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Abstract:Accurate biomass estimations are important for assessing and monitoring forest carbon 

storage. Bayesian theory has been widely applied to tree biomass models. Recently, a hierarchical 

Bayesian approach has received increasing attention for improving biomass models. In this study, 

tree biomass data were obtained by sampling 310 trees from 209 permanent sample plots from 

larch plantations in six regions across China. Non-hierarchical and hierarchical Bayesian 

approaches were used to model allometric biomass equations. We found that the total, root, stem 

wood, stem bark, branch and foliage biomass model relationships were statistically significant 

(p-values < 0.001) for both the non-hierarchical and hierarchical Bayesian approaches, but the 

hierarchical Bayesian approach increased the goodness-of-fit statistics over the non-hierarchical 

Bayesian approach. The R2 values of the hierarchical approach were higher than those of the 

non-hierarchical approach by 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 for the total tree, root, stem 

wood, stem bark, branch and foliage models, respectively. The hierarchical Bayesian approach 

significantly improved the accuracy of the biomass model (except for the stem bark) and can reflect 

regional differences by using random parameters to improve the regional scale model accuracy. 

Keywords:larch; non-hierarchical Bayesian approach; hierarchical Bayesian approach; biomass model 

 

1. Introduction 

Larch (Larixspp.) is a commercially valuable timber that is widely planted in the mountains of 

North, Northeast and Southwest China because of its straight shape and high resistance to bending 

and cracking. Chinese larch plantations comprise approximately 3.14 million ha, accounting for 6.66% 

of all timber plantations, with a volume of approximately 18.4 million m3, accounting for 7.42% of 

the total plantation volume. China contains the largest area of larch plantations in the world [1]. 

The plantation biomass and carbon sequestration calculations have been studied by numerous 

researchers [2–4]. The calculations are a prerequisite for understanding carbon pool dynamics in 

plantations. Allometric equations are commonly used to quantify plant biomass based on the 

relationship between tree biomass and diameter [5–7]. The biomass and diameter data sets are 

typically collected from sample plots in the field. This technique is generally destructive, 
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labour-intensive and time-consuming [8]. Established allometric equations can be applied to 

quantify and monitor tree biomass, as tree diameter can be directly measured in the field. 

Selecting the appropriate estimation technique is critical for accurate biomass estimations. Most 

studies estimate allometric equation parameters using ordinary least-squares or 

maximum-likelihood methods, which represent a classic statistical approach. Mauricio et al. [9] 

applied Bayesian methods to estimate aboveground tree biomass using data from six trees, 

producing similar fitting results as the classic statistical method that used data from 40 to 60 trees. 

Zhang et al. [10] confirmed that the Bayesian method with informative priors outperformed 

non-informative priors and the classic statistical approach.Bayesian estimates of allometric 

equations may be effectively applied in one location, but produce significantly different results 

when applied elsewhere [11,12]. In recent years, the random variations between geographical 

locations [13] or among individual samples [14] have gained increasing attention. However, 

allometric equations based on traditional statistical methods ignore regional variations [15,16]. 

A hierarchical Bayesian approach can incorporate regional variations during the model fitting 

process [17,18]. When data are obtained from multiple regions, the hierarchical Bayesian approach 

assumes that subjects (e.g., trees) in the same spatial region share common attributes [19]. This 

approach allows for the estimation of a very broad range of equations and can yield more realistic 

assessments of parameter estimate uncertainties[18,20–22]. The hierarchical Bayesian approach has 

been applied to forestry [23–25], but has rarely been used to establish a regional scale biomass model. 

In this study, we applied a hierarchical Bayesian approach to fit allometric biomass equations and 

compared non-hierarchical and hierarchical Bayesian approaches for estimating the biomass in 

China’s larch plantations. 

2. Materials and Methods 

2.1. Study Sites 

The biomass data were collected from six different larch plantation regions in China (Figure 1, 

Table1). The experimental sites in this study encompassed the main timber production larch 

plantation regions in China. L1 is the Changlinggang Forest Farm (30°48′ N, 110°02′ E) in Jianshi 

County, Hubei Province, in the northern subtropical region, which is dominated by Japanese 

larch(Larixkaempferi Carr). L2 is the Xiaolongshan Research Institute of Forestry (34°09′ N, 105°52′ E) 

in Tianshui City, Gansu Province, in the warm–temperate region, which is also dominated by 

Japanese larch. L3 is the MulanWeichang National Forestry Administration Bureau (41°43′ N, 118°7′ E) 

in Weichang County, Hebei Province, which is dominated by North Chineselarch(Larixprincipis- 

rupprechtii Mayr). L4 is the Dagujia Forest Farm (42°21′ N, 124°52′ E) in Qingyuan County, Liaoning 

Province, which is dominated by Japanese larch. Both L3 and L4 are located in a temperate region. 

L5 is the Mengjiagang Forest Farm (46°32′ N, 129°10′ E) in Jiamusi City, Heilongjiang Province, 

which is dominated by Korean larch (Larixolgensis Henry). L6 is the Wuerqihan Forestry Bureau 

(49°34′ N, 121°25′ E) in Yakeshi City, Inner Mongolia, which is dominated by Chinese larch 

(Larixgmelini Kuzen). Both L5 and L6 are located in a cold–temperate region. These locations span 

the majority of the larch plantation areas in China. 

Table 1. Six larch plantation study regions. 

Regions Species Plots 
Location Altitude 

(m) 

Sample 

Trees Longitude (E) Latitude (N) 

L1 L. kaempferi 34 109°21′~111°07′ 29°05′~31°20′ 1800~2500 40 

L2 L. kaempferi 33 105°48′~106°05′ 34°09′~34°16′ 800~1600 60 

L3 L. principis-rupprechtii 36 116°32′~117°14′ 41°35′~42°40′ 1200~1800 62 

L4 L. kaempferi 36 124°50′~125°10′ 40°50′~42°22′ 300~700 60 

L5 L. olgensis 34 128°55′~129°15′ 45°31′~46°49′ 200~800 44 

L6 L. gmelini 36 123°36′~125°19′ 51°32′~52°20′ 400~900 44 
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Figure 1. Six larch plantation regions in China. 

We randomly selected 310 trees based on the diameter classes in each plot. Selected trees were 

felled. Tree height, diameter at breast height (DBH), crown length and crown width were measured 

and recorded. Each crown was classified into three classes (top, middle and bottom), and all live and 

dead branches from each canopy class were removed and weighed. Three branches of each canopy 

class were selected, and their foliage and small branches were removed. The stem was cut into 

1-m-long sections and weighed. Then, we took discs from the stem at each cut and separated the 

stem wood from the bark. Roots were manually excavated from the soil surface to their ends along 

the direction of root growth to measure the belowground biomass. All excavated roots were washed 

and sorted into three diameter classes: large (>5.0 cm), medium (2.0–5.0 cm) and small (<2.0 cm). We 

also measured the fresh biomass of each part of the tree, including branches, foliage, stems, bark and 

roots. These subsamples were transported to the laboratory for analysis. 

All subsamples were dried at 80°C and weighed to determine the dry biomass percentage for 

each part of the tree. The dry weight was calculated as the fresh weight of each part multiplied by 

the corresponding dry biomass percentage, while the total dry biomass for the tree was determined 

by summing the dry weights of different parts of the sampled tree (Table 2). 

Table 2. Descriptive statistics of trees sampled for fitting the biomass equations (Std, standard deviation). 

Regions 
DBH(cm) 

Stem Wood 

(Kg) 

Stem Bark 

(Kg) 
Branch(Kg) Foliage (Kg) Root(Kg) Total(Kg) 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

L1 16.5 5.9 68.9 53.6 9.9 7.7 10.9 6.0 3.8 2.9 23.6 12.3 117.2 80.9 

L2 13.0 6.6 38.7 45.9 5.7 5.8 7.0 6.7 2.3 2.2 13.2 16.3 77.0 80.2 

L3 11.5 4.6 35.1 35.0 5.2 5.1 13.2 14.1 3.4 3.5 11.2 12.7 99.5 68.3 

L4 14.5 5.5 78.4 81.9 8.5 7.2 8.4 6.8 3.5 2.7 18.4 19.6 155.1 115.8 

L5 17.8 4.6 87.1 54.6 9.5 4.9 10.7 5.0 3.3 1.2 20.5 13.9 146.4 69.3 

L6 12.4 6.0 55.6 60.9 6.5 6.3 6.3 6.7 1.6 1.6 20.3 21.0 73.0 74.5 

2.2. Bayesian Approach 

By modelling the observed data and unobserved variables, regions can be regarded as random 

variables. The Bayesian approach provides a cohesive framework for combining hierarchical data 

models and external knowledge [22,26]. The Bayesian method is a statistical framework based on 

combining data with prior information about parameter values to derive probabilities of the various 

parameter values [27,28]. In our analysis, the distributional model f(y|θ) represents the biomass data 
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y = (y1,. . .,yj) given a parameter vector θ = (θ1, . . .,θj). Then, π(θ|λ) is determined, where λ is a 

hyperparameter vector[29]. The inference parameter θis based on its posterior distribution: 

 
(1) 

This posterior distribution is used for a Bayesian statistical inference, in contrast to the 

Frequentist method, which uses f(y|θ) for inference. The f(y|θ) provides the distribution of y 

assuming θ is known, which is considered a likelihood function when viewed as a function of the 

parameters. The prior distributions of π(θ|λ) can be obtained from parameters reported in the 

literatureor using vague priors. 

2.3. AllometricModels 

Numerous models have been developed for estimating tree biomass, especially based on the 

allometric equations: W = aDBHb and W = a(DBH2H)b (where W is the tree biomass, DBH is the 

diameter at breast height, and H is the tree height). DBH is often used in biomass equations [11,30,31] 

and is more easily obtained than H. Therefore, W = aDBHb was applied as the biomass model in this 

study. However, a heteroscedasticity exists when directly fitting tree biomass. Typically, logarithms 

(ln(W) = ln(a + b) ln(DBH)) can counteract heteroscedasticity [32]. Thus, the total tree, root, stem 

wood, stem bark, branch and foliage biomasses were modelled using the following log-transformed 

allometric equation: 

iii ebxay   (2) 

Where yi is the log-transformed biomass of each part of theith sampled tree, xi is the log-transformed 

DBH of the ith sampled tree, and a and b are the intercept and slope, respectively. The error term ei 

assumes a normal distribution with a mean of zero and constant varianceσ 2. 

2.4. Modelling Approaches 

2.4.1. Non-Hierarchical Bayesian Approach 

The non-hierarchical Bayesian structure is shown in Figure 2.The observed values xi are shown 

at the bottom. θ represents the unknown parameters of a and b associated with probability 

distribution f (y|θ). In the non-hierarchical Bayesian approach, the parameters in Equation (2) are 

treated as random variables. This approach was used to fit Equation (2), as given by: 
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Figure 2. Bayesian non-hierarchical structure. 
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2.4.2. Hierarchical Bayesian Approach 

Our data were collected fromsix different spatial regions and four species, which exhibit typical 

hierarchical data characteristics (Table 1). Figure 3 summarizes the hierarchical Bayesian approach. 

The biomass data can be used to estimate parameter θi for each region. Thus, the allometric equation 

for the hierarchical Bayesian approach can be written as follows: 

iijjjij exbay  )()(  (4) 

Where yj(i) and xj(i) are the log-transformed biomass y and DBH of the ith tree in the jth region, 

respectively, and aj and bj are the intercept and slope of the jth region.The error term ei assumes a 

normal distribution with a mean of zero and constant variance. 

Our analysis hierarchically interprets the parameter estimation problem using cross-regional 

biomass data (Figure 3). Parameters aj and bj have specific values for each region, allowing for 

polymorphic lines and multiple asymptotes. For the jth region of theith tree, the parameter θj in 

Equation (4) is defined as: 
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The hierarchical Bayesian approach is used to fit Equation (4), as given by: 
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Where nj is the number of regions. 

 

Figure 3.Bayesian hierarchical structure. 

2.5. PriorParameter Distributions 

The choice of prior distributions for each parameter is critical in the Bayesian method [33]. 

Zhang et al.[10] found that Bayesian analyses with non-informative priors and a classic statistical 

approach yielded results that were similar to using parameters and statistics to fit allometric biomass 

equations. However, the Bayesian method with informative priors performed better than the 

non-informative priors and classic statistical approach. Thus, the appropriate prior distribution 

selections for all parameters are critical for improving the model precision. The prior distribution 

information can be obtained from parameters reported in the literature. In this study, the prior 

distributions of a and b (total tree, root, stem wood, stem bark, branch and foliage) were obtained for 

36 biomass equations from 6 Chinese larch publications (Table S1). We assumed that a and b follow a 

bivariate normal distribution ),( N , where ),( ba   is a vector of means and   is the 

covariance matrix (Table 3). 
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Table 3. Prior parameter distributions from the published literature for each equation. 

Component a  b    

Total tree −1.834 0.843 








     

   

006.0032.0-

032.0-248.0
 

Root −3.769 0.856 








     

   

060.0302.0-

302.0-232.0
 

Stem wood −2.649 0.888 








     

   

004.0022.0-

022.0-214.0
 

Stem bark −3.539 0.694 








     

   

031.0149.0-

149.0-056.1
 

Branch −3.113 0.641 








    

   

089.0375.0-

375.0-370.2
 

Foliage −3.719 0.597 








     

   

056.0303.0-

303.0-608.2
 

2.6. Model Fitting 

Using the non-hierarchical Bayesian approach as a base method, we used the nonlinear extra 

sum of squares method and the Lakkis-Jones test to assess whether the hierarchical Bayesian 

approach significantly improved the accuracy of the biomass equation [34,35]. The statistics are 

given by thenonlinear extra sum of squares: 

B

B

BN

BN

SSE

df

dfdf

SSESSE
F )(




  (7) 

And Lakkis-Jones test: 

))((2 2

n

B

N

SSE

SSE
LnL   (8) 

where 
NSSE  is the sum of squares of residuals in the non-hierarchical Bayesian approach, 

BSSE  is 

the sum of squares of residuals in the hierarchical Bayesian approach, Ndf  and Bdf  are the degrees 

of freedom of the non-hierarchical and hierarchical Bayesian approaches, respectively, and n is the 

number of observations used in the model fitting. The F-statistic follows an F-distribution, and the 

L-statistic follows a
2 -distribution with BN dfdfv   degrees of freedom. 

The Markov Chain Monte Carlo (MCMC) algorithm was used to estimate model parameters in 

both non-hierarchical and hierarchical Bayesian approaches. All models were fitted using the 

MCMC method in the MCMCglmm package and R2WinBUGS package in R version 3.1.1 [36,37]. 

3. Results 

3.1. Fitted Biomass Models 

This study compiled 36 logarithmic biomass equations for larch biomass in China. The prior 

parameter distributions were obtained from the published literature. Parameters a and b followed 

bivariate normal distributions in each component biomass model (Table 3). Based on the Bayesian 

theory with informative priors, we obtained the posterior probability distributions of the two 

parameters for each component biomass model. The values of a and b for the total tree and 
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component biomass models were estimated using non-hierarchical and hierarchical Bayesian 

approaches. 

The posterior total tree biomassprobability distributions are shown in Figure 4, which are 

similar to the posterior probability distributions of the component biomass model. According to the 

fitted results, the total tree, root, stem wood, stem bark, branch and foliage (p-values < 0.001) 

biomass model relationships were significant for both the non-hierarchical and hierarchical Bayesian 

approaches. 10,000 iterations were performed for each model fitting to ensure convergence and 

obtain posterior distributions of the estimated parameters. Of these, the first 500 were discarded as 

burn-in iterations. The thinning parameter between the non-hierarchical and hierarchical 

approaches was set at three chains to reduce the impact of the correlation between neighbouring 

iterations. The standard deviation (S.D.) and P2.5%–P97.5% were then calculated based on the samples. 

The parameter estimates using the non-hierarchical and hierarchical Bayesian approaches are 

presented in Tables 4 and 5. 

Table 4. Tree biomass model parameters using the Bayesian non-hierarchical approach. 

Component Parameters Mean S.D. P2.5%–P97.5% 

Total tree 
a −2.117 0.054 (−2.225 −2.012) 

b 2.42 0.021 (2.379 2.462) 

Root 
a −3.963 0.092 (−4.146 −3.784) 

b 2.459 0.036 (2.389 2.530) 

Stem wood 
a −3.521 0.081 (−3.684 −3.362) 

b 2.728 0.032 (2.666 2.791) 

Stem bark 
a −3.927 0.093 (−4.113 −3.746) 

b 2.152 0.036 (2.018 2.224) 

Branch 
a −2.682 0.15 (−2.225 −2.012) 

b 1.783 0.059 (−2.225 −2.012) 

Foliage 
a −3.28 0.176 (−3.631 −2.937) 

b 1.578 0.069 (1.444 1.715) 

Table 5. Tree biomass model parameters using the Bayesian hierarchical approach (a1–a6 and b1–b6 

represent the six regions from L1–L6). 

Parameters 
Total Tree Root 

Mean S.D P2.5%–P97.5% Mean S.D P2.5%–P97.5% 

a1 −1.878 0.159 (−2.173 −1.554) −2.041 0.314 (−2.660 −1.417) 

a2 −1.849 0.076 (−1.994 −1.700) −3.929 0.133 (−4.191 −3.671) 

a3 −2.298 0.095 (−2.485 −2.113) −4.653 0.170 (−4.981 −4.318) 

a4 −2.650 0.137 (−2.919 −2.381) −4.412 0.222 (−4.842 −3.991) 

a5 −1.451 0.134 (−1.712 −1.190) −3.135 0.219 (−3.563 −2.704) 

a6 −2.540 0.104 (−2.739 −2.330) −4.030 0.186 (−4.399 −3.670) 

b1 2.307 0.058 (2.188 2.413) 1.829 0.114 (1.604 2.053) 

b2 2.277 0.032 (2.214 2.338) 2.434 0.056 (2.325 2.543) 

b3 2.519 0.040 (2.442 2.598) 2.705 0.071 (2.563 2.843) 

b4 2.649 0.052 (2.546 2.752) 2.600 0.084 (2.439 2.763) 

b5 2.208 0.049 (2.113 2.304) 2.138 0.080 (1.980 2.295) 

b6 2.554 0.041 (2.471 2.635) 2.551 0.074 (2.406 2.698) 
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Table 5.Cont. 

Parameters 
Stem Wood Stem Bark 

Mean S.D P2.5%−P97.5% Mean S.D P2.5%−P97.5% 

a1 −4.394 0.250 (−4.894 −3.915) −3.971 0.134 (−4.251 −3.741) 

a2 −3.114 0.122 (−3.356 −2.880) −3.927 0.102 (−4.119 −3.721) 

a3 −3.356 0.152 (−3.649 −3.057) −3.904 0.106 (−4.105 −3.684) 

a4 −4.284 0.210 (−4.687 −3.863) −3.916 0.118 (−4.151 −3.685) 

a5 −3.007 0.195 (−3.402 −2.634) −3.897 0.115 (−4.110 −3.657) 

a6 −3.843 0.153 (−4.143 −3.542) −3.965 0.111 (−4.185 −3.751) 

b1 2.971 0.091 (2.796 3.153) 2.151 0.048 (2.067 2.247) 

b2 2.525 0.051 (2.427 2.628) 2.146 0.042 (2.062 2.226) 

b3 2.671 0.063 (2.546 2.794) 2.150 0.043 (2.062 2.231) 

b4 3.061 0.080 (2.900 3.214) 2.166 0.046 (2.078 2.261) 

b5 2.597 0.071 (2.462 2.742) 2.153 0.042 (2.067 2.232) 

b6 2.836 0.061 (2.714 2.955) 2.142 0.043 (2.057 2.225) 

Parameters 
Branch Foliage 

Mean S.D P2.5%−P97.5% Mean S.D P2.5%−P97.5% 

a1 −2.374 0.381 (−3.080 −1.599) −2.867 0.477 (−3.796 −1.928) 

a2 −2.757 0.192 (−3.130 −2.376) −2.958 0.258 (−3.472 −2.466) 

a3 −3.387 0.282 (−3.931 −2.818) −4.702 0.337 (−5.358 −4.049) 

a4 −2.354 0.322 (−2.958 −1.705) −2.274 0.421 (−3.119 −1.471) 

a5 −1.989 0.343 (−2.666 −1.331) −1.659 0.422 (−2.473 −0.843) 

a6 −3.277 0.255 (−3.783 −2.787) −4.225 0.339 (−4.894 −3.558) 

b1 1.673 0.138 (1.392 1.928) 1.434 0.173 (1.093 1.771) 

b2 1.794 0.081 (1.633 1.948) 1.429 0.108 (1.221 1.649) 

b3 2.287 0.118 (2.045 2.515) 2.268 0.141 (1.994 2.539) 

b4 1.605 0.123 (1.359 1.835) 1.263 0.161 (0.952 1.538) 

b5 1.543 0.125 (1.303 1.791) 1.020 0.154 (0.721 1.326) 

b6 1.835 0.101 (1.640 2.036) 1.717 0.135 (1.454 1.983) 

 

Figure 4. Posterior probability densities of two parameters for each total tree biomass model. 1 is the 

non-hierarchical approach, and 2 is the Bayesian hierarchical approach.  

Total
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3.2. Comparison of Two BayesianApproaches 

The p-values, R2, nonlinear extra sum of squares (F-value) and the Lakkis-Jones (L-value) tests 

of the biomass model estimated by the non-hierarchical and hierarchical Bayesian approaches are 

shown in Table 6. We detected significant differences between the two Bayesian approaches with 

respect to the stem wood, foliage, branch, root and total tree biomass models (p-value < 0.001). The 

hierarchical Bayesian approach increased the goodness-of-fit statistics. The R2 values of the total tree, 

root, stem wood, stem bark, branch and foliage biomass models using the hierarchical Bayesian 

method were 0.008, 0.018, 0.020, 0.003, 0.088 and 0.116 higher than non-hierarchical model, 

respectively. 

Table 6.Evaluation of the non-hierarchical and hierarchical Bayesian approaches (1 and 2 represent 

the non-hierarchical and hierarchical Bayesian approaches, respectively). 

Component Approach p-Values R2 F-Values Pr > |F| L-Values Pr > |L| 

Total tree 
1 <0.001 0.981     

2 <0.001 0.989 7.071 <0.001 154.386 <0.001 

Root 
1 <0.001 0.950     

2 <0.001 0.968 6.097 <0.001 137.493 <0.001 

Stem wood 
1 <0.001 0.967     

2 <0.001 0.987 5.561 <0.001 127.443 <0.001 

Stem bark 
1 <0.001 0.934     

2 <0.001 0.937 0.392 0.264 10.354 0.264 

Branch 
1 <0.001 0.791     

2 <0.001 0.879 7.575 <0.001 136.152 <0.001 

Foliage 
1 <0.001 0.682     

2 <0.001 0.798 6.039 <0.001 165.496 <0.001 

The performance of all fitted models is shown in Figure 5. Boxplots illustrate the residual 

tendency of each biomass model component for the two Bayesian approaches in each region. The 

hierarchical Bayesian approach residuals are closer to both the zero-line and the observed values 

compared to those of the non-hierarchical Bayesian approach. Thus, the hierarchical approach 

yielded more accurate parameter estimates. 
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Figure 5.Residual boxplots comparing the non-hierarchical and hierarchical Bayesian approaches. 1 

and 2 represent the non-hierarchical and hierarchical Bayesian approaches, respectively. 

4. Discussion 

Theoretical Bayesian methods have been gradually adapted to plant biomass estimations 

[9,10,15,16]. Frequentist statistics assume that parameters are fixed, unknown constant values, 

whereas Bayesian statistics assume that parameters follow a statistical distribution. For example, 

Mauricio et al. [9] demonstrated that parameters were well represented by a bivariate normal 

distribution in an allometric biomass model. One advantage of the Bayesian approach is the MCMC 

algorithm [18,28,38], which avoids many of the approximations used by the frequentist method 

[39,40], improving the parameter estimation and model fit. 

We establishedtotal tree and biomass component models using non-hierarchical and 

hierarchical Bayesian approaches. We found that the hierarchical approach performed better, and 

the hierarchical Bayesian approach significantly improved the accuracy of the biomass model, 

except for the stem bark model. The stem bark biomass may have accounted for a sufficiently small 

proportion of the total tree biomass.In general, the hierarchicalapproachperformed better and 

incorporated the effects of sampling location variability, tree density and other variable factors 

related to the model-fitting process. 

Developing biomass models at large regional scales and improving model accuracy is a 

significant issue in forest biomass research. Mixed effects models and dummy variable methods are 

often used to improve the goodness of fit of biomass models [41,42]. When regional effects are 

present, hierarchical Bayesian approach can be applied to fit the biomass model. Because the data 

were collected from various spatial regions, biomass model parameters may regionally vary. These 

variations indicate that regional effects play important roles in the model-fitting process and may be 

related to unique regional characteristics, such as climate factors,standdensity, tree species or other 

less noticeable characteristics. The hierarchical approach may yield more realistic results when data 

are collected at large and spatially variable regional scales. By estimating the total tree and biomass 

component model variables with this approach, and combined with forest survey data, we can 

estimate the total and component biomass of stands from each region. 

Our results indicate that the hierarchical Bayesian approach improved the model-fitting results, 

but additional studies may be required to further investigate the effectiveness of the hierarchical 
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Bayesian approach for other species and in other regions. Future studies may also be required to 

confirm that this method is significantly better than the non-hierarchical approach. Note that, if the 

model fitting process accounts for species differences as a nested factor based on regional differences, 

the model fitting results should improve, and the hierarchical Bayesian approach would be more 

effective than the non-hierarchical method. 

5. Conclusions 

The larch biomass data were collected from different regions, including Hubei, Gansu, Hebei, 

Liaoning, Heilongjiang and Inner Mongolia, which encompass large climate, larch species, 

silviculture and stand density variations that affect biomass accumulation. These different biotic and 

abiotic factors introduce variabilities to the larch biomass model, suggesting that allometric equation 

parameters are better represented by probability distributions rather than fixed values. Therefore, a 

hierarchical Bayesian approach with informative priors is more suitable for fitting biomass models 

with regional variations. In this paper, we applied non-hierarchical and hierarchical Bayesian 

approaches to establish tree biomass models for larch plantations in six Chinese regions. Based on 

the fitting results, the total tree, root, stem wood, stem bark, branch and foliage biomass model 

relationships were significant (p-values < 0.001) for both the non-hierarchical and hierarchical 

Bayesian approaches.The hierarchical Bayesian approach increased the goodness-of-fit statistics 

compared to the non-hierarchical approach,significantly improving the accuracy of the biomass 

model (except for the stem bark) and providing an effective method for estimating larch biomass at 

the regional scale. 

Supplementary Meteraials: The following are available online at http://www.mdpi.com/1999-4907/7/1/18, 

Table S1: a and b values of 36 biomass equations (total, root, stem wood, stem bark, branch, and foliage biomass) 

in 6 reported literature for larch in China. 
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