Next Article in Journal / Special Issue
Evaluation of Whole Tree Growth Increment Derived from Tree-Ring Series for Use in Assessments of Changes in Forest Productivity across Various Spatial Scales
Previous Article in Journal
Transforming Justice in REDD+ through a Politics of Difference Approach
Previous Article in Special Issue
The Effects of Fertilization on the Growth and Physiological Characteristics of Ginkgo biloba L.
Article Menu

Export Article

Open AccessArticle
Forests 2016, 7(12), 302; doi:10.3390/f7120302

Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany

TU Dresden, Institute of Soil Science and Site Ecology, 01737 Tharandt, Germany
*
Author to whom correspondence should be addressed.
Academic Editors: Scott X. Chang and Xiangyang Sun
Received: 31 August 2016 / Revised: 18 November 2016 / Accepted: 19 November 2016 / Published: 30 November 2016
(This article belongs to the Special Issue Nutrient Cycling and Plant Nutrition in Forest Ecosystems)
View Full-Text   |   Download PDF [1651 KB, uploaded 30 November 2016]   |  

Abstract

A growing interest in using forest biomass for bioenergy generation may stimulate intensive harvesting scenarios in Germany. We calculated and compared nutrient exports of conventional stem only (SO), whole tree without needles (WT excl. needles), and whole tree (WT) harvesting in two medium aged Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) stands differing in productivity, and related them to soil nutrient pools and fluxes at the study sites. We established allometric biomass functions for each aboveground tree compartment and analyzed their nutrient contents. We analyzed soil nutrient stocks, estimated weathering rates, and obtained deposition and seepage data from nearby Level II stations. WT (excl. needles) and WT treatments cause nutrient losses 1.5 to 3.6 times higher than SO, while the biomass gain is only 1.18 to 1.25 in case of WT (excl. needles) and 1.28 to 1.30 in case of WT in the pine and spruce stand, respectively. Within the investigated 25-year period, WT harvesting would cause exports of N, K+, Ca2+, and Mg2+ of 6.6, 8.8, 5.4, and 0.8 kg·ha−1 in the pine stand and 13.9, 7.0, 10.6, and 1.8 kg·ha−1 in the spruce stand annually. The relative impact of WT and WT (excl. needles) on the nutrient balance is similar in the pine and spruce stands, despite differences in stand productivities, and thus the absolute amount of nutrients removed. In addition to the impact of intensive harvesting, both sites are characterized by high seepage losses of base cations, further impairing the nutrient budget. While intensive biomass extraction causes detrimental effects on many key soil ecological properties, our calculations may serve to implement measures to improve the nutrient balance in forested ecosystems. View Full-Text
Keywords: spruce; pine; thinning; aboveground biomass; energetic use; stand growth; nutrient contents; nutrient accumulation spruce; pine; thinning; aboveground biomass; energetic use; stand growth; nutrient contents; nutrient accumulation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Knust, C.; Schua, K.; Feger, K.-H. Estimation of Nutrient Exports Resulting from Thinning and Intensive Biomass Extraction in Medium-Aged Spruce and Pine Stands in Saxony, Northeast Germany. Forests 2016, 7, 302.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top