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Abstract: A major argument for incorporating deciduous tree species in coniferous forest 

stands is their role in the amelioration and stabilisation of biogeochemical cycles. Current 

forest management strategies in central Europe aim to increase the area of mixed stands. In 

order to formulate statements about the ecological effects of mixtures, studies at the stand 

level are necessary. In a mixed stand of Norway spruce (Picea abies (L.) KARST.) and silver 

birch (Betula pendula ROTH) in the Ore Mountains (Saxony, Germany), the effects of these 

two tree species on chemical and microbial parameters in the topsoil were studied at one site 

in the form of a case study. Samples were taken from the O layer and A horizon in areas of 

the stand influenced by either birch, spruce or a mixture of birch and spruce. The  

microbial biomass, basal respiration, metabolic quotient, pH-value and the C and N contents 

and stocks were analysed in the horizons Of, Oh and A. Significantly higher contents of 

microbial N were observed in the Of and Oh horizons in the birch and in the spruce-birch 

strata than in the stratum containing only spruce. The same was found with respect to  

pH-values in the Of horizon and basal respiration in the Oh horizon. Compared to the  

spruce stratum, in the birch and spruce-birch strata, significantly lower values were found 
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for the contents of organic C and total N in the A horizon. The findings of the case study 

indicated that single birch trees have significant effects on the chemical and microbial topsoil 

properties in spruce-dominated stands. Therefore, the admixture of birch in spruce stands 

may distinctly affect nutrient cycling and may also be relevant for soil carbon sequestration. 

Further studies of these functional aspects are recommended. 

Keywords: birch; spruce; tree species effects; pH-value; soil respiration; humus; topsoil 

 

1. Introduction 

In central Europe, pure coniferous stands are today viewed very critically, whereas mixed stands are 

recommended for a variety of reasons. The establishment of mixed stands of Norway spruce  

(Picea abies (L.) KARST.) and naturally regenerated silver birch (Betula pendula ROTH) and downy birch 

(Betula pubescens EHRH.) is a common alternative to pure stands of conifers in northern Europe and 

Asia (e.g., Finland, Norway, Sweden, Russia), but also in central Europe (e.g., Germany, Poland, Czech 

Republic). Reasons for the growing interest in such stands are, for example, a shift to a greater  

above-ground nutrient content associated with species grown in mixtures compared to monocultures, 

indicating an increase in the proportion of resources captured from a site [1], discussions about biodiversity, 

such as understorey vegetation diversity (e.g., [2]), sequestration of carbon against the background of 

climate change (e.g., [3]) and forest growth and yield (e.g., [4]). The growth and vitality of trees are 

dependent on soil conditions, just as soil development is affected by tree species and forest stand type 

(e.g., [5–8]). Research has been conducted to examine topsoil properties in pure stands of silver birch 

and Norway spruce [9–13] and the impact of mixed leaf litter on topsoil has also been studied  

(e.g., [10,14]). On sites with silver birch and Norway spruce, higher pH values are frequently observed 

under birch (e.g., [10–12,15]). Several studies also identified lower C/N ratios (indicating faster litter 

decomposition and soil organic matter turnover) in mixed spruce-birch stands than in pure spruce forests 

(e.g., [12]). In contrast, Hagen-Thorn et al. [13] detected no significant differences between the C/N 

ratios in the mineral topsoils of 30–40 year old birch and spruce stands. The approaches, conditions and 

results of different studies are very diverse. The diversity in the results may be related to site conditions 

(e.g., texture, soil type and climate), stand ages, prior land-use or to the methods employed.  

Studies with a focus on soil biological activity (e.g., [16–18]) provided important information on the 

impact of birch in spruce stands. It appears that birch has a positive influence on microbial biomass and 

on the mass of earthworms, and also affects the structure of microbial communities [10,17,19], for 

example, through the influence of birch leaves [10]. The importance of stand age should also be noted 

in this context, not only as it influences tree dimensions, but also in relation to the duration of the 

influence of the trees on topsoil properties (e.g., [16]). Examining biological activity, Miles [16] detected 

higher numbers of earthworms per m2 in medium aged and older stands of Betula pendula in Scotland 

than in young stands. Saetre et al. [17] found higher densities of Coleoptera, Diptera and Colembola in 

mixed stands than in spruce stands. This is important as soil biota play a key role in the decomposition 

of litter (e.g., [20–22]). Animal communities are also strongly affected by tree species (e.g., [23]).  

Priha et al. [18] presented data from studies of birch and spruce plots where the content of microbial 
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carbon (Cmic) revealed by fumigation extraction was generally higher under birch than under spruce, but 

these differences were not significant. At present, it is not possible to draw conclusions on how a mixture 

of birch and spruce should be designed in order to exert certain effects on the topsoil properties. To 

address this important question, it appears reasonable to first analyse the effects of single trees. Through 

the analysis of the effects on topsoil properties of single birch trees in spruce-dominated stands carried 

out as part of this study, we sought to test the following hypothesis: 

 Even single birch trees in spruce stands can modify topsoil properties. 

2. Methods 

2.1. Study Site 

The study object was a mixed stand of Norway spruce and silver birch on “old” forest soil in the Ore 

Mountains near Olbernhau/Ansprung, Saxony, Germany (50°38′ N, 13°17′ E). The investigated stand 

was situated at 725 to 740 m asl with a slight northerly exposition (<5%). The mean annual rainfall was 

977 mm and the mean annual temperature 5.8 °C (period 2002–2008; source: Staatsbetrieb Sachsenforst). 

The stand consisted of Norway spruce with an age of approx. 60–80 years and was supplemented to the 

south by individual silver birch trees, as well as small and large group mixtures with an age of ~60 years 

(Table 1). 

Table 1. Description of the spruce-birch stand studied in the Ore Mountains, Germany. 

Species 
Age 

(years) 
N ha−1 

dbh 
(cm) 

Basal area 
(m2 ha−1) 

Mixture 
proportion

H/D 
ratio 

Volume 
(m³ ha−1) 

Crown 
percent

Spruce 60 to 80 453 29 32.0 92.6 69 330 60 

Birch 60 36 30 2.6 7.4 - 25 48 

dbh, diameter at breast height; H, height; D, diameter; N: Number of trees (per hectare). 

The spruce was planted with the aim of establishing a pure stand. Birch regenerated naturally in gaps 

where spruce planting failed. In areas with more birch trees, the soil had a higher stone content and was 

not comparable to that of the plots with spruce. For the purposes of the analysis, only single birches 

situated where the soil properties were comparable to those of spruce plots were selected. The study 

stand was surrounded by spruce stands. Some isolated beech trees stood in the neighbouring stands, but 

these were situated far from the chosen study points and could not influence the results. In the 

neighbouring stands, typical admixed species were birches and mountain-ash (Sorbus aucuparia L.). In 

densely stocked areas of the study stand, ground vegetation was absent or only poorly developed. Even 

in sparsely stocked, unshaded areas the ground vegetation was not lush or densely developed. The 

dominant species were Calamagrostis villosa and Deschampsia flexuosa. 

The soil was typical of many mid-range mountains in central Europe: a Dystric Cambisol formed 

from periglacial debris layers consisting of the weathered products of a gneiss bedrock. The soil 

chemistry was characterised by high acidity, a low cation exchange capacity and base saturation. The 

stone content was very high (Table 2). 
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Table 2. Description of the soil physical and chemical properties for the study site  

(samples came from an extra soil profile created for the characterisation of the study site), 

n.a. = not analysed. 

Horizon 
Depth 

Dry bulk  

density (fine soil)
Stone content pH-value Corg/N ratio CECeff BS

(cm) (g* cm−3) (mass %) H2O (-) (µeq g−1) (%)

L +3.5 to +4 n.a. n.a. n.a. n.a. n.a. n.a.

Of +2 to +3.5 0.15 0 5.04 20 1625.37 98.3

Oh 0 to +2 0.28 0 to 28 5.02 16 1938.12 99.3

Ahe/Ae 0 to 11 0.83 36 3.94 18 415.05 57.0

Bsh/Bhs 11 to 17 0.51 50 3.87 23 68.29 9.4

Bv 17 to 32 0.80 41 4.47 19 41.68 6.0

Bv/Cv 32+ n.a. n.a. 4.63 13 135.48 17.5

CECeff=effective cation exchange capacity; Corg=organic Carbon; L = Litter; Of = Organic layer with 

fermentation; Oh = humified organic layer = strongly decomposed organic matter; Ahe = uppermost horizon 

of the mineral soil enriched with soil organic matter and characterized by eluviation (bleached by 

podzolization); Ae = mineral horizon of the topsoil characterized by eluviation; Bsh/Bhs = mineral subsoil 

horizon with Fe/Al-enrichment (sesquioxides) by podzolization and with humus accumulation; Bv = mineral 

subsoil horizon, weathered, brown and loamy; Cv = weakly weathered parent material 

2.2. Experimental Design 

The approach adopted aimed at investigating the ecological impact of incorporating birch trees into  

spruce stands, by identifying areas influenced mostly by birch, both by birch and spruce and mostly by  

spruce trees. Thirty sample plots were assigned to the different strata, according to the species occupying 

the canopy overhead. All sample points that lay directly beneath the crown of a birch were assigned to 

the birch stratum (n = 7). Points under the crowns of spruce trees were assigned to the spruce stratum  

(n = 13). All points located between the crown of a birch and a spruce, and where crowns overlapped, 

were assigned to the spruce-birch stratum (n = 10). This stratification was used because crowns directly 

influence the environmental variables (e.g., precipitation throughfall), which in turn affect topsoil 

properties (e.g., [24,25]). The ecological effects could be measured in terms of their quality and intensity. 

Usually a gradient in the intensity, and also the quality, of the effects coinciding with the distance from 

the birch tree can be expected. In stands with more than one tree species, the overlapping zones of the 

different tree species’ effects are of particular interest. In these zones, different litter mixtures exist. This 

means that two tree species influence the topsoil conditions to different degrees of intensity. Three different 

tree-to-tree-transects were laid out for this study. All of the transects originated at the same birch tree  

(Figure 1) and pointed in different directions, representing various tree species mixture gradients. A total of 

30 sampling points were then clustered according to whether they were mostly influenced by either birch 

or spruce trees, or by a mixture of both species. Four different birch trees influenced the sampling sites 

to varying degrees. The size of the study area within the chosen stand was circa 0.4 ha.  

This study was designed as a case study so that further investigations are needed for generalisation 

of the results beyond the study site. The focus of this study was on an intra-stand level approach for the 

following reasons: 

The intra-stand level was deemed to be an appropriate spatial scale at which to optimise the forest 
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structure in plantation forests in order to address new challenges as timber production, neighbour 

competition and nutrient cycle processes all take place at this scale [26]. 

Single trees are key structural elements of a stand as species, dimension, morphology and the spatial 

distribution of single trees influence the biotic and abiotic conditions of the intra-stand environment, in 

particular the understorey vegetation and the topsoil properties (e.g., [27–32]). 

 

Figure 1. Map of tree stems and crowns with soil sampling points indicated along transects 

with percental distribution of the wind direction (01.01.1997–31.05.2009) measured at the 

Olbernhau permanent monitoring area (Staatsbetrieb Sachsenforst); average wind speed: 

1.51 m s−1, maximum wind speed: 6.41 m s−1. 
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2.3. Soil Sampling and Analysis 

To ensure relatively homogeneous soil conditions along the transects, sample points (30 cm × 30 cm) 

were selected where there were no disturbances (e.g., lying trunks, stumps). Therefore, the distance 

between the points along the transects was variable (mean distance within one transect = 2.03 m, 

minimum distance = 0.73 m, maximum distance = 11.5 m). In early September 2008, 90 soil samples 

were taken from the forest floor (30 samples of Of and 30 samples of Oh horizons) and mineral topsoil 

(30 samples of A horizon) for chemical analysis in the laboratory. 

Fresh soil samples were sieved with a 5 mm sieve for removal of components such as branches, roots  

and stones. The soil pH was measured in water (50 mL demineralised pure H2O and 10 mL dried soil 

(dried at 40 °C)) with a glass electrode (Multilab 540 WTW GmbH). The total C and N contents of 

ground soil samples were measured using the CNS elemental analyser (Vario EL). As the soil had been 

limed in the past, the total carbon (Ctot) may not have equalled the organic C (Corg ). Therefore, Ccarbonate 

was also analysed using the gas-volumetric method according to Scheibler (Deutsches Institut für 

Normung e. V. (DIN) International Organization for Standardization (ISO) 10693). Organic C was 

calculated as the difference between Ctot and Ccarbonate. The C/N ratio was calculated by dividing Corg  

by Ntot. Carbon and nitrogen in the microbial biomass (Cmic and Nmic) were analysed using  

chloroform-fumigation-extraction according to Vance et al. [33] and Joergensen [34]. The samples were 

sieved and analysed fresh. They were not frozen, but cooled to around 4 °C for a maximum of 18 days 

before the analyses began. After fumigation, shaking with K2SO4 solution for 30 minutes with 180 

rotations min−1 and filtration, the C and N contents were determined with the Multi-NC-Analyser 

(Analytik Jena). To represent the soluble part of C and N, C and N were also extracted from unfumigated 

soil [33]. In accordance with Jenkinson et al. [35], a correction factor of 0.45 was used in the 

denominator when calculating Cmic and Nmic. The basal respiration was determined using the method 

described by Isermeyer [36] and modified in accordance with Jäggi [37]. To describe the soil profile, 

the effective cation exchange capacity (CECeff) was analysed based on the NH4Cl extraction method 

developed by Trüby and Aldinger [38]. To calculate the stocks of Corg, Ntot, Cmic and Nmic, the soil bulk 

densities were determined based on undisturbed soil cores taken using soil sample rings (for the O layer: 

sampling rings with a diameter of 7.2 cm and a volume of 248.4 cm2, for the mineral sampling rings 

with a diameter of 5.5 cm and a volume of 95 cm2). The samples were dried at 60 °C (forest floor) and 

105 °C (mineral soil) for 24 h. The thickness of the sampled soil horizons was the average of three 

measurements around the soil cores. The mean thicknesses of the Of and Oh horizons in the three 

different strata were: birch: Of = 0.97 cm, Oh = 1.83 cm, spruce-birch: Of = 1.23 cm, Oh = 2.47 cm and 

spruce: Of = 1.30 cm, Oh = 2.40 cm. Coarse material was removed using a 2 mm mesh and the mass 

fraction of the horizon area (g m−2) was determined. 

2.4. Statistical Analysis 

An extended linear model without random effects was applied to the data. The model validation 

process outlined by Zuur et al. ([39]; p19–p21) was followed and the normality, the homogeneity and 

the independence in the dataset assessed. To be certain of normality, all residuals of the applied model 

were pooled and their distribution inspected (by q-q-plots). Heteroscedasticity was assessed by pooling 
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all residuals and plotting them against the fitted values. Where heteroscedasticity was an issue, the model 

was adapted to account for the variance structure of the data. The spatial independence of the data was 

assessed employing the semivariogram technique ([40]; p. 226). Where necessary, a spatial dependence 

structure was incorporated in the model. P-values were adjusted in simultaneous multiple testing by 

applying the Benjamini-Hochberg procedure ([41]; p. 534). As natural heterogeneity is high in forest 

soils, and the sample size low, an error probability of α = 0.10 was applied and the significant differences 

observed are reported and discussed as trends. An error probability of α = 0.10 is frequently used for 

studies of microbial properties in soils (e.g., [42–44]). All statistical analyses were performed using R 

and boxplots were created with SPSS. 

3. Results  

3.1. Carbon 

Significant differences in the Corg content occurred between the tree strata in the A horizon  

(Figure 2a). Here birch < spruce (p = 0.066; medians: 71 mg g−1 < 118 mg g−1) and spruce-birch < spruce 

with (p = 0.066; medians: 103 mg g−1 < 118 mg g−1). A decrease in the Corg content was observed from 

the Of horizon to the A horizon. 

The Corg stocks (Figure 2b) did not differ between the three strata within each horizon analysed. The 

highest values were found in the Oh horizon and the lowest in the A horizon. 

3.2. Nitrogen 

No significant differences existed for the Ntot contents in the Of and Oh horizons (Figure 2c). Ntot 

contents were lowest in the A horizon, where they differed significantly between the three strata, with 

birch < spruce (p = 0.087; medians: 4.24 mg g−1 < 6.06 mg g−1) as well as spruce-birch < spruce  

(p = 0.087; medians: 5.45 mg g−1 < 6.06 mg g−1). 

There were no significant differences in the Of, Oh or A horizons between the strata for the Ntot stocks  

(Figure 2d). The Ntot stocks were higher in the Oh horizon than in the Of and the A horizons. 

3.3. C/N Ratio and Acidity 

No noticeable differences were found for the C/N ratio (Figure 2e). It was notable that the C/N ratios 

in the Oh horizon were lower than in either the Of horizon or the A horizon. 

The Of horizon exhibited a significantly higher pH-value (Figure 2f) in the birch stratum (median = 5.41) 

than in the spruce (median = 5.12) with p = 0.086, and in the spruce-birch stratum (median = 5.49) than 

in the spruce with p = 0.086. No noticeable differences were found in the Oh and A horizons. The highest 

pH-values were found in the Oh horizon, the lowest in the A horizon. 

3.4. Microbial Properties 

The results of the analysis of Cmic contents (Figure 3a) revealed no notable differences in all  

three horizons. Cmic contents decreased from the Of horizon to the A horizon. 

In the O layer, the lowest Nmic contents were found in areas where only spruce had an impact  
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(Figure 3b). The Nmic contents in the Of horizon differed significantly for birch and spruce-birch  

(p = 0.098; medians: 0.35 mg g−1 > 0.25 mg g−1) and for spruce-birch and spruce (p = 0.098; medians:  

0.35 mg g−1 > 0.22 mg g−1). In the Oh horizon differences were observed for birch and spruce (p = 0.096; 

medians: 0.20 mg g−1 > 0.14 mg g−1) and for spruce-birch and spruce (p = 0.096; medians:  

0.16 mg g−1 > 0.14 mg g−1). No clear differences between the strata existed with respect to the A horizon.  

(a) (b) 

(c) (d) 

Figure 2. Cont. 
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(e) (f) 

Figure 2. Box-whisker-plots for the tree strata (dashed: birch stratum, white: spruce-birch 

stratum, chequered: spruce stratum) in the three horizons depicting (a) organic C content; 

(b) organic C stock; (c) total N content; (d) total N stock; (e) C/N ratio and (f) pH (H2O). 

Different lower case letters indicate significant differences between strata within one horizon 

(p < 0.10). 

Values of the basal respiration (an indicator of microbial activity) decreased from the Of horizon to the A 

horizon (Figure 3c). In the Oh horizon, the lowest microbial activity was found under spruce (spruce < birch; 

p = 0.071; medians: 0.03 (mg CO2 h−1) g−1 < 0.05 (mg CO2 h−1) g−1 and spruce < spruce-birch; p = 0.092; 

medians: 0.03 (mg CO2 h−1) g−1 < 0.04 (mg CO2 h−1) g−1). No significant differences between the strata 

existed in the Of and A horizons.  

The analysis of the metabolic quotient (qCO2), an indicator of the CO2 release rate per unit of 

microbial biomass ((mg CO2-C h−1) g−1 Cmic), revealed no significant differences (Figure 3d). The 

metabolic quotient was highest in the Of horizon, which also had the greatest variation. There the spruce 

stratum exhibited the second lowest and the birch stratum the lowest values. 

4. Discussion 

Tree species can affect soil properties in different ways; for example, prompting differences in the 

chemical composition of above- and below-ground litter, differences in root activity and changes in 

microclimate under the tree cover, changing the understorey vegetation [45]. The aim of this study was 

to assess whether even single tree admixtures of birch have a distinct effect on topsoil properties in 

spruce stands. The results of the stratified analysis provided evidence that when silver birch and Norway 

spruce grew in the same stand, the pH-value in the Of horizon was less than a half unit higher  

under birch. These findings were consistent with previous studies (e.g., [25,46,47]). Augusto et al. [48] 

determined that the pH-value of topsoil from the same site is on average about 0.43 units higher under 

birch than under spruce. A higher pH of this magnitude could positively affect the microbial biomass in 

the soil (see below) and the number and mass of earthworms [49]. Such changes in pH may also influence 
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the roots of spruce. Both the growth and the morphology of spruce roots depend greatly on soil chemical 

properties affecting the composition of soil solution [50]. Acid conditions inhibit root growth (e.g., [51]) 

and lead to fewer fine roots in the mineral soil, and to a concentration of the roots in the O layer  

(e.g., [52]). The presence of the roots of the two different tree species also affect the soil; for example, 

through root exudates [53]. Sandnes et al. [53] concluded that the rhizosphere of birch contains more 

organic acids at higher concentrations than spruce. Higher organic acid production means a higher 

potential to lower pH, which contradicts our earlier discussion. Due to the differences in the root systems 

and root distribution of spruce [54,55] and birch [56], different effects on the soil are likely. 

(a) (b) 

(c) (d) 

Figure 3. Box-whisker-plots of the tree strata (dashed: birch stratum, white: spruce-birch 

stratum, chequered: spruce stratum) in the three horizons depicting (a) microbial C content; 

(b) microbial N content; (c) basal respiration and (d) metabolic quotient (qCO2). Different 

lower case letters indicate significant differences between strata within one horizon  

(p < 0.10). 
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The C/N ratio is an important indicator of the transformation of soil organic matter. The observation 

that C/N ratios were generally lower in the birch and spruce-birch strata than in the spruce stratum 

corresponded to the results of several earlier studies (e.g., [10,12,57–59]). Material with a lower C/N 

ratio can be decomposed by microorganisms much more readily. However, in this study the differences 

between the strata were not significant. 

The Ntot contents of the Of and Oh horizons exhibited no significant differences, whereas in the A 

horizon the values were significantly higher for the spruce stratum than for the birch and  

spruce-birch strata. Priha and Smolander [60] also found lower Ntot contents under a birch stand than a 

neighbouring even-aged spruce stand. However, the findings of our study deviated from those of certain 

other studies such as Lettl and Hysek [9] and Brandtberg et al. [11]. Lettl and Hysek [9] found higher 

Ntot contents in the Of horizon under spruce but lower contents of Ntot in the Oh when compared with 

birch. Brandtberg et al. [11] found no differences between the two species with respect to Ntot contents 

in a 20–30 year old spruce-birch stand. This may have been due to the low stand age in their study. Many 

other studies have produced evidence of a change in soil properties as a function of stand age  

(e.g., [16,61–63]), time elapsed since the understorey planting of deciduous trees (e.g., [64]) and single 

tree ages (e.g., [65]). However, in our study, the effects of stand age were not captured at all (stand was 

even-aged 60–80 years). 

The results of our study revealed higher Nmic contents under the influence of birch than under spruce 

in the O layer. These results were consistent with Priha et al. [18] and Smolander et al. [66]. An inverse 

pattern was found for the A horizon in our study and by Smolander et al. [66]. We found greater basal 

respiration under birch than under spruce in the Oh horizon, similar to Priha et al. [18] and  

Smolander et al. [66]. Our results support the assumption that the presence of birch might increase 

microbial biomass [10,16,19,67]. In our study, no significant difference between the tree species could 

be found for the three horizons with respect to the metabolic quotient. This was consistent with the 

findings of Priha and Smolander [68]. In the A horizon, Corg contents were lowest in the pure birch 

stratum and intermediate in the mixed stratum, which corresponded to the lowest C/N ratio, reflecting 

amongst other things the better birch litter quality compared to spruce litter (e.g., [69]). Johansson [70] 

proved that at sites where Norway spruce and white birch grew in adjacent stands, the birch leaf litter 

generally had higher nutrient concentrations. Concerning organic chemical components, the spruce 

needle litter had significantly higher concentrations of lignin and mannan and lower concentrations of 

water solubles, rhamnan and xylan than the birch litter [70]. Furthermore, Kanerva et al. [47] observed 

lower concentrations of terpenes under birch in comparison with spruce. In the Oh horizon of our study, 

the mixed stratum revealed the lowest values of Corg contents (but no significant differences between  

the strata), indicating a faster turnover of soil organic matter in this horizon. This was not only the effect 

of litter quality (more favourable for decomposition), as the values in the pure birch stratum were more 

similar to those of the spruce stratum, but more likely an effect of increased microbial activity, which 

naturally depends, for example, on litter quality. This may hint at a more diverse and active soil 

biocoenosis in the Oh horizon in the mixed stratum overall than found in the single-species strata [71]. 

As a consequence, more organic material is incorporated into the mineral soil in the mixed stratum, 

which is reflected in the highest Corg stocks in the A horizon of the mixed stratum, although the 

differences between the strata were not significant. However, some of our results indicate that even 

single tree admixtures of birch have a distinct effect on topsoil properties in spruce stands. Therefore, 
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we accept the hypothesis that even single birch trees in spruce stands can modify topsoil properties. It 

must be stated in relation to this, however, that our results could have been influenced by factors such 

as the anisotropy in the distribution of birch litter [32] caused by the main wind direction (south-west, 

Figure 1), the small-scale variability of throughfall and corresponding differences with respect to water 

supply (e.g., [72]), the fine root dynamics (e.g., [73]) or the diversity of radiation in the stand and the 

related differences in soil temperature and light availability for the ground vegetation [32]. These factors 

influence the variance of data and might lead to less significant differences between the strata. 

5. Conclusions 

The findings of this study show that even single tree admixtures of birch have a distinct effect on 

topsoil properties in spruce stands. The admixture of single birch trees generates higher pH-values and 

higher microbial activity in the O layer. The admixture of single birch trees in spruce stands may also 

play a role in soil carbon sequestration, because higher microbial activity could lead to lower total soil 

organic carbon (SOC) stocks in the humus layer but higher and more stable SOC stocks in the  

mineral soil. Future research should investigate whether the higher biological activity in soils causes 

greater incorporation of humus into the upper mineral soil and study the pools of stable and unstable 

organic carbon in spruce-birch mixtures in order to analyse the real potential for carbon sequestration. 

One might expect that an increase in the number of birch trees leads to an intensification of the  

observed effects. Another important aspect for future research might be a study of whether different ages 

of litter affect the different topsoil results (e.g., soil microbial properties) in such mixtures. That is a very 

interesting question because partly decomposed spruce litter of different ages could be found in the Of 

horizon (typical for conifers), while birch litter consisted mainly of the leaves from the last autumn 

(typical for many broadleaves), indicating a different state of decay and thus possibly a different 

composition of the litter remains. As our findings indicated that single birch trees have significant effects 

on the chemical and microbial topsoil properties in spruce-dominated stands, the admixture of birch in 

spruce stands may have a distinct effect on nutrient cycling and may also be relevant for soil carbon 

sequestration. Consequently, further studies of these functional aspects are recommended. 
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