variable width buffers and priority areas for placement, based on adjacent farmland
cropping system, slope, soil type, pollutant to be trapped/transformed, and hydrological connectivity
(concentrated flow path) between fields and streams [87–89] (Figure 2). Although fixed-width buffers
are administratively simpler to manage [90], they may have limited non-point source pollution control
capacity in agricultural landscapes with non-uniform topographical features and/or cropping systems.
To assist land planners in the establishment of more efficient water quality buffers on farmland with
non-uniform runoff patterns, a GIS-based tool using a digital elevation model has recently been
developed (the AgBufferBuilder) [91].

Establishing buffers on smaller (low order) and intermittent streams is very important, as
headwater streams comprise more than 85% of the total length of stream networks, thus collecting
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most of the water and dissolved nutrients from adjacent terrestrial ecosystems [92]. In all studied
watersheds, intermittent farm streams without a forest cover accounted for more stream length than
perennial farm streams without a forest cover (Table 2), suggesting that these intermittent streams
are major recipients of nutrient, pesticide and sediment pollution. Although not considered in this
study, it would be very useful to map ephemeral streams, road side ditches, swales and surface field
drainage ditches in agricultural watersheds, as they are key hydrological features that should also be
considered for riparian buffer establishment [93].
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Figure 2. Examples of concentrated flow paths in hybrid poplar buffers established along a crop field
(left) and along a pasture (right) riparian zone in southern Québec. In these hot spots for sediment
and nutrient transport, wider buffers and additional conservation practices (ex: stiff-stemmed filter
strip, ephemeral stream fencing) would be needed to allow surface runoff dispersion/infiltration and
improve the water quality function [20].

From an energetic perspective, the use of riparian buffers to produce biomass for bioenergy could
be a significant contribution to the energyscape (sensu Howard et al. [94]) of southern Québec. Planting
hybrid poplars along the 439 km of farm streams in the Pike River watershed could provide 76,151 tons
of whole-tree biomass (stems + branches) in less than a decade (Table 7). This biomass could be chipped
and used to heat 6.5 ha of greenhouses during nine years, which could displace 29.4 million litres of
non-renewable fuel oil. Alternatively, the stem wood biomass produced (56,135 t) could be transformed
into fuelwood that could be used locally to heat between 577 and 794 average-sized farmhouses for
nine years (Table 7).

A major indirect contribution to forest conservation at the watershed scale could also be achieved
if fuelwood production in poplar buffers could replace fuelwood harvested in farm woodlots [38]. This
is because the stem wood biomass productivity of poplar buffers is about 3 to 12 times greater than
natural forest productivity in the studied watersheds (Table 4). Such differences in biomass productivity
between upland forests and poplar riparian buffers are most likely related to greater availability of
resources in linear agricultural riparian buffers (high nutrient, water and light availability), and the



Forests 2016, 7, 37 14 of 40

particularly high resource uptake rate and growth rate of hybrid poplars compared to native forest
tree species [39,95]. Consequently, producing poplar fuelwood along 439 km of streams in the Pike
River watershed, which represents a poplar buffer area of 395 ha, would be enough to compensate
the fuelwood production loss associated with the conservation of 4553 ha of farm woodlots (Table 7).
This indirect potential contribution to forest conservation would be significant, as approximately
20,000 ha of forests are found in the Pike River watershed [51]. Furthermore, a watershed scale
implementation of poplar riparian buffers would rapidly increase forest connectivity at the landscape
level, especially in the north-eastern part of the Pike River watershed, where many isolated forest
fragments of various sizes are interconnected along the hydrological network (Figure 1). Many of
these forest fragments could be simply reconnected together by establishing tree corridors along
both intermittent and perennial streams. Additionally, positive effects of poplar buffers on terrestrial
biodiversity will likely be greater in the Pike River watershed because it has the lowest forest cover
and the highest proportion of intensive agricultural land use (Figure 1, Table 1). This is because
local allocation of habitat is far more important in oversimplified landscapes dominated by intensive
agriculture than in more complex landscapes with a higher proportion of forest cover [96]. Lastly, the
indirect forest conservation opportunities created by large scale poplar buffer plantings would also
create indirect C storage opportunities, as protected forests would have the chance to grow older, a
process strongly linked with soil and biomass C accumulation in forest ecosystems [97,98].

At a projected width of 4.5 m (3 poplar rows), poplar riparian buffers cannot provide an
optimal level of ecosystem services, and certainly not natural conditions typical of undisturbed
riparian zones. Much wider riparian buffers will be needed to provide an optimal level of ecosystem
services [6,9,11,16,99]. However, wide buffers may be hard to implement watershed-wide, especially
where intensive agriculture dominates, as a major disservice of tree buffer establishment is the loss
of agricultural land. In the province of Québec, the current legislation allows land cultivation or
livestock pasturing near streams, providing that a narrow vegetation buffer of 3 m be maintained [100].
Consequently, increasing buffer width at 4.5 m, would require that a 1.5 m wide strip of agricultural
land be converted into tree buffers along farm streams. In terms of area, planting 4.5 m wide poplar
buffers along all non-forested farm streams would lead to an agricultural land loss of 34 ha in the Magog
River watershed, of 55 ha in the Eaton River watershed, and of 132 ha in the Pike River watershed,
representing between 0.5 and 1.1 % of total cultivated land depending on the watershed (Table 8). Due
to the very high agricultural land value in the Pike River watershed ($22,624/ha in 2014) [101], the
land value of 132 ha of agricultural land is approximately $3 million (Table 8). In this same watershed,
increasing buffer width to 10 m, as recommended by the provincial Politique de protection des rives, du
littoral et des plaines inondables [100], would lead to an agricultural land loss of 615 ha, representing a
value of nearly $14 million. As recently reviewed by Sweeney and Newbold [11], forest buffers of 30 m
or wider would be needed to maintain natural conditions in terms of water quality, habitat, and biotic
features along the stream network. Extending buffer width to 30 m in the Pike river watershed would
lead to a loss of 2370 ha of agricultural land, representing a value of more than $53 million (Table 6).
Such levels of land use conversion would seriously impinge on the food production service and would
likely be socially unacceptable among the farming communities [102]. In this context, landowners
that implement wide riparian buffers should receive direct financial compensation for the loss of
cultivated land, as many ecosystem services provided by riparian buffers have no market value for the
moment. Presently, subsidies covering 70%–90% of buffer establishment costs are available [103], but
no compensation program for agricultural land loss exists for Québec farmers.
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Table 8. Potential loss of cultivated land following the implementation of hybrid poplar buffers of various width along all non-forested perennial and intermittent
farm streams in the three studied watersheds. The value of the cultivated land that would be lost is also indicated (in Canadian $).

Buffer Width Watershed and
Stream Type

Stream Length
(km)

Poplar Buffer
Area (ha)

Legal Buffer
Area (ha) 1

Loss of
Cultivated Land

(ha)

Total Cultivated
Land (ha)

Cultivated Land
Lost (%)

Agricultural
Land Value ($/ha)

Agricultural
Land Value ($)

4.5 m Perennial streams
Magog River 50 45 30 15 3114 0.48 4040 60,806
Eaton River 64 58 39 19 8551 0.23 4040 77,871
Pike River 103 93 62 31 26,133 0.12 22,624 699,896

Intermittent streams
Magog River 64 58 39 19 3114 0.62 4040 78,041
Eaton River 118 106 71 35 8551 0.42 4040 143,367
Pike River 336 302 201 101 26,133 0.39 22,624 2,279,210
All streams

Magog River 115 103 69 34 3114 1.10 4040 138,847
Eaton River 183 164 110 55 8551 0.64 4040 221,238
Pike River 439 395 263 132 26,133 0.50 22,624 2,979,106

10 m Perennial streams
Magog River 50 100 30 70 3114 2.26 4040 283,762
Eaton River 64 129 39 90 8551 1.05 4040 363,398
Pike River 103 206 62 144 26,133 0.55 22,624 3,266,182

Intermittent streams
Magog River 64 129 39 90 3114 2.89 4040 364,190
Eaton River 118 237 71 166 8551 1.94 4040 669,048
Pike River 336 672 201 470 26,133 1.80 22,624 10,636,312
All streams

Magog River 115 229 69 160 3114 5.15 4040 647,951
Eaton River 183 365 110 256 8551 2.99 4040 1,032,446
Pike River 439 878 263 615 26,133 2.35 22,624 13,902,493

30 m Perennial streams
Magog River 50 301 30 271 3114 8.70 4040 1,094,509
Eaton River 64 386 39 347 8551 4.06 4040 1,401,678
Pike River 103 619 62 557 26,133 2.13 22,624 12,598,129

Intermittent streams
Magog River 64 386 39 348 3114 11.16 4040 1,404,732
Eaton River 118 710 71 639 8551 7.47 4040 2,580,615
Pike River 336 2015 201 1813 26,133 6.94 22,624 41,025,773
All streams

Magog River 115 687 69 619 3114 19.86 4040 2,499,241
Eaton River 183 1095 110 986 8551 11.53 4040 3,982,293
Pike River 439 2634 263 2370 26,133 9.07 22,624 53,623,903

1. The legal buffer area refers to the buffer area calculated using 3 m wide buffers along streams, which is the norm according to the current legislation on agricultural land in the
Province of Québec [100].
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The methodology used for extrapolating ecosystem services suggests that fertility variations
between watersheds result in a large variation of hybrid poplar yield (per km of stream), further
resulting in proportional variations in the heating energy produced, in potential for fossil fuel
displacement or in forest area that could be set aside for conservation (Table 6). Such variations
in watershed productivity would also greatly affect the C and nutrient storage services of poplar
buffers after nine years. These assumptions related to variations in ecosystem services across a
regional gradient of fertility are supported by recent studies done in southern Québec [35,42,104,105].
Therefore, used as a sole predictor variable, the length of the stream network available for hybrid polar
buffer implementation may not be a robust indicator of the ecosystem services provision potential
abovementioned, unless site quality remains relatively constant across sites or watersheds. This
highlights the need to collect data on biomass productivity and C and nutrient stocks across multiple
riparian buffer sites in each of the studied watersheds in order to improve the robustness of projections
about ecosystem service provision at the watershed scale.

In addition, our projections related to the creation of indirect forest conservation opportunities
resulting from the replacement of fuelwood harvested in woodlots by hybrid poplar fuelwood
harvested in riparian buffers contain a certain amount of uncertainty. We possibly underestimated
such a service because the only available data on private forest productivity in the Estrie region
(Magog and Eaton River watersheds) seems quite optimistic (3.2 m3/ha/year) [75], compared to forest
productivity estimates on public forestland in the study area (1.5 m3/ha/year in the Estrie region and
at 1.6 m3/ha/year in the Chaudière-Appalaches region) [106].

Improving the design of riparian buffers could also result in greater ecosystem service provision
per kilometer of stream planted with hybrid poplars. For example, as several services are directly and
positively affected by biomass yield (Tables 6 and 7), the selection of the most productive hybrid poplar
genotypes could be a way to maximise productivity-related services [41,42]. However, this would
require a good knowledge of the suitability of different genotypes across changing site conditions given
the frequent Genotype ˆ Environment interactions observed in hybrid poplar yield at the regional
scale [104,107]. Otherwise, the use of generalist genotypes (P. maximowiczii hybrids) could be a way to
obtain good yields in variety of environments, including colder (higher elevation) sites [105,107,108].

Improving the efficiency of residential heating systems could also be a way to achieve a higher
amount of ecosystem services because energetic efficiency is proportionally related to the biomass
requirement of a single farmhouse (Table 9). Thus, the number of houses that could be heated with
a fixed biomass quantity is very sensitive to changes in heating system efficiency (Table 9). For
example, under the 100% buffer scenario, the Pike river watershed could produce 56,135 t of wood
logs (Table 7), a biomass supply that could heat 381–524 houses equipped with a low efficiency (40%)
woodstove or 857–1178 houses equipped with a very efficient (90%) masonry heater (Table 9). Such
a change in heating system efficiency (from 40% to 90%) would reduce the need to extract biomass
from poplar buffers by 56% across the whole watershed, creating the opportunity to manage poplar
buffers more extensively (see Section 3.2), with the goal of enhancing services related to canopy closure
(stream temperature regulation, habitat or corridor for native forest and stream biodiversity, natural
disturbance protection, etc.). In other words, more multifunctional hybrid poplar buffers could be
implemented if energetic needs would be lower for individual farmhouses. However, the replacement
of low efficiency appliances by very efficient heating systems can be relatively costly (up to 10,000$
for masonry heaters [109]), which may delay such technological change in the absence of adequate
financial incentives.
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There is also uncertainty regarding the estimated LHV of hybrid poplar wood in this study
(16.79 GJ/t), which was calculated from hybrid poplar HHV (19.38 GJ/t) found in the literature,
without any precision regarding genotype [66]. HHV may likely change for hybrid poplar clones of
different parentages, as large variations in HHV have been reported for the different natural poplar
species (16.26 GJ/t for P. deltoides, 15.00 GJ/t for P. trichocarpa, 13.50 GJ/t for P. tremuloides) [66]. Thus,
the selection or development of poplar genotypes that have a high heating value per biomass unit
should receive the same attention as selecting the most productive clones. An increase in LHV, alike
a biomass yield increase, results in a proportional increase in the number of houses heated with
the biomass supply produced in each watershed (Tables 6 and 9). Consequently, for the provision
of bioenergy services many initiatives should be undertaken simultaneously, including the use of
the most productive clones having high calorific values, an upgrade in heating system efficiency
(replacement of old appliances) and a reduction in heating energy needs per unit of area in farmhouses
and greenhouses.

In the study area, increase in mean annual temperature and in growing season length resulting
from global warming [110] could also improve hybrid poplar yield and reduce the heating energy
requirements in the greenhouse industry and the residential sector; a scenario that would create
a positive synergy regarding the number of houses or the greenhouse area that could be heated
with poplar biomass produced at the watershed scale. On the other hand, global warming may
enhance the dispersal of new pests in the study area, while increasing the severity and/or frequency
of natural disturbances [111,112]. This situation could increase mortality and negatively affect hybrid
poplar productivity and its related services, as hybrid poplars are not very resilient tree species (low
mechanical properties and high pest vulnerability) [113,114].

Finally, it may be argued that it would be technically difficult to establish hybrid poplar
buffers, within a short timeframe, across an entire agricultural watershed in southern Québec.
On the one hand, planting hybrid poplars along the 439 km of non-forested farm streams in the
Pike River watershed would require 877,690 hybrid poplar bare root plants (395 ha of buffer ˆ
2222 trees/ha), which is well below the yearly production capacity of the provincial nursery that
provides hybrid poplar planting stocks in Québec [26]. On the other hand however, establishing
buffers along 439 km of stream in the same year would be hard to achieve because such a large
watershed-scale project would require the prompt participation of a large number of landowners.
More realistically, 49 km of stream could be afforested each year for the 9 years to come. This would
require planting approximately 97,500 trees/year, based on the riparian agroforestry system proposed
in this study (see Section 2.2.1). A gradual implementation of poplar buffers over a nine year period
would also create the opportunity to harvest only 1/9 of the total buffer area each year, which would
create a mosaic of uneven aged poplar buffers at the watershed scale, while providing a more constant
supply of biomass each year for heating farmhouses or greenhouses. Thus, in the Pike River watershed,
the afforestation of 49 km of stream per year over nine years would start to generate the annual biomass
feedstock required to heat 577–794 farmhouses or 6.5 ha of greenhouses (Table 7) only at the end of
year 9, following the clear-cutting of hybrid poplars along 49 km of stream.
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Table 9. Effect of the variation in heating system efficiency or lower heating value (LHV) of hybrid
polar biomass on the usable energy content of biomass, on the biomass requirement per farmhouse
and on the number of farmhouses that could be heated for each watershed after 9 years following the
replacement of 100% of non-managed herbaceous buffers by hybrid poplar buffers along all streams
(perennial + intermittent).

LHV
Heating
System

Efficiency (%)

Usable
Energy
(GJ/t)

Biomass
(t/house)

Number of Houses Heated per Watershed 1

Magog River Eaton River Pike River

New Old New Old New Old New Old

16.79 40 6.7 107.2 147.4 36 26 135 99 524 381
16.79 50 8.4 85.8 117.9 45 33 169 123 654 476
16.79 60 10.1 71.5 98.3 54 40 203 148 785 571
16.79 70 11.8 61.3 84.2 63 46 237 172 916 666
16.79 80 13.4 53.6 73.7 73 53 271 197 1047 762
16.79 90 15.1 47.7 65.5 82 59 305 222 1178 857
10.00 60.6 6.1 118.8 163.3 33 24 122 89 473 344
12.00 60.6 7.3 99.0 136.1 39 29 147 107 567 413
14.00 60.6 8.5 84.8 116.6 46 33 171 125 662 481
16.00 60.6 9.7 74.2 102.1 52 38 196 142 756 550
18.00 60.6 10.9 66.0 90.7 59 43 220 160 851 619
1. The stem wood biomass supply is 3887 t for the Magog River watershed, 14,523 t for the Eaton River watershed
and 56,135 t for the Pike River watershed (see Table 7).

3.2. Hybrid Poplar Buffers for Maximum Multiple Ecosystem Services and Fewest Disservices

Other ecosystem services than those quantified in the previous section may be provided if
hybrid polar buffers are implemented at a watershed scale and those potential services should be
considered altogether in the design of poplar buffers. One of the major challenges is how to design
and manage such riparian buffers for the provision of multiple ecosystem services, while avoiding or
mitigating potential disservices [21]. This section provides a holistic view of the different ecosystem
services (including goods) that may be provided by poplar riparian buffers, while identifying potential
trade-offs and management recommendations to optimise services and reduce disservices. Table 10,
presented at the end of this section, integrates all of this information.

Concerning regulation services, the previous section has presented results of the potential of
poplar buffers for stocking large amounts of nutrients (N and P) in biomass, a process closely linked to
nutrient uptake by trees during the growing season. Reduction of more than 50% in the availability of
soil nitrate (NO3) and P during summer was observed in hybrid poplar buffers when compared to
adjacent herbaceous buffers [35]. However, poplar buffers can also reduce non-point source nutrient
pollution outside of the growing season, especially when the poplar rhizosphere can interact with
groundwater. For example, groundwater NO3 retention, during winter months, reaches almost 100%
in the first 5 m of a poplar buffer (probably because of denitrification), an efficiency that was higher
than that of an adjacent herbaceous buffer [44]. Such reduction in nutrient loads to streams would also
increase stream C sequestration, as instream decomposition of terrestrial litter is co-limited by water N
and P concentrations [115]. Therefore, creating a new terrestrial sink for atmospheric CO2 and excess
soil nutrients with poplar riparian agroforestry would also reduce C losses associated to instream
organic matter mineralisation, which would have a cumulative positive effect on the global climate
regulation service. Microbial activity in the poplar rhizosphere and pesticide uptake/transformation
by poplars may also contribute to agrochemical pollution mitigation [116,117]. Additionally, rapid
height growth of poplar buffers creates a physical barrier that can reduce aerial pesticide drift into
streams and wetlands.

The development of key structural attributes also increases the strength of riparian
vegetation/stream interactions. Such interactions improve regulation and habitat provision services in
stream ecosystems. Even in narrow poplar buffers, canopy closure can be almost complete as early
as six years along headwater streams (Figure 3a). Canopy closure improves stream shading, reduces
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periphyton blooms [118], maintains cooler water temperatures [48], and allows inputs of terrestrial
invertebrate prey into streams [119]. Buffers with rapid canopy development would be particularly
needed along small streams in open fields, as predicted increases in water temperatures resulting from
global warming may exceed the thermal tolerances of some aquatic species [120].

Planting broadleaved trees along farm streams also enhances leaf litter inputs (Figure 3b), which
can restore trophic relationships in aquatic ecosystems [121], while contributing to higher instream
nutrient retention and C sequestration [11,122]. It should be highlighted that stream invertebrates
select litter largely on the basis of its food quality, whether it is from exotic hybrid poplars or native
species [123]. Hybrid poplar litter is known to be rapidly consumed by benthic stream invertebrates
because it is N-rich and soft [123]. Thus, hybrid poplar leaf litter would locally enhance the detrital
energy base of streams, even in streams with lower litter retention capacity [122,123]. Poplar roots
growing directly into stream water can further provide energy to the stream food web, while
contributing to instream C sequestration and nutrient uptake (Figure 3c). Additionally, increase
of stream water and riparian zone soil temperatures resulting from riparian forest clearing have been
linked to increasing fluxes of several greenhouses gas (N2O, CH4 and CO2), [124]. Consequently, cooler
temperatures provided locally following riparian tree canopy restoration would have high potential
for greenhouse gas mitigation in riparian zones and in stream ecosystems.

The rapid development of large tree stems in streamside habitats is another important structural
element of poplar buffers. Tree stems reduce flow velocity during flooding events and allow woody
debris and sediment accumulation in the riparian zone (Figure 3d), thereby protecting infrastructures
located downstream. Forest vegetation also provides much greater channel and bank stability, than
herbaceous vegetation [11,125]. Although bank erosion is a desirable feature of natural stream
ecosystems [126], too much bank erosion along channelized farm streams can reduce water quality and
impair stream habitats [11], as bank erosion is a major contributor of suspended sediments and P [127].
Therefore, when replacing herbaceous vegetation, poplar buffers are expected to reinforce streambanks
(Figure 3e), as they rapidly form deep and extensive root systems along degraded farm streams [43].
Rooting depths of more than 5 m have been reported in natural riparian poplar stands [128], while
rooting depths exceeding 3 m have been reported in four-year-old hybrid poplar plantations [129]. In
a context where the frequency and magnitude of storm flow events are exacerbated by agricultural
land use and by global warming [130,131], streambank reinforcement with deep-rooted poplars could
be important to prevent high rates of erosion. Such a streambank stabilisation strategy with poplar
plantings was already used two millennia ago by native North Americans [27].

Another important structural attribute of poplar buffers, is that they can become a source of large
deadwood for streams on a decanal timeframe (Figure 3f). As reviewed by Pollock and Beechie [132],
the major role of riparian forests in enhancing stream biodiversity is to produce sufficient deadwood
of different sizes to form complex wood jams, which further contribute to sediment trapping, water
velocity reduction, pool formation, and complex stream or riparian habitat creation. While it may take
several decades to form such complex wood jams following the regrowth of natural forests [4], planting
hybrid poplar genotypes that have a forking stem habit and a low wood density could accelerate
the production of large woody debris in riparian areas [42]. Individual trees that fall into the stream
also contribute to pool formation, while providing cover for aquatic organisms [132], and additional
substrate for instream microbial denitrification [133].
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Figure 3. (a) Canopy closure shown by a hemispherical photo taken above a headwater farm stream
protected by a 6 year-old poplar buffer (Brompton, QC, Canada); (b) leaf litter input to stream from
a 9 year-old poplar buffer (St-Isidore-de-Clifton, QC, Canada); (c) instream poplar root development in
a 12 year-old poplar buffer (Magog, QC, Canada); (d) woody flotsam interception and flood sediment
deposition in a 9 year-old poplar buffer (Bedford, QC, Canada); (e) important colonisation of a
streambank by tree roots in a 9 year-old poplar buffer (Brompton, QC, Canada); (f) large woody
debris naturally fallen in the stream zone in a 12 year-old poplar buffer (clone MxB-915311, Magog,
QC, Canada).

Poplar buffers also provide refuge for terrestrial and wetland biodiversity on farmland. Bird
nests have been observed five years following hybrid poplar establishment along farm streams
(Figure 4a). Additionally, the particular rooting habit of some poplar genotypes may serve as a
structural element for burrow placement (Figure 4b). The soft wood of hybrid poplars is also
very attractive to woodpeckers [31], which produce cavities that can provide further nesting and
roosting habitat for other cavity-using species (mammals, birds, reptiles, amphibians and insects) [134].
One hybrid poplar genotype (clone DNxM-915508) appears to be particularly used for feeding
by the yellow-bellied sapsucker (Sphyrapicus varius) (Figure 4c) [31]. Even pileated woodpeckers
(Dryocopus pileatus), generally associated with interior habitat of mature forests [135], have been
observed feeding on dead poplars of a five-year-old buffer that was isolated from the nearest
forest patches (J. Fortier and B. Truax, field observations). Small mammals typical of forest habitats
(Napaeozapus insignis, Peromyscus maniculatus and Sorex cinereus) have also been captured in a 9-year
old poplar buffer that was connected to an adjacent forest habitat, which suggests that some forest
species will use poplar buffers as corridors [31]. On the other hand, a crop damaging species typical of
open habitats, the meadow vole (Microtus pennsylvanicus) [136], was captured in herbaceous buffers,
but not in the poplar buffers [31]. Predators of crop damaging species, such as the short-tailed weasel
(Mustela erminea) have equally found refuge in hybrid poplar buffers (Figure 4d). Although they
usually have lower conservation value than natural forests, numerous studies confirm the role of
planted poplars as a refuge for wildlife on farmland [137–141]. Moreover, pest control in cropping
systems may be improved by the integration of linear poplar structures in agro-ecosystems because
such structures can become reservoirs of beneficial insects (predators and parasitoids) [140]. By
providing shade, wind protection and reduced herbaceous vegetation cover, poplar buffers can also
provide a favourable environment for the restoration of more shade-tolerant native tree or herb species,
which can be under-planted or regenerate naturally (Figure 4e,f) [29,30,142–144]. Additionally, rapid
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canopy closure in poplar buffers can reduce the abundance of shade-intolerant introduced (exotic)
herbaceous species, which includes many agricultural weeds [30].
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Figure 4. (a) A bird nest in a 5-year old hybrid poplar buffer (Brompton, QC, Canada); (b) a burrow in
a 9-year old poplar buffer (clone MxB-915311, St-Isidore-de-Clifton, QC, Canada); (c) small cavities
created by the yellow-bellied sapsucker (Sphyrapicus varius) to attract insects on which it feeds (clone
DNxM-915508, Roxton Falls, QC, Canada); (d) use of a 9-year old hybrid poplar buffer for hunting
and den making by a short-tailed shrew (Mustela erminea) (Magog, QC, Canada); (e) 5-year old red
oak (Quercus rubra) planted on top of the streambank in a gap following a partial poplar harvest;
(f) naturally established native wetland herbs (Impatiens capensis (in foreground) and several species of
Carex) in a 6-year old hybrid poplar buffer (Brompton, QC, Canada).

Concerning production services, poplar buffers can be used to diversify farmland economy
by providing biomass for bioenergy and biofuels [32–34,145], but also raw material for pulp and
paper, lumber, veneer, plywood, composite panels, structural composites, containers, pallets, furniture
components, match splints and chopsticks [76] (Figure 5a,b). Bioproducts from poplars (propolis,
flavonoids, bud extracts) have also various applications in medicine, health foods, cosmetics and plant
disease control [146,147]. Poplar foliage and rameal wood are currently used as an inexpensive fodder
during drought or as supplements to increase livestock reproductive capacity [148,149]. Litter fall
from poplar buffers reaching adjacent cropping systems can contribute to improving soil fertility and
food crop productivity [150]. Planted poplars are also naturally colonised by a wide array of fungi,
including the oyster mushroom (Pleurotus ostreatus), a well-known edible mushroom [151] (Figure 5c),
which can also be cultivated on poplar logs.

Furthermore, a watershed scale implementation of poplar riparian buffers could provide some
cultural services. The use of poplar buffers by different bird species could improve farmland
value for bird watching, while the improvement of instream and riparian habitats following buffer
implementation could be beneficial for game hunting and fishing. A major issue that remains is
how well these novel riparian ecotones will be perceived among rural communities, as tree buffers
may close up open landscapes and compete with traditional agricultural land use [152–154]. Still,
poplar buffers composed of various genotypes that have different shades of yellow in their autumn
foliage and different tree architectures could improve the aesthetic value of agricultural landscapes
(Figure 5d–f), especially in areas where extensive crop monocultures currently dominate.
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Figure 5. (a) Fuelwood (biomass) production following partial harvest in a 6-year old poplar buffer
(Brompton, QC, Canada); (b) pruned hybrid poplar buffer for the production of solid wood products;
(c) Pleurotus ostreatus, a native edible mushroom, naturally growing on a decaying hybrid poplar
(Brompton, QC, Canada); (d–f) hybrid poplar buffers in various farmland settings.

What could place additional limitations on ecosystem service provision by poplar buffers? First,
it is widely assumed that buffer width is a major factor affecting regulation and habitat provision
services [6,9,11,20,48,87,99]. The legal context related to riparian zone management can also be an
obstacle for the production services that require tree harvesting, as some jurisdictions restrict such
activities. In addition, many ecological, hydrological and biogeochemical functions/services provided
by tree buffers depend on their level of spatial connectivity with adjacent stream ecosystems, with
remnant natural riparian forests, with upland habitats, and with groundwater [155]. Thus, the
restoration of some services will require particular spatial configurations or specific locations in
watersheds (ex: habitat provision, corridor for dispersal of plants and animals, stream shading, flood
control, groundwater purification), while some other services are independent of spatial configuration
within landscapes (e.g., C storage, wood production) [21,156]. Therefore, for some services, the
establishment of buffers across multiple boundaries will require a high level of cooperation between
private landowners, which may complicate implementation [156].

In many agricultural areas, establishing tree buffers alone may not be sufficient to promote stream
biodiversity. As argued by Parkyn et al. [48], proximity to a source of colonists and the presence of
colonisation pathways may be of overriding importance to allow rehabilitation of stream organisms
such as invertebrates. Additionally, many studies suggest that riparian zone quality, in terms of forest
cover, is not a significant factor affecting stream biodiversity, with actual or past land use type across
the whole watershed being the dominant factor [131,157–161]. Still, a 20 m wide hybrid poplar buffer
(20 years old) established along 3.6 km of a 5 m wide farm stream, was found to positively affect stream
habitat quality (reduction in stream water N and P, increased water clarity, temperature reduction),
which lead to invertebrate community improvement [48].

However, in watersheds where agricultural development has increased hydrological connectivity
between the land and streams, some level of hydrological restoration is a prerequisite to stream
biodiversity enhancement [162]. In such a context, efforts should first be invested at retaining storm
waters upland, in order to create more natural flow regimes [162]. Then, best management practices
aiming at reducing contaminant load to streams should be used [162]. Once these issues are resolved,
the improvement of stream structure can be undertaken, if necessary [162].

Given that poplars are among the beaver’s (Castor canadensis) favorite foods, the presence of
beavers in lowland streams is another factor that could seriously affect the structure and function
of poplar buffers [163], especially in flood prone areas [164]. Equally, the presence of a subsurface



Forests 2016, 7, 37 23 of 40

drainage system may be a limitation for the planting of phreatophytic poplars, as their root systems
may obstruct subsurface drains [43]. However, this potential disservice has not been adequately
studied and its relative importance is unknown.

The level of human intervention (tree harvest, tree pruning, enrichment planting) following
buffer establishment will also greatly affect a series of ecosystem services (Table 10). Consequently,
managing poplar buffers for intensive biomass production and nutrient exportation, for extensive or
semi-intensive wood production, or for riparian forest reconstruction will not lead to the same output in
terms of ecosystem service provision (Figure 6). Thus, a complex mosaic of poplar buffers with different
management regimes and designs could be created at the watershed level, depending on farm-scale
objectives and biophysical characteristics, but also depending on stream rehabilitation targets. Finally,
while multiple genotype buffer systems should always be used to improve resilience [55], developing,
selecting and spatially positioning the right genotypes for the provision of specific ecosystem services
would greatly improve the performance of poplar buffers planted for multi-functionality (Table 10) [27].
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Table 10. Overview of potential ecosystem service and disservices following the replacement of non-managed herbaceous buffers by hybrid poplar buffers.
Management considerations for services optimisation and disservices mitigation are also provided.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Regulation

Non point-source pollution control/water
quality protection

‚ Fast-growth, high water uptake, high N and
P concentration in tissues, and perennial
nature of poplars allow high rate of nutrient
uptake/accumulation and long-term storage
in woody biomass [35,40,163].

‚ Nutrient uptake efficiency may be reduced
over the years, as mean annual biomass
increment may decline, and as tree
mortality occurs.

‚ Select productive clones with low nutrient
use efficiency (high nutrient concentration
per unit of dry woody biomass).

‚ Harvest biomass periodically to maintain
high nutrient uptake rates and allow N and P
exportation offsite [40,165].

‚ Use high tree density to increase competition
for nutrients in the buffer zone.

‚ Include a herbaceous strip at the
buffer/cultivated field interface to allow
runoff dispersion/infiltration and sediment
deposition [166].

‚ Prune field-edge trees to increase light
penetration and improve herbaceous plant
growth [30]

‚ Introduction of hybrid poplar leaf litter in
degraded farm streams can increase instream
N and P retention due to bacterial
immobilisation [122].

‚ Leaf litter addition increases total nutrient
pool of streams.

‚ Select clones with high resorption proficiency
and low leaf biomass production to reduce N
and P losses to stream.

‚ Extensive lateral rooting [167,168] allows
nutrient capture beneath adjacent pastures
and crops.

‚ Poplar lateral roots can compete with
adjacent agricultural crops for water and
nutrients [169].

‚ At the buffer/field interface, plow soil or
prune roots with a ripper knife to reduce tree
competition with crops near the soil
surface [170].

‚ Rooting depths greater than 3 m allow
nutrient capture at different soil depths and
in groundwater [129,171] and could increase
depth of active denitrification zone [172].

‚ Poplar buffers can increase denitrification in
the dormant season [44].

‚ Use long whips planted at >1 m deep in soil
to help increase C input at depth and nutrient
uptake in groundwater [173].
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Table 10. Cont.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Non point-source pollution control/water
quality protection

‚ Poplar rhizosphere supports microbial
community important for bioremediation
processes [116].

‚ Poplars can uptake, store and transform
some pesticides [117].

‚ Use clones having high rates of root
exudation and fine root production to
increase soil microbial activity and
bioremediation [174,175].

‚ Instream poplar root growth allows
nutrient uptake directly from water in farm
streams [43].

‚ Poplar roots may enter subsurface tile drains
and reduce field drainage [43].

‚ Avoid planting poplars near drainage
systems (not within 30 m).

‚ Design drainage system to allow drains to
outflow before the buffer zone [20].

‚ Riparian buffer zones with tall trees
efficiently reduce pesticide drift in water
bodies [176].

‚ Maintain a continuous tree structure and use
clones with dense foliage for intercepting
pesticide drift.

Local and global climate regulation ‚ Poplar buffers create a new and fast-growing
biomass C sink on farmland [35,163,177]

‚ Harvest poplar biomass and use bioenergy to
displace fossil fuel or produce solid wood
products with long life cycles.

‚ Given that C stocks increase with stand age
and complexity [178], allow the buffer to age
and manage for a multi-layer structure
(under-planting and natural regeneration).

‚ Use clones with greater longevity to create a
more stable C stock.

‚ Poplar buffers improve stream and riparian
zone shading [30] and can lower stream
temperature [48,179].

‚ Streamside tree canopy development may
reduce GHG emissions by reducing stream
and riparian soil temperature [124].

‚ Linear structures of poplar can shade crops
and reduce yields, especially on north side
[180].

‚ Poplars can shade out understory herbaceous
vegetation [30] and reduce its runoff
interception capacity.

‚ Reduction in periphyton biomass because of
tree shading may increase dissolved nutrients
in streams [118].

‚ Near the stream, use clones with a dense
canopy and larger crowns, and maintain
closed canopy, to maximise light interception
and temperature reduction of soil, air
and water.

‚ At the field edge, use clones with a small
crowns and prune trees to reduce light
competition with crops and to improve
understory herbaceous growth.

‚ Litter and woody debris inputs from riparian
trees improve stream C storage.

‚ Maintain tree canopy to increase terrestrial
litter and woody debris inputs to stream.

‚ Select genotypes with slower decaying leaf
litter to improve stream C storage.
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Table 10. Cont.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Local and global climate regulation ‚ The mitigation of agricultural N and P
pollution by riparian buffers may improve
stream C storage by limiting terrestrial input
decomposition [115].

‚ Maximise nutrient removal in buffers to
improve stream C storage.

Disturbance and water regulation ‚ Tree stems and fallen woody debris reduce
flow velocity and flood damages [181].

‚ Windbreak effect of trees in open areas
reduces wind velocity, storm impacts, while
enhancing snow accumulation in semiarid
regions [182].

‚ Tree vegetation allows greater infiltration of
surface runoff [4,183].

‚ Decaying tree roots create macropores in
streambank soil, which improves water
storage capacity during storm events [184].

‚ Weak mechanical resistance of poplars [185]
make them susceptible to extreme
climatic conditions.

‚ Fallen trees and branches can obstruct
drainage ditches and stream culverts.

‚ Trees can break and fall in cultivated fields or
on pasture fences.

‚ Remove dead/broken trees and woody
debris in areas close to infrastructures.

‚ Design new infrastructures to allow coarse
woody debris movement in streams [186].

‚ Select clones with higher stem wood density
and smaller crowns for planting in windy,
snowy and flood prone areas [28].

‚ Harvest mature trees to avoid tree breakage.

‚ Planted poplars have a similar water yield to
hardwood forests, and can reduce peak flow
and spring floods on farmland [187]

‚ In dryer climate or in wetland habitats,
planted poplars can adversely affect local
water balance because of their high water
use [188,189].

‚ Select clones with high water use efficiency in
sensitive habitats (wetland margins, dry
climate) [190].

Soil protection and formation ‚ Streamside poplar plantings improve
streambank stability [125,191].

‚ Riparian afforestation may increase
short-term erosion rate along incised
channels and contribute to channel
widening [192,193].

‚ Use deep-rooted clones to improve soil
stability down to the base of streambanks.

‚ Poplar afforestation can increase soil C stocks
over the long term [58,62]

‚ Poplar afforestation can reduce soil C over
the short term [43,58].

‚ Select clones with high fine root and root
exudate production rates to increase C input
and microbial activity in soil.

‚ Use deep-rooted clones to increase soil C
input at depth.

‚ Windbreak effect of tree buffers can reduce
arable soil erosion [182].

‚ Maintain a continuous linear tree structure to
optimise the windbreak effect [182].
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Table 10. Cont.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Biological control ‚ Poplar canopy provides a shade barrier
reducing riparian zone invasion by
shade-intolerant exotic plants [30].

‚ Poplar canopy can reduce weed biomass in
riparian zones [30].

‚ Poplar buffers can reduce the abundance of
meadow vole (Microtus pennsylvanicus), a
crop damaging mammal [31].

‚ Linear poplar structures are reservoirs of
beneficial insects (predators and parasitoids)
in agroecosystems [140].

‚ Poplar buffers may become suitable habitat
for shade-tolerant invasive species, such as
glossy buckthorn (Rhamnus frangula) [30,194].

‚ Reduction in understory herbaceous
vegetation may reduce runoff
dispersion capacity.

‚ Maintain a closed and continuous canopy to
reduce invasion by shade-intolerant
exotic plants.

‚ Select clones with a large crowns and dense
foliage to increase light interception and
reduce edge effect [30].

Habitat Provision

Refuge and nursery for terrestrial
biodiversity

‚ Poplar buffers and poplar afforestation can
increase natural tree regeneration and plant
and fungi diversity on
farmland [29,30,143,151,195].

‚ Poplar buffers and poplar afforestation can
increase mammal, bird and insect diversity
on farmland [31,137–141].

‚ Planted poplars can serve as nurse stands for
mid and late-successional tree species and
forest herbs [142,144,196].

‚ Forest corridors allow vertebrate, insect and
plant movements between remnant forest
patches in agricultural landscapes.

‚ Poplar afforestation in natural grassland
ecosystems can reduce native plant
diversity [197].

‚ Predators (fox, coyote, wolf) of livestock and
crop damaging species (deer, elk) may use
tree corridors to travel on farmland [198].

‚ Heavy poplar browsing by cervids and
beaver can results in poor tree
survival/establishment [104,163,164,199],
and thus poor ecosystem service provision.

‚ Riparian corridor composed of exotic poplars
can lead to genetic pollution of native poplar
stands [200].

‚ Poplars are hosts of many diseases and
insects [28].

‚ Optimize spatial and structural heterogeneity
and use longer rotations [141,201,202].

‚ Maintain tree cover at the landscape scale.
‚ Use multiple clones with different tree

architectures and longevity.
‚ Use clones that break easily (wide crowns,

forked stems, low wood density), cut some
poplars down and retain dead trees to
provide coarse woody debris and snags.

‚ Notch or girdle living poplars for enhancing
woodpecker food sources and habitats [203].

‚ Under-plant native hardwoods, conifers and
riparian/wetland herbs.

‚ Use genotypes with large lateral branches for
bird nest placement [204].

‚ Protect trees with metallic mesh to avoid
beaver damage or trap beavers.

‚ Use Tacamahaca section related clones to
reduce browsing by cervids [104].

‚ Use large planting stock in wilder areas [205].
‚ Avoid planting exotic poplars near small

isolated natural poplar stands [206], or use
native genotypes.
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Table 10. Cont.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Refuge for aquatic biodiversity ‚ Temperature regulation, improved water
quality and clarity by poplar buffers enhance
stream biodiversity [48].

‚ Hybrid poplar litter input can increase
stream invertebrate abundance and diversity
in farm streams [123].

‚ Hybrid poplar buffers can become source of
large deadwood within a decade [42].

‚ First, restore natural flow regime in streams,
and then reduce contaminant load to
stream [162].

‚ Maintain a closed and continuous canopy
near the stream.

‚ Restore instream large deadwood and
tree/shrub vegetation overhanging
the stream.

‚ Allow stream meandering to improve leaf
litter retention and habitat complexity along
straightened farm streams [123].

‚ Because leaf litter quality and decay speed
differ with poplar genotypes [207–209], use
genotypes with contrasted/complementary
litter quality for stream invertebrate
enhancement [123].

Production

Raw materials and energy ‚ High productivity and versatility of poplar
wood is interesting for the production of
biomass, pulp and paper, solid wood
products and biofuels [76,145].

‚ Poplars rapidly provide a source of timber
for ecosystem engineering.

‚ Clear-cutting of poplars can cause soil
erosion and instream sediment
pollution [210].

‚ Use of heavy machinery for harvest can cause
soil compaction [211], which could reduce
water infiltration in soil and pollutant
trapping efficiency.

‚ Tree harvest can impinge on ecosystem
services related to canopy closure
(biological control, habitat provision,
aesthetic value, etc.).

‚ Use rotational or partial harvest to maintain a
tree structure at the landscape level and to
reduce erosion [210,212].

‚ If heavy machinery is used for harvesting,
wait for frozen ground to reduce soil
compaction [213], and avoid traffic
on streambanks.

‚ Select clones with higher wood density and
low branch biomass, and prune trees and use
a lower stand density to produce high
quality logs.

‚ For bioenergy production, select productive
clones with a high energy content per unit
of biomass.
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Table 10. Cont.

Ecosystem Services Functions, Processes, Structures and Traits Related
to Ecosystem Services

Potential Trade-Offs or Disservices Optimisation and Mitigation Strategies

Food ‚ Poplar foliage and rameal wood can be used
as a fodder for livestock, but also as a
supplement to increase reproductive
capacity [148,149].

‚ Poplar litter has a positive effect on adjacent
farm soil fertility [150].

‚ The windbreak effect of trees can increase
crop yield and offer protection to
livestock [182].

‚ Decaying trees in poplar plantations can be
naturally colonized by Pleurotus ostreatus, an
edible mushroom [151]; poplar logs can also
be inoculated with this fungus.

‚ Poplar leaves can accumulate heavy metals
from contaminated soils at concentrations
that are harmful for livestock [27].

‚ Field margin trees can compete with nearby
crops for resources.

‚ Buffer establishment can be made at the
expense of cultivated areas.

‚ Heavy poplar browsing by livestock will
reduce growth and may cause mortality.

‚ Select clones with higher protein or N content
in branches and foliage to feed livestock, and
test soil and poplar tissues for heavy
metal contamination.

‚ Select clones with smaller crowns to reduce
competition for light with crops, prune roots
or plough soil at field edge to reduce root
competition [170].

‚ In pastures, fence riparian buffer to avoid
livestock damage (ideally with an electric
fence).

Bioproducts ‚ Propolis, which has applications in medicine,
health foods and cosmetics, can be produced
from different poplar species [146].

‚ Antimicrobial flavonoids from poplar twigs
have applications in plant disease
control [147].

‚ Select genotypes that have a high production
of secondary chemical compounds.

Cultural

Recreation ‚ Contribution of tree buffer to stream, riparian
and terrestrial biodiversity, but also to water
quality, could improve recreational value in
rural areas (sport fishing, hunting, bird
watching, swimming, etc.).

‚ Increase structural heterogeneity and
complexity, and plant biodiversity.

‚ Develop access to riparian zones in
agricultural areas.

‚ Maintain closed canopy to lower stream
temperature and to provide inputs of
terrestrial invertebrates.

‚ Maximise nutrient and sediment pollution
removal by buffers.

Aesthetic ‚ Planted floodplain poplars may be seen as
beautiful and useful elements of rural
landscapes [214].

‚ Tree buffers may be seen as structures that
close up the landscape, obstruct scenic views,
and reduce streamside property
value [152,215].

‚ Streamside tree harvesting may be
negatively perceived.

‚ Open scenic views by thinning and pruning,
or avoid tree planting obstructing
scenic views.

‚ Use a variety of clones with different tree
architectures and shades of yellow in their
autumn foliage to increase visual quality of
farm landscapes.
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4. Conclusions

This study has quantified different ecosystem services (C, N and P storage, wood or biomass
production, energy production potential, and indirect conservation opportunities) that could be
provided by relatively narrow hybrid poplar riparian buffers implemented along deforested farm
streams of watersheds with contrasted agricultural land use. Ecosystem service provision potential
from such buffers was positively linked to the proportion of agricultural land use within a watershed,
as many farm streams are not currently buffered by riparian forests. Additionally, watersheds with
greater agricultural land use generally have greater soil fertility, a factor strongly linked with ecosystem
service provision per area planted in poplar buffers. Across the studied watersheds, which ranged
from 555 to 771 km2 in area, available stream length for riparian agroforestry ranged from 115 to
439 km. However, for the entire southern Québec region, much greater potential for ecosystem service
provision in tree riparian buffers exists along farm streams, as more than 44,000 km of streams and
their associated riparian zones were degraded by channel straightening operations [12].

Furthermore, the literature review undertaken in this study strongly suggests that multifunctional
poplar buffers could provide a wide array of ecosystem services, especially if they are strategically
sized, located and managed, by taking into account the local and regional biophysical and hydrological
features of agricultural landscapes. Increasing energetic conversion efficiency of heating systems and
improving farmhouse/greenhouse insulation would reduce the biomass required for heating, while
the selection of hybrid poplar clones with a high productivity and a high calorific value would improve
the energy production potential per km of riparian buffer. Such a multi-level strategy could reduce
the need to intensively manage poplar buffers for the sole production of bioenergy, thereby creating
opportunities for the use of a certain percentage of such buffers for riparian forest reconstruction or for
extensive/semi-intensive biomass or wood production. At the watershed scale, the final output would
be the provision of a larger set of ecosystem services in agricultural riparian zones.

However, much work remains to be done in terms of education to make these novel ecosystems
socially acceptable among rural communities, land managers and agro-environmental professionals.
A financial compensation program could help to attenuate potential disservices related to tree
buffer implementation on farmland, since most services provided by such buffers currently have
no market value.
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