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Abstract: Since the late 1990s, China has been implementing one of the largest ecological restoration
initiatives in not only the country but also the world—the Natural Forest Protection Program (NFPP).
An overarching question is how severe the regional deforestation had become before the NFPP was
initiated and whether the forest condition in the protected area has significantly improved afterwards.
The goal of this study was to assess the land use and land cover changes (LULCC) and the interplays
between different land uses in northeast China from the late 1970s to 2013. Classification results
were validated through accuracy assessments using the rule-based rationality evaluation scheme
and the spatially balanced sampling method. It was found that the regional forestland suffered
significant and persistent decline, about 20.4% loss, before 2000 when the NFPP was launched;
thereafter, however, the forestland became gradually stabilized and reforestation became more
prevalent. Further examination based on extended conversion matrixes revealed that the largest
proportional decline came from wetland, instead of forestland, due to farmland encroachment.

Keywords: natural forest protection; land-use and land-cover change; deforestation; reforestation;
agricultural expansion; wetland loss; extended conversion matrix

1. Introduction

Before the turn of the 21st century, China’s economic development along with its population
expansion, put great pressure on its natural resources and ecosystems. Deforestation, desertification,
wetland destruction, and farmland degradation caused severe environmental problems such as soil
erosion, water shortages, dust storms, and habitat losses [1–3]. To deal with these problems, the
Chinese government launched several large ecological restoration programs in the late 1990s. Of these
programs, the Natural Forest Protection Program (NFPP) is recognized as one of the largest in terms
of geographic scope, public investment, and the number of people impacted [4–6]. Thus, it has been
viewed as a far-reaching step toward protecting forest ecosystems and promoting sustainable resource
management [7].

Launched in the wake of the huge 1998 floods in the Yangtze River basin and some other major
waterways in the northeast [2], the NFPP covers 17 provinces with an initial investment of 96.4 billion
Yuan (≈US$14.1 billion) during its first phase (2001–2010) [8]. Its primary goals have been to conserve
and expand natural forests for long-term ecosystem services and human wellbeing. Specifically, during
the first phase commercial logging was completely banned in the upper and middle reaches of the
Yellow River and the upper reaches of the Yangtze River, while timber production in the northeast
was substantially reduced. Meanwhile, about 94.2 million ha of natural forests were under strict
conservation and an additional 31.0 million ha were targeted for reforestation or revegetation by
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various means [3,9]. Multiple measures, such as resettlement of redundant staff of state-owned forest
enterprises and improved forest patrol and monitoring, have also been taken [10,11].

Now the NFPP is deep into its second phase (2011–2020), with a total budget of 244.0 billion
Yuan (≈US$38.5 billion). According to the State Council, 219.5 Yillion yuan would be invested by
the central government and 24.5 billion Yuan by local governments to ban commercial logging and
strengthen forest management across all areas under the NFPP coverage (NFPP Management Center
2011). Further, more extensive and effective stand treatment and other steps of forest management have
been implemented. It is hoped that by 2020, the forestland, stock volume, and carbon sequestration
will increase, respectively, by 5.2 million ha, 1.1 billion cubic meters, and 416 million tons [12].

An overarching question that has not been carefully examined is whether the forest condition
in the protected area has significantly improved since the NFPP’s initiation. To answer this question,
it is essential to know how severe the regional deforestation and forest degradation had become
before the NFPP was launched. Therefore, the goal of this study was to address these two questions
in a coherent manner, using adequate data and tools. Its main task was to detect the land use
and land cover (LULCC) changes in northeast China by interpreting satellite images with ERDAS
IMAGINE. In addition to examining the general LULCC trends, we assessed the interactions between
different land uses. Studying the forestland dynamics, which is our focus, in conjunction with other
relevant and important land uses is of vital importance in improving our knowledge of the changes
in resource condition and environmental consequences, and the effectiveness of policy making and
implementation. We paid particular attention to the LULCC since the late 1990s when the NFPP,
as well as other similar but smaller ecological restoration programs such as the Wetland Conservation
Program [13], was launched. At the same time, we traced the regional LULCC back to the late 1970s.
By doing so, it was expected that we would be able to obtain a much longer LULCC series and thus
place the earlier deforestation and forest degradation and the recent conservation and restoration in
an appropriate historical context.

There have been studies of the effectiveness and impact of the NFPP. Most research findings
indicate that the NFPP has made positive impacts on improving the local environment [2,10,14–16].
Notably, many studies are based on the national forest inventory or survey data, while efforts of
assessing the NFPP from the LULCC perspective are limited and long-term comparisons of the forest
dynamics induced by policy and other forces are even rarer. Among the existing LULCC studies
in the northeast, the main focus has generally been placed on the wetland loss and agricultural
expansion. Tang, et al. [17] employed Landsat images of three points of time (1990, 1996, and 2000) to
capture the LULCC trajectory of Daqing, Heilongjiang. Findings indicated that the most significant
change was wetland degradation and fragmentation, whereas grassland was converted to agriculture.
Wang, et al. [18] used Landsat MSS and TM imagery for two periods of time (1980–1996 and 1996–2000)
to estimate the transitions of land-use types in the Sanjiang Plain, concluding that farmland expansion
was at the cost of wetland loss. The authors also assessed the impact of land-use change on the
variation of ecosystem services. Their results demonstrated that the total annual ecosystem service
value in the Sanjiang Plain declined by 40% between 1980 and 2000, primarily due to the 53.4% loss
of wetland. A follow-up paper by the same team [19] estimated the impacts of land-use change on
regional vegetation productivity in the area, revealing that the considerable increase of cropland
area had resulted from the reclamation of forestland, grassland, and wetland between 2000 and 2005.
Okamoto and Kawashima [20], using Landsat TM and ETM+ data after rice planting, discovered that
the total paddy area there was 19,425 km2 in 2000—17.7% more than the amount reported in the official
statistics. A recent study of Naoli River Basin in the Sanjiang Plain region further discovered that
wetland decreased from 45.8% in 1954 to only 9.8% in 2010, while cropland increased from 8.2% to
58.0% [21].

Despite the advances in improving our understanding of the recent regional LULCC dynamics,
previous analyses have some salient shortcomings. First, most study areas are selected in the alluvial
lowland and the main attention is paid to the wetland and farmland, while other crucial or iconic
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land-use categories in this region, especially forestland, which possibly experienced more dramatic
changes, have not been carefully examined. As a result, these earlier works are not necessarily
comprehensive with respect to the important roles and interlinkages of different land uses. Second,
most of the existing studies have dealt with the LULCC before 2000 [17,18,20,22], with the regional
situation thereafter having been seldom investigated. On the other hand, the NFPP and other
conservation efforts could have exerted a significant influence on LULCC in the region after 2000.
Therefore, it is crucial to detect the land cover change induced by these initiatives in a timely and more
thorough manner. In this study, we decided to cover a much longer time period by going back to the
late 1970s when continuously archived Landsat images became available and considering data until as
recently as 2013. This temporal coverage enabled us to present a clearer and more systematic view
of the regional LULCC trajectory. Of course, as discussed below, using this strategy implies that we
cannot cover a study site that is very large—close to 30,000 square kilometers (km2)—because of the
tremendous amount of image processing and ground-truth work that it would entail.

This paper is organized as follows. In Section 2, the data source and study region are described.
Also, we present our analytical methods briefly, with additional details given in Appendixs A and B.
Section 3 reports our main findings. Discussion and conclusions follow in Section 4.

2. Materials and Methods

2.1. Study Area

Considering both the relevance and feasibility of the LULCC detection work, we selected ten
adjacent counties in Heilongjiang province for this study (see Figure 1). They are: Fangzheng, Yilan,
Huachuan, Huanan, Jixian, Shuangyashan, Qitaihe, Suibin, Youyi, and Boli. The whole area amounts
to 29,029 km2, ranging from 128.15◦–132.33◦ E to 45.32◦–47.45◦ N. With a relatively flat landmass
and low altitude, this area covers a large part of the Sanjiang Plain, which consists of alluvial
deposits from the Amur, Sungari, and Ussuri rivers. The Sanjiang Plain has been a hot spot for
studying LULCC dynamics, partly because it is endowed with the world's rare fertile black soils for
farming and freshwater marshes and large tracks of primary natural forests for wildlife habitat [23].
However, there have been intense human activities in the region, including reclamation, deforestation,
and infrastructure expansion over the past several decades [24,25]. Together, these factors have made
the region an ideal place for studying land-use changes.
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Like all other natural forests in China, forests in this region have undergone tremendous changes
over time. According to Yin [26], large tracts of primary natural forests still remained after the People’s
Republic of China was established in 1949, but in order to spur the young economy, over-cutting
became prevalent without enough incentive and autonomy from local forest farms to manage and
utilize the resources efficiently. In the meantime, population and employment expansion in the region
led to more fuelwood consumption, housing construction, and land clearing. Yamane [4] estimated
that timber extraction from northeast China accounted for more than 40% of the total national log
production in the 1970s and over 20% thereafter.

2.2. Methods

Landsat images for eight periods were acquired, including two sets of MSS images for 1977 and
1984; five sets of TM images for 1993, 2004, 2007, 2010, and 2013; and one set of ETM+ images for
2000. The images for 2004 were ordered from the China Remote Sensing Satellite Ground Station [27],
and those for the other periods were downloaded from the United States Geological Survey website [28].
At each point of time, three scenes were required to cover the whole study area. Notably, due to
quality concerns, images for a given year may not be available or useable, in which case we adopted
the common practice of assembling images around that given year as closely as possible [29].

The acquired images were georeferenced to UTM projection zone 52 and WGS84 datum. Based on
the image-to-image registration method, the 1977 and 1984 MSS images were manually geo-encoded
and matched to the 2004 ETM+ images one by one using a second order polynomial transformation
with an average root mean square error of less than 0.5 pixel units. Since atmospheric influences are
acute to multi-temporal studies of land cover change, the cosine approximation model was employed
to correct the ETM+ and TM images [30,31], and the Dark-Object-Subtraction method was used to
correct the MSS images [30]. Then, the geometrically corrected and radiometrically calibrated images
were cropped to the extent of the study area.

Our analytic approach includes two steps—classification of different categories of land covers
using relevant geospatial tools and estimation of the conversion matrixes between these detected
categories of land covers. Therefore, in this section we first provide an overview of the general process
of land cover classification, together with the algorithms used; then, we illustrate the determination
of conversion matrixes of specific gains and losses for each land-use category. To save space and
maintain focus, we put the supporting accuracy assessment in appendixes. As validating classification
results for long-time series of images is always a problem due to the inadequacy of reference data
availability, we developed a rule-based rationality evaluation scheme according to the specific feature of
LULCC. While it is logically sound, the rule-based rationality evaluation has its deficiencies in regard to
the difference between semantics and programming logic. To assess the classification accuracy more
thoroughly, we also adopted the other commonly used scheme—the spatially balanced sampling method.

Before image classification, the Principal Component Analysis (PCA) method was used to
account for over 98% of the variance [32]. Then, the PCA-enhanced images were first classified
using unsupervised classification. Initially, a modified version of the U.S. Geological Survey Land
Use/Land cover Classification System was employed [33], which includes nine classes—farmland
(dry land and paddy land), forestland (dense forest and sparse forest), grassland (dense grass and
sparse grass), water body, built-up land, and unused land. Fieldwork was carried out in summer 2010
to gain better knowledge of the study area and improve the accuracy of the LULCC classification.
We visited places where we had confusion in our image classification, and we also recorded the
local land use types using GPS. But the GPS data were not used in the accuracy validation because
a high resolution Google Earth image was available then. Ground truth was also helpful for us to
group various sub-categories into land-use categories more accurately. As the water bodies, wetland,
and grassland add up to less than 7% of the whole region and these minor categories are not the focus
of this study, we decided to merge them into the “other” category. Thus, the final classes of land uses
examined in this study are reduced to four—farmland, forestland, built-up area, and other.
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A conversion matrix is commonly employed to demonstrate the land-use transitions.
Pontius et al. [34] pointed out that the conventional conversion matrix has a critical deficiency. If a large
amount of the total land area is transformed from forest to farmland, for example, does this indicate that
the farmers target on the forestland? The authors demonstrated that it is not necessarily so. To answer
the question properly, they proposed to consider the size of each land use category. For a particular
category of land use, the changes of land-use are mainly about “gains” and “losses.” Then, they
calculated the expected value representing a random process of gain based on Equation (1) below,
which assumes the gain of each land-use category is fixed and this gain is then distributed across
other categories according to the relative proportions of other categories at the beginning point of
land-use change in the matrix. That is, the gain in each column is distributed among the off-diagonal
entries within that column. In Equation (1), i stands for row and j for column, so Pi+ stands for the
total percentage of in row i and P+j for the total percentage in column j.

Gij =
(

P+j − Pjj
)
(

Pi+

∑J
i=1,i 6=j Pi+

) (1)

Similarly, Pontius et al. [34] generated an equation for estimating the losses of different classes of
land use. The expected percentages of the loss in a category were random, as given by

Lij = (Pi+ − Pii) (
Pi+

∑J
i=1,i 6=j Pi+

) (2)

where Lij represents the loss on the off-diagonal cells in conversion matrix. Equation (2) assumes the
loss in each category of land use is fixed and it distributes the loss across other categories according
to the relative proportions of the other categories at the ending point of time. Note that, unlike
Pontius et al. [34], which calculated the loss based on the relative proportion of other categories at the
ending point of time, we chose to use the beginning point of time in this study. This is because when
one category is replaced by a combination of other categories through random processes, it should be
based on how those categories populate the landscape in situ, not on the landscape structure in future.
These extended conversion matrixes of specific gains and losses provide more detailed information
than one can get from the conventional ones.

Another limitation of the common conversion matrix is that it is possible for changes to occur
within a class of land use while its aggregate quantity remains the same; however, this possibility is
not reflected in this type of matrix. For example, forests could be cleared in some places while the same
amount of forest could be gained elsewhere. Pontius, et al. [34] called this kind of change a “swap”.
Thus, swap (locational change) and net change (quantity change) together represent a composite of the
total changes of LULCC transitions.

3. Results

To be more constructive, we present our results from different perspectives below. First, we show
the general trends of regional LULCC over the three decades. Then, we examine the estimated gains
and losses of different land-use categories over time. Finally, we assess the impact of the NFPP.

3.1. General LULCC Trends

The classified LULCC images are shown in Figure 2. Considering both adequate representation
and space saving, we selected those of 1977, 2000, and 2013 to highlight the structural makeup and
temporal trends of the regional LULCC. It can be seen that among the four categories, farmland
and forestland are the two dominant classes of land use. Further, while farmland and built-up land
expanded considerably, forestland and other land suffered large losses. As noted earlier, two accuracy
assessment methods were employed to validate the classification results—the rule-based rationality
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evaluation technique [35] and the spatially balanced sampling method [36]. Overall, the assessment results
demonstrate that the classification results are fairly robust and accurate (see Appendixs A and B details).
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Figure 2. Classified land use and land cover change maps of the study region in 1977, 2000, and 2013.

Figure 3 below shows the trajectories of the four land-use classes from 1977 to 2013. First, it can
be seen that farmland increased from only 14,302 km2 in 1977 to 17,194 km2 by 2007 when it leveled
off, while built-up area increased steadily during the 37 years. In contrast, forestland experienced
a sharp loss before 2000 and, thereafter, it became gradually stabilized but not expanded. That is,
it amounted to 12,294 km2 in 1977 but shrank to only 9789 km2 in 2000—about 20.4% loss. Afterwards,
the aggregate area of forestland remained stable following implementation of the NFPP. While built-up
land grew steadily, especially from the early 1990s, other land suffered continuous loss for the whole
period with a smaller rate of decline after 2004.
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3.2. “Gain” and “Loss” of Each Land-Use Category

Tables 1 and 2 report the extended conversion matrixes with specific gains and losses. Note that
the rows in a conversion matrix display the categories of the beginning point of time, and the columns
display the categories of the ending point of time. Entries on the diagonal line indicate the persistence
of each category, whereas those off the diagonal line indicate transitions from the row category to the
column category. Listed vertically, each block in these tables contains four values: the observed value,
the expected value, the difference between the observed and expected values, and the percentage ratio
of difference calculated by dividing the difference by the expected amount of land conversion and
multiplied by 100 percent.

Table 1. Land-use changes over time with estimated gains for each category.

2013
Losses

1977 Total 1977 Farm Forest Other Built-up

Farm

O 1 49.27 42.98 2.10 0.59 3.61 6.29
E 2 47.97 42.98 2.33 0.43 2.23 4.99

O – E 3 1.30 0.00 −0.24 0.15 1.38 1.30
(O – E)/E 4 2.71 0.00 −10.22 35.73 62.18 26.04

Forest

O 42.35 10.72 30.77 0.22 0.65 11.58
E 45.40 12.35 30.77 0.37 1.91 14.63

O – E −3.05 −1.63 0.00 −0.15 −1.27 −3.05
(O – E)/E −6.72 −13.22 0.00 −40.36 −66.20 −20.83

Other

O 7.03 3.56 0.61 2.66 0.20 4.37
E 5.36 2.05 0.33 2.66 0.32 2.70

O – E 1.67 1.51 0.28 0.00 −0.12 1.67
(O – E)/E 31.07 73.48 83.35 0.00 −37.00 61.71

Built-up

O 1.35 0.52 0.03 0.01 0.80 0.55
E 1.27 0.39 0.06 0.01 0.80 0.47

O – E 0.08 0.13 −0.04 0.00 0.00 0.08
(O – E)/E 6.52 32.03 −60.90 −37.76 0.00 17.61

Total 2013

O 100 57.77 33.50 3.48 5.26 22.80
E 100 57.77 33.50 3.48 5.26 22.80

O – E 0.00 0.00 0.00 0.00 0.00 0.00
(O – E)/E 0.00 0.00 0.00 0.00 0.00 0.00

Gains

O 22.80 14.79 2.73 0.82 4.46
E 22.80 14.79 2.73 0.82 4.46

O – E 0.00 0.00 0.00 0.00 0.00
(O – E)/E 0.00 0.00 0.00 0.00 0.00

1 The bold figures are the observed percentages (O); 2 the regular figures are the expected percentages (E) under
the assumption that the loss to each category is random. The expected losses were calculated according to
Equation (2); 3 the figures in both bold and italics are the difference (O – E) between the observed and the
expected values; 4 and the figures in italics only are the result of the differences divided by the expected values
(O – E)/E, multiplied by 100%. The cell blocks in light gray are the diagonal blocks in the conversion matrix
and those in dark gray are particularly in the text.
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Table 2. Land-use changes over time with estimated losses for each category.

2013
Losses

1977 Total 1977 Farm Forest Other Built-up

Farm

O 1 49.27 42.98 2.10 0.59 3.61 6.29
E 2 49.27 42.98 4.99 0.52 0.78 6.29

O – E 3 0.00 0.00 −2.89 0.07 2.83 0.00
(O – E)/E 4 0.00 0.00 −58.01 13.15 360.98 0.00

Forest

O 42.35 10.72 30.77 0.22 0.65 11.58
E 42.35 10.06 30.77 0.61 0.92 11.58

O – E 0.00 0.65 0.00 −0.38 −0.27 0.00
(O – E)/E 0.00 6.49 0.00 −63.45 −29.37 0.00

Other

O 7.03 3.56 0.61 2.66 0.20 4.37
E 7.03 2.61 1.52 2.66 0.24 4.37

O – E 0.00 0.94 −0.90 0.00 −0.04 0.00
(O – E)/E 0.00 36.07 −59.71 0.00 −15.86 0.00

Built-up

O 1.35 0.52 0.03 0.01 0.80 0.55
E 1.35 0.34 0.20 0.02 0.80 0.55

O – E 0.00 0.18 −0.17 −0.01 0.00 0.00
(O – E)/E 0.00 54.39 −87.19 −63.65 0.00 0.00

Total 2013

O 100 57.77 33.50 3.48 5.26
E 100 55.99 37.47 3.81 2.74

O – E 0.00 1.78 −3.97 −0.33 2.52
(O – E)/E 0.00 3.18 −10.60 −8.65 92.08

Gains

O 22.80 14.79 2.73 0.82 4.46
E 22.80 13.01 6.70 1.14 1.94

O – E 0.00 1.78 −3.97 −0.33 2.52
(O – E)/E 0.00 13.67 −59.25 −28.77 130.13

1 The bold figures are the observed percentages (O); 2 the regular figures are the expected percentages (E) under
the assumption that the loss to each category is random. The expected losses were calculated according to
Equation (2); 3 the figures in both bold and italics are the difference (O – E) between the observed and the
expected values; 4 and the figures in italics only are the result of the differences divided by the expected values
(O – E)/E, multiplied by 100%. The cell blocks in light gray are the diagonal blocks in the conversion matrix
and those in dark gray are particularly noted in the text.

A positive difference between expectation and observation indicates that the category in that row
lost more to the category in the column than what would be predicted by a truly random process of
gain (or loss). Table 1 illustrates that farmland gained the largest amount from forestland (10.7% of
the total), but the observed amount is still smaller than expected (12.4% of the total). On the contrary,
the amount of other land (3.6%, wetland mostly) converted into farmland is smaller than that from
forestland, but proportionally the observed amount of conversion exceeds the expected amount by
73.5%. Built-up land targeted farmland with 3.6% of the total land being converted, about 62.2%
in excess of the expected amount. Table 2 indicates that forestland loss during the whole period is
roughly the same amount as expected (10.7% vs. 10.1%), while wetland loss is comparatively larger
than expected (3.6% vs. 2.6%). Similarly, the loss from farmland to built-up area is also quite striking,
much more than what would be expected (3.6% vs. 0.8%). These findings have corroborated the land
transition trends derived from the “gain” analysis and thus led to an important insight—even though
forestland witnessed the heaviest loss to farmland, wetland suffered the largest proportional loss due
to farmland reclamation.

Table 3 lists the systematic land-use transitions during 1977–2013, including the percentages of
losses, gains, net changes, and swaps of each land-use. During the 37 years, 22.8% of the study site
underwent land-use changes. Farmland had the largest gain—14.8% of the total landscape—while
forestland experienced the largest loss—11.6% of the total. Meanwhile, farmland suffered a 6.3% loss
(mostly to wetland and built-up) and 2.7% of the total area was reforested by 2013, resulting in a swap
change of 12.6% and 5.5% for farmland and forestland, respectively. The net changes for these major
land-use categories are also large. Farmland gained 8.5% while forestland lost 8.9%.
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Table 3. Percentages of gains, losses, net changes, and swaps of different land uses.

1977 2013 Gains Losses Total Change Net Swap

Farm 49.27 57.77 14.79 6.29 21.08 8.50 12.58
Forest 42.35 33.50 2.73 11.58 14.32 −8.85 5.46
Other 7.03 3.48 0.82 4.37 5.18 −3.55 1.63

Built-up 1.35 5.26 4.46 0.55 5.01 3.90 1.11
Total 100.00 100.00 22.80 22.80 45.59 0.00 20.78

3.3. Quantification of the NFPP’s Effect

Here, we selected two sub-periods before and after 2000—the period of 1993–2000 and the
period of 2000–2007—in our estimation. To make a sound comparison of the “before” and “after”
scenarios, we decided that the time interval for both periods should be the same and sufficiently long.
The calculation procedures are the same as those used in Section 3.2. To avoid repetition, we list the
most essential information from the “gain” and “loss” tables in Table 4 below.

Table 4. Percentages of gains, losses, net changes, and swaps of different land uses before and after the
Natural Forest Protection Program (NFPP) was initiated.

Period Classes Time 1 Time 2 Gains Losses Total Change Net Swap

1993–2000

Farm 56.11 57.85 7.61 5.87 13.48 1.74 11.74
Forest 35.58 33.72 3.96 5.82 9.78 −1.86 7.93

Built-up 3.34 3.88 0.95 0.42 1.37 0.54 0.83
Other 4.96 4.54 1.43 1.85 3.28 −0.42 2.86
Total 100 100 13.95 13.95 27.90 4.55 23.36

2000–2007

Farm 57.85 59.23 6.39 5.01 11.40 1.38 10.02
Forest 33.72 32.76 4.24 5.21 9.45 −0.97 8.48

Built-up 3.88 4.86 1.07 0.10 1.17 0.97 0.20
Other 4.54 3.16 0.33 1.72 2.05 −1.39 0.66
Total 100 100 12.03 12.03 24.07 4.71 19.36

Difference 1

Farm −1.74 −1.38 1.22 0.86 2.08 0.36 1.72
Forest 1.86 0.96 −0.28 0.61 0.33 0.89 −0.55

Built-up −0.54 −0.98 −0.12 0.32 0.20 −0.43 0.63
Other 0.42 1.38 1.10 0.13 1.23 −0.97 2.20
Total 0.00 0.00 1.92 1.92 3.83 −0.16 4.00

1 Differences resulted from the values from 1993 to 2000 minus the values from 2000 to 2007.

It was found that during the period before 2000, 13.5% of the landscape was transformed.
Farmland gained 7.6% and lost 5.9%, whereas forestland gained almost 4.0% and lost 5.8%. Built-up
area increased by 0.5% and other decreased by 0.4%, respectively. In the second period (2000–2007),
the total gain of farmland was 6.4% while its total loss was 5.0%, leading to a net gain of 1.4%.
Forestland experienced an even smaller loss, with a total gain of 4.2% and a total loss of 5.2%. Built-up
land expanded considerably, with a net increase of 0.4%. There was also a small increase in other
land. Meanwhile, the larger swaps during 2000–2007 suggest that forests recovered more than before,
resulting from efforts of reforestation in farmland-dominant counties, such as Suibin and Youyi. In sum,
these trends indicate a slightly positive initial impact of the NFPP.
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4. Discussion and Conclusions

The primary objective of this study was to determine whether or not the NFPP had been effective
in protecting the natural forests in northeast China, where the program had been heavily concentrated.
The existing studies of the effectiveness and impact of the NFPP tended to focus on the short-term
outcomes, few efforts had been made to put the regional land-use situation in an adequate historical
context and to investigate the early depletion and possible recent recovery of natural forests over
a sufficiently long period of time. Thus, we decided to assess the temporal dynamics of LULCC in
Heilongjiang between 1977 and 2013 and to use class-based conversion analysis to understand the
LULCC transitions.

The LULCC classification and analysis show that the study region has undergone enormous
land-use changes. It was identified that the total forestland declined from 12,294 km2 in 1977 to
9790 km2 in 2000—a more than 20% loss. Thereafter, it became stabilized following the implementation
of the NFPP; meanwhile, forest recovery in the farmland-dominant counties became more prevalent
after the NFPP was introduced. Overall, forestland and farmland are the two dominant categories in the
region and a large amount of forestland was converted into farmland early on. Further, while forestland
suffered the largest loss in absolute terms, wetland experienced the largest loss in proportional terms.
Additionally, mainly through farmland conversion, built-up land gained continuously. We synthesized
these results in Figure 4 to reflect the dominant land-use conversions.
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To verify our results of the forestland changes over time, we compared the mapping products
for the same study region, done by the Global Forest Watch (GFW) [37]. The GFW analysis indicates
that during the period of 2000–2012, the regional tree cover loss was, respectively, 71.2 km2, 56.9 km2,
and 28.9 km2 with a canopy density greater than 20%, 50%, and 75%. Correspondingly, the regional
tree cover gain, with a canopy density greater than 50%—the only scenario reported by the GFW—was
44.7 km2 during the same period of time. Clearly, these loss and gain figures suggest a very minimal
net loss of the tree cover in the worst scenario. Further, with a forestland of 9789.8 km2 in 2000
(based on our own estimation), the gain and loss are both within 1% of the total. Together, this evidence
supports our conclusion that the total area of forestland has become gradually stabilized following
implementation of the NFPP.

Notably, our results show that forestland decline did not stop completely right after the initiation
of the NFPP. Instead, it lasted until about 2007 and then leveled off. Obviously, this has to do with the
tremendous inertia of the land-use dynamics—it takes time for a policy, even as significant as the NFPP,
to take effect. In other words, there was a time lag between the initiation of the policy and discernable
recovery of the forest cover. Moreover, even if we have identified that the NFPP played a positive
role in controlling the further expansion of agriculture and thus deforestation, it remains unclear
what other factors, and to what extent, have affected the forest dynamics over time. For instance,
we observed that in addition to strict conservation of the existing forests, the region strengthened
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efforts of reforestation and afforestation. Also, more and more local population migrated out for job
and education opportunities in urban areas. To properly attribute the changes in different land-use
classes to these and possibly other factors, therefore, a careful investigation of the LULCC driving
forces is necessary and worthwhile. However, doing so is beyond the scope of the current study, which
has been focused on detecting the changes in forest and other land uses induced by implementing
the NFPP. Future research should address the driving forces of the regional land-use change as well
as topics like the longer-term commitment to forest management and monitoring for more effective
policy implementation and forest ecosystem sustainability.

While the above empirical findings are encouraging, limitations exist due to data inconsistency
and other factors. To trace the land-use dynamics, available MSS data were used for the first two points
of time (1977 and 1984). However, it is well known that the accuracy of MSS images is relatively
low because of their coarser resolution [38]. As an example, it appears that built-up land has been
underestimated because some small residencies were dispersed in a mosaic of other land uses, mostly
likely dry farmland. Also, forest cover change is only one measure of the forest conditions. To better and
more comprehensively understand the effects of the NFPP, factorial cover, stocking level, and structural
change, among others, should also be incorporated into the future work.
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Appendix A. Accuracy Assessment of Classified LULCC—Rule-Based Rationality Evaluation

Validating classified LULCC results from a long series of images is always a problem because
simultaneous reference data are frequently not available. The rule-based rationality evaluation,
suggested by Liu et al. [35,39], can be used as an alternative accuracy assessment technique.
The advantage of this method is that it employs only a set of rules and no reference map is needed.

Given that the classified images cover eight points of time (1977, 1984, 1993, 2000, 2004, 2007, 2010,
and 2013), the maximum chance for land use change is seven. If t denotes the number of potential
changes over the whole period, then 0 ≤ t ≤ 7. If t equals 0, it means that the pixel under analysis
did not change at all during the whole time under study; if t equals 7, the pixel under investigation
changed classes in each period. Each pixel in each of the eight points of time was grouped into one of
four different assessment outcomes: “Consistent”—the pixel is correctly classified, “Fuzzy”—the pixel
is in a fuzzy state, “Uncertain”—the pixel was fuzzy, misclassified, or a real change remains uncertain,
or “Misclassified”—the pixel is not correctly classified.

Recall that the images are classified into four groups: C1 = “Farmland”, C2 = “Forestland”,
C3 = “Other”, and C4 = “Built-up”. If a change was detected between two neighboring points of time,
it is denoted as T(Ca, Cb). So, T(C2, C4) indicates a pixel that changed from forestland to built-up.
As shown in Figure A1, eight rules are employed to assess the rationality of each pixel change. The rules
are examined in sequential order.
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The eight rules are defined and explained as follows:

Rule 1 If t = 0, then accept “Consistent”.
Rule 2 If t = 1, i.e., T(Ca, Cb), AND if (a==4)||(a==3&&b==4), THEN accept “Misclassified”;

otherwise, “Consistent”.
Rule 3 If t = 2, i.e., T(Ca, Cb, Cc), AND if (a==4)||(b==4)||(b==3&&c==4), THEN accept

“Misclassified”. Otherwise, check if (a==c). If so, “Uncertain”; otherwise, “Fuzzy”.
Rule 4 If t = 3, i.e., T(Ca, Cb, Cc, Cd), AND if (a==4)||(b==4)||(b==3&&c==4), THEN accept

“Misclassified”; otherwise, “Fuzzy”.
Rule 5 If t = 4, i.e., T(Ca, Cb, Cc, Cd, Ce), AND if (a==4)||(b==4)||(c==4)||(d==4)

||(d==3&&e==4), THEN accept “Misclassified”; otherwise, “Fuzzy”.
Rule 6 If t = 5, i.e., T(Ca, Cb, Cc, Cd, Ce, Cf), AND if (a==4)||(b==4)||(c==4)||(d==4)

||(e==4)||(e==3&&f==4), THEN accept “Misclassified”; otherwise, “Fuzzy”.
Rule 7 If t = 6, i.e., T(Ca, Cb, Cc, Cd, Ce, Cf, Cg), AND if (a==4)||(b==4)||(c==4)||(d==4)

||(e==4)||(f=4)||(f==3&&g==4), THEN accept “Misclassified”; otherwise, “Fuzzy”.
Rule 8 If t = 7, i.e., T(Ca, Cb, Cc, Cd, Ce, Cf, Cg, Ch), AND if (a==4)||(b==4)||(c==4)

||(d==4)||(e==4)||(f=4)||(g=4)||(g==3&&h==4), THEN accept “Misclassified”;
otherwise, “Fuzzy”.

There are two important assumptions behind these eight rules. First, the change to built-up from
other land-use classes is irreversible, so that any pixel that is classified as built-up in a previous point
of time and later placed into any other land use class would be regarded as a misclassification. Second,
it is also uncommon to build on wetland; therefore, conversions from wetland to built-up are all treated
as misclassifications.
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Rule 1 is straightforward; if a pixel is classified in the same land-use class for all six periods,
then the pixel is regarded as “consistent”. Rule 2 concerns the situation when a once-only change
is detected for a pixel. If the land conversion direction is true (T) with the two misclassification
statements, then the change is labeled “misclassified”. In other cases, we take it as a possible change
and thus regard it as correctly classified (“consistent”). Similar to Rule 2, Rule 3 first defines that if
the reverse process (i.e., change from built-up area to another land-use type) or the unlikely process
(i.e. change from built-up to other) were detected, the change is taken as misclassified. This rule deals
with a one-time error of multi-temporal remote sensing image classification. If a pixel is found to have
changed from one class (Ca) to another (Cb) and back to its original status (Ca), it could be taken as
a one-time classification error (i.e., Cb is the incorrect class), or it could be that the pixel itself is fuzzy
and thus could be classified as Ca or Cb. This one-time inconsistent situation does not affect the final
result of cover detection, but it is hard to tell whether it is a classification error or not, so the pixel
is regarded as “Uncertain”. Finally, Rule 3 specifies the treatment of a case where the land-use type
changed twice to two different classes during the whole study period. In this case, we consider the
pixel “Fuzzy” with a composite land use type.

Rules 4, 5, 6, 7, and 8 consider pixels that change frequently between cover types. This is most
likely a consequence of mis-registration in geometric image rectification (Townshend et al. 1992,
Stow 1999). Obviously, the reverse process and the unlikely process would be both improbable
according to Rule 2. For other similar pixels, this can be considered as a “Fuzzy” case with frequent
cover classes.

Since, in this study, a county is the basic socioeconomic unit of observation and analysis, the
pixel-based results of LULCC detection are represented at the county level in Figure A2 below. Overall,
the rationality evaluation accuracy in aggregate are generally acceptable when the “Misclassified” rate
is low—less than 5% for all the 10 counties. On average, it is only 1.84% for the whole study area.
The pixels classified as “Consistent” account for 70.94% of the total, and “Uncertain” and “Fuzzy”
rates are around 14.42% and 12.80%, respectively.
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“Uncertain”, and “Fuzzy”, respectively. The ten counties are: Huachuan = 1, Jixian = 2, Shuangyashan
City = 3, Huanan = 4, Yilan = 5, Boli = 6, Qitaihe City = 7, Fangzheng = 8, Suibin = 9, and Youyi = 10.

From Figure A2, it is not hard to infer that the “Uncertain” and “Fuzzy” classes are among the
most active pixels where land conversion tends to take place. One possible explanation for these
high rates is: as most counties in the study region are located alongside the Songhua River, and
summer is usually the rainy season, large tracks of farmland on the riverside are flooded, thus the
possibility of classifying these pixels as “Uncertain” and “Fuzzy” is larger than other area. Since some
of the once-only land use changes determined by Rule 2 are also regarded as “Consistent”, thus,
the unchanged land is smaller than the total amount denoted as “consistent”, and the potential LULCC
change is possibly larger than that reflected in the proportion of “Uncertain” and “Fuzzy”.
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The rule-based rationality evaluation is not only logically sound, but also good at identifying
spatially specific areas that are changed and unchanged, especially at recognizing the misclassification,
which is helpful for further classification correction. However, there are also deficiencies in this
method. The most important one is the difficulty in matching the programming language and semantic
meaning used to differentiate different accuracy evaluation scenarios. For example, the “misclassified
rate” is defined based on the two most important and logically identifiable cases, but it is not the
common misclassification rate as we usually refer to. Also, it is hard to clearly differentiate once-only
changes from fuzzy pixels using Rule 3; thus, the “Uncertain” and “Fuzzy” rates are subject to dispute.
However, it is not easy to choose the words that exactly match the logic of programming.

Another caveat of interpreting the accuracy evaluation results lies in the image geometric
rectification. The multi-temporal image-to-image registration for 1977 and 1984 was controlled
in an allowable range with average root mean square error smaller than 0.5; however, potential
registration errors still exist in the entire image and could possibly affect the accuracy assessment of
those pixels that lie on the frontiers of land conversion (like on the forestland and wetland boundaries).

Appendix B. Accuracy Assessment of Classified LULCC—The Traditional Approach

Due to limitations of the rule-based rational evaluation method, the commonly adopted accuracy
assessment scheme is also employed. To validate the accuracy of the classified LULCC results under
this method, the simple equation used to estimate sample size is adopted: N = Z2

α/2P (1− P) /CI [40].
The overall accuracy P for each class of land use is usually assumed to be 80%. CI is the half width of
the confidence interval; a value of 0.05 is often taken. Following the conventional practice, Z2

α/2 is set
at 1.96. The calculated results suggest that sample size for each category should be at least 246. Given
the four landscape classes, about 1000 points are thus needed to be drawn from the map of the whole
study region.

To this end, the spatially balanced sampling method, which draws sample points proportional to
the presence of the area [36], was used to generate 1200 points in the study area. Google Earth was
used as the reference data for 2000, 2004, and 2007, respectively (images before 2010 were classified in
2009, whereas images of 2010 and 2013 were classified in 2016). After the layer of randomly sampled
points was created, it was converted into a KML file readable by Google Earth and the categories of
those points on Google Earth were marked. Next, the extracted Google Earth map information was
compared to the classification results [41,42]. Based on the two datasets for the same points, the Kappa
indices and conversion matrixes can be derived. During this process, an error in ArcMap 10 occurred,
which provided wrong numbers in the attributes table. This led to the density of sampling points
being incorrectly estimated, with less than 40 points for the minor LULCC categories (built-up and
other). To get a larger sample to alleviate this problem, another 400 randomly generated sample points
were added to the two minor categories. In the end, the total sample size reached 1550 points.

For the land-use maps before 2000 (1977, 1984, and 1990), it is not feasible to directly take
a reference map from Google Earth, because most images in Google Earth are from after 2000. Because
no other kinds of maps were available, it was hard to get a reliable reference for those earlier years.
Therefore, we took the following two steps to address the problem. First, note that the four classes
of land use are not easily re-convertible. For example, it is highly less likely for forestland to be
converted to farmland and then reconverted back to forestland. Thus, the first step was to select
those consistent points from a land-use classification map from an earlier period and the Google Earth
data from 2004 in the whole sample and take those points as unchanged. The second step was to
extract the inconsistent points and compare them with the original images. As the geo-corrected
and atmospheric-adjusted images are the best available reference data, the inconsistent points were
manually recorded to distinguish points of real change from misclassifications. One thing to be noted
here is that due to the lower resolution of MSS data in 1977 and 1984, some confusion occurred in
farmland and built-up area, so a compromise is to merge these two classes and assess accuracy of them
together as one class.
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When the images of 2010 and 2013 were classified in 2016, the first step of selecting consistent
points was the same as that of the pre-2000 image accuracy assessment. The second step was altered
by taking the newly updated Google Earth images as the reference data. In doing so, time efficiency
was gained in step one while the accuracy was improved in the second step.

Based on the above steps, the accuracy assessment results are summarized in Table B1. The overall
accuracy rates for the eight points of time are around or above 85%. For 1977 and 1984, as the MSS
data have coarser spatial resolution than TM and ETM+ images, we merged farmland and built-up
land into one category, called F&B. The overall accuracy based on three classes for 1977 and 1984 is
91.6% and 90.5%, respectively; and the overall Kappa indexes are 86.1% and 84.2%. The classifications
of the maps for the other six points of time include four LULCC categories: farmland, forestland,
built-up land, and other. The overall accuracy rates for these six periods are around 85%, and the
Kappa indexes are about 80%. Given the large sample size, the standard deviations and coefficients of
variation for both overall accuracy and Kappa indexes are very small.

Table B1. Overall accuracy assessment of the LULCC classification results.

Year OA 1 (%) Std 2 (10−2) CV 3 (%) Kappa (%) Std (10−2) CV (%)

1977 4 91.61 0.70 0.76 86.14 1.16 0.74
1984 5 90.52 0.74 0.82 84.17 1.24 0.68
1993 87.81 0.83 0.95 82.21 1.21 0.68
2000 84.24 0.93 1.10 77.15 1.35 0.57
2004 86.24 0.88 1.02 80.09 1.28 0.63
2007 89.08 0.79 0.89 84.44 1.13 0.75
2010 88.63 0.81 0.90 83.66 1.16 1.40
2013 86.43 0.87 1.00 80.38 1.26 1.60

1 OA stands for overall accuracy; 2 Std for standard deviation; 3 and CV for coefficient of variation showing the
extent of variability in relation to the overall accuracy; 4,5 Classes of farmland and built-up in the periods of
1977 and 1984 were merged together due to the coarse resolution of MSS data.

The class-specific land use accuracy results are summarized in Tables B2 and B3, respectively.
In both tables, the left block is the common confusion matrix [43]; the middle block contains the
calculated indices of user’s accuracy (UA); and the right block contains the indices of producer’s
accuracy (PA). To be thorough, the tables also include the Kappa index reflecting the difference between
the classification agreement and the agreement expected by chance [44]. Some authors argue that this
index tends to underestimate the accuracy [45]. The calculated values are generally lower than those
from the UA and PA statistics.

Table B2. LULCC category-based accuracy assessment for 1977 and 1984.

F&B Ft Other UA Kappa Std PR Kappa Std

F&B 705 16 18 0.95 0.91 0.02 0.89 0.78 0.02
1977 Ft 63 513 4 0.88 0.82 0.02 0.97 0.95 0.01

Other 28 1 201 0.87 0.85 0.03 0.90 0.88 0.02
F&B 741 12 29 0.95 0.89 0.02 0.88 0.76 0.02

1984 Ft 61 459 7 0.87 0.81 0.02 0.97 0.96 0.01
Other 38 0 203 0.84 0.81 0.03 0.85 0.82 0.03

F&B stands for farmland and built-up, Ft for forest, and other includes wetland, grassland, and unused
land. UA and PA stand for user’s and producer’s accuracy, respectively. Std stands for standard deviation.
The number of observations was 1549 in 1977 and 1550 in 1984.
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Table B3. LULCC category-based accuracy assessment for later years.

Fm Ft Other Bltup UA Kappa Std PR Kappa Std

1993

Fm 585 15 65 19 0.86 0.75 0.02 0.89 0.8 0.02
Ft 33 443 5 3 0.92 0.88 0.02 0.96 0.95 0.01

Other 28 1 170 1 0.85 0.82 0.03 0.69 0.65 0.03
Bltup 12 1 6 163 0.9 0.88 0.03 0.88 0.86 0.03

2000

Fm 559 38 36 12 0.87 0.76 0.02 0.81 0.67 0.02
Ft 64 393 2 5 0.85 0.79 0.02 0.89 0.84 0.02

Other 56 9 186 3 0.73 0.69 0.03 0.81 0.78 0.03
Bltup 13 1 5 166 0.9 0.88 0.03 0.89 0.88 0.03

2004

Fm 564 30 30 7 0.89 0.81 0.02 0.82 0.69 0.02
Ft 63 406 2 7 0.85 0.79 0.02 0.92 0.89 0.02

Other 50 4 195 2 0.78 0.74 0.03 0.85 0.82 0.03
Bltup 15 1 2 170 0.9 0.89 0.02 0.91 0.9 0.02

2007

Fm 561 13 6 3 0.96 0.93 0.01 0.81 0.7 0.02
Ft 43 422 3 0 0.9 0.86 0.02 0.96 0.94 0.01

Other 71 4 216 5 0.73 0.68 0.03 0.95 0.94 0.02
Bltup 17 2 2 180 0.9 0.88 0.02 0.96 0.95 0.02

2010

Fm 569 12 33 17 0.90 0.83 0.02 0.87 0.78 0.02
Ft 39 429 9 1 0.90 0.85 0.02 0.94 0.91 0.02

Other 37 14 198 2 0.79 0.75 0.03 0.83 0.79 0.03
Bltup 11 1 0 176 0.94 0.93 0.02 0.90 0.88 0.02

2013

Fm 566 17 33 15 0.90 0.81 0.02 0.82 0.69 0.02
Ft 56 415 5 2 0.87 0.82 0.02 0.94 0.91 0.02

Other 54 7 188 2 0.75 0.71 0.03 0.83 0.79 0.03
Bltup 16 2 1 169 0.90 0.89 0.02 0.90 0.89 0.02

Fm stands for farmland, Ft for forestland, Bltup for built-up, and other for wetland, grassland and unused land;
UA and PA stand for user’s and producer’s accuracy; and Std stands for standard deviation.

It can be seen from Table B3 that the classification of farmland and forestland—the focal classes
of land use—is reasonably good, with most having an accuracy rate higher than 85%. The accuracy
for built-up land is also reasonable after the 1990s, with all the accuracy rates above 90%. The minor
category of other land, mainly wetland, has a relatively lower accuracy rate. One explanation is related
to the seasonal change: because the dates of the images acquired deviate from those of the reference
Google maps, some farmland and wetland along the Songhua River could have different boundaries.
Meanwhile, in a 30-by-30-m pixel, some sub-pixel areas may include more than one land use classes.
Lastly, small positional deviations between Landsat images and images in Google Earth could also be
a potential source for lower accuracy [46,47].
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