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Abstract: Understanding the distribution and productivity of Chinese fir (Cunninghamia 
lanceolata) under climate change is critical given the ecological and economic importance 
of the species. Recently, process-based growth models have grown in their popularity given 
their simplicity and data availability, and they are increasingly being used to map the 
distribution and productivity of tree species. In this paper, we study the extent of variation 
of the current range shift and the productivity of the species under a changing climate. We 
used the Physiological Principles in Predicting Growth (3-PG) model, which calculates the 
extent to which climatic variables affect photosynthesis and growth of a species. These 
variables were then used in a decision-tree model to develop rules to provide a basis for 
predicting the distribution of the species under current climatic conditions. Once the 
distribution model was developed the productivity of the species was then assessed. Using 
climate projections we then simulated the growth and distribution into the future. Results 
indicate a northward shift from the current range. The growth model also indicates minor 
increases in productivity in some of the existing distribution areas, principally in central 
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China with limited productivity predicted in newly emerged stands. We conclude that  
this dual modeling approach has potential to quantify impacts of climate change on  
selected species and examining differences in climate projections on range and  
productivity estimation. 

Keywords: Chinese fir; climate change; modeling; GIS; distribution; productivity; NPP;  
3-PG Model 

 

1. Introduction 

Across China, plantations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) and Masson Pine 
(Pinus massoniana) have been utilized for more than one thousand years [1–3]. As one of the most 
important subtropical coniferous species, Chinese fir plays a major role in the environment, timber 
supply, and human society. According to Lei [4], forest inventory data indicates that Chinese fir occupies 
30% of all plantations in China, covering approximately 9 million ha, principally in southern China with 
its timber accounting for one quarter of China’s national commercial timber production [5]. Since 1949 
the area of Chinese fir plantations has nearly tripled with an increased focus on afforestation and 
reforestation [6–10]. Chinese fir is a valued timber species due to its high quality wood (i.e., straight and 
decay resistant) as well as having significant cultural and historic values in China. Chinese fir is often 
used in building construction and furniture manufacturing [2] as well as in the provision of other 
ecosystem services including local water supply and organic matter storage [11]. 

Fast growing plantations also provide an opportunity for increasing terrestrial carbon stocks and 
therefore are suggested as an approach to efficiently mitigate the impacts of global climate  
change [12]. Chinese fir is characterized by its fast growth rate when grown in a monoculture plantation, 
producing volumes of up to 450 m3/ha after 25 years [1,2]. Therefore, a comprehensive knowledge of 
Chinese fir in terms of its contribution in carbon sequestration will allow a better development of 
plantation, afforestation, and forest management strategies in general throughout China. 

Given the ecological, social, and carbon values of Chinese fir, improving our understanding and 
knowledge of Chinese fir growth and how a changing climate may alter the distribution is needed.  
This is important particularly due to its popularity as a fast growing plantation species and  
concerns that the volume yields and carbon storage may progressively deteriorate over multiple  
rotations [13–15]. Understanding the distribution and productivity of the species both now and into the 
future is critical, when linked to local management strategies, such as silvicultural practices, as it 
provides an estimate of the commercial value of the species, timber supply, and assessment of the other 
ecosystem goods and services the species provides. 

Climatic factors such as temperature and precipitation strongly affect the physiology of a tree  
species [16,17], and as a result, changes in climate are likely to alter both the distribution and growth of 
the species in the future. China, like most regions globally, is undergoing climatic changes in terms of 
temperature, precipitation, and accordingly their seasonal and regional variations [18–20]. 

In response to climate change, four possible responses of both organisms and ecosystems are 
expected—first, changes in phenology and physiology of living organisms; second, changes in the 
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distribution of species; third, changes in the community compositions and interactions among 
components; fourth, the arrangement and dynamics of ecosystems [21]. Once climate changes beyond 
the tolerances of a species, the survival and productivity of the species will be compromised. Under this 
changing climate regime, it is unclear whether the historic colonized distributions of certain species will 
remain and stay as productive as they currently are. 

Modeling growth and species distributions is therefore necessary for assessing forest stands and will 
specifically benefit foresters in terms of scheduling harvest rotation, predicting profits, and more 
importantly mitigating a changing climate. Conventional statistical growth and yield approaches are 
often used to predict future stand growth but are based on past climate/growth relations and are therefore 
limited in their capacity to estimate stand growth under more variable future climate conditions.  
In addition, changes in future climate are likely to alter the structure of Chinese fir’s  
geographic distribution. Yet, to model species distribution often requires sophisticated algorithms and  
detailed parametrization. 

In this paper we assessed the impact of changing climate on Chinese fir by applying a simple  
process-based model in two phases. First, we input species’ parameters and climate projections into a 
simple physiological model driven with monthly climate data to derive the environmental constraints on 
the species range. Second, we employed the constraints generated in the first phase to predict the 
productivity and distribution of the species. Both current and future climate projections were modeled 
in this study for further analysis and comparisons. 

With this research we build on the work of Liu et al. (2014) [22] who recently used a PnET modeling 
approach to access both productivity (i.e., NPP) and distribution changes in Chinese fir across southern 
China under different climate change projections. We advance knowledge in two key ways: First by 
applying a hybrid physiological model, with which we can, in detail, assess the main climatic restrictions 
to growth of the species across its entire range, which is important for assessing the future impacts of climate 
change. Second, utilizing a hybrid model, which allows the prediction of variables of key interest to forest 
managers, such as stand volume and basal area—the growth potential of future forest plantations can be 
spatially and temporally assessed. 

2. Experimental Section 

2.1. Study Area 

Our research is focused on southern, sub-tropic region of China (Figure 1) where the current distribution 
of Chinese fir extends from the pacific coast of Fujian, Zhejiang in the east, to the south coast of 
Guangdong and Guangxi, to the west of Yunnan, Sichuan, to the north of Shanxi and Henan Provinces. 
The elevation ranges from 800 m above sea level in the Southeast to 2500 m in the southwest. The annual 
mean temperature ranges from 15 °C–20 °C and the mean temperature in January of 1 °C–2 °C. However 
it is sensitive to lack of humidity and requires annual precipitation around 800–2000 mm. The best suitable 
microclimate normally ranges between monthly 16 °C–19 °C and the annual precipitation around  
1300–1800 mm [2]. Chinese fir requires deep fertile well-drained-acidic soil with a pH value around 
4.5–6.5, but can also grow on slightly alkaline soil [2]. 



Forests 2015, 6 363 
 

 

Figure 1. Study area—Provinces with present natural distribution of Chinese fir. 

2.2. Climate Data 

ClimateAP [23] was used to generate climate data across the region. ClimateAP is a climate data 
downscaling tool developed for the Asia Pacific region, which extracts and downscales PRISM [24] and 
WorldClim [25] 1961–1990 monthly normal data (2.5 × 2.5 arc minute, approximately 4 × 4 km) to 
produce seasonal and annual climate variables for specific locations (scale-free) based on latitude, 
longitude, and elevation. The output of the program includes both directly calculated and derived climate 
variables. We used climate normals (30 year averages) of monthly data for the period between 1961 and 
1990 to represent the reference or current climate conditions (i.e., baseline), which are commonly used 
in climate niche modeling and is common practice in the literature. Often, selection of the baseline period 
has been limited by availability of desired climate data [26]. For this study, we generated climate data at 
1 km spatial resolution for the reference normal period 1961–1990 (current) and climate data for 2020s 
(2011–2040) using the Coupled Global Climate Model 3 (CGCM3) from the Canadian Centre for Climate 
Modelling and Analysis with two future projections A1B and A2. The A1B represents a moderate 
projection assuming a fast growth in global population and economy and a rapid adoption of new 
technologies in mitigating climate change. A2 is a severe projection assuming fast population and 
economic growth, while the adoption of new technologies in climate change mitigation is limited. 

A step change approach was used where we modeled the distribution and productivity using the 
climate normals for the current period and the predicted 2020 normals for the future projections. 
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2.3. Chinese Fir Presence Data 

Presence observations for Chinese fir were obtained from the digital version of Vegetation Map of 
China (1:1000,000) provided by “Environmental & Ecological Science Data Center for West China, 
National Natural Science Foundation of China”(link: http://westdc.westgis.ac.cn). The shape file of the 
distribution map was rasterized at the spatial resolution of 0.00833 arc minute (approximately 1 km). 
Each data point within polygons of presence was then assigned a presence of Chinese fir. 

2.4. 3-PG Model Description 

The 3-PG model (Physiological Principles in Predicting Growth) [27] is a simplified process-based, 
single species, stand growth model. 3-PG calculates gross primary productions (GPP) using utilizable, 
absorbed photosynthetically active radiation and canopy quantum efficiency. It is a relatively simplified 
model, which applies well-established physiological relationships and proven constants [27,28]. The 
calculation of respiration is not necessary by 3-PG model; instead, the model uses the ratio of net to 
gross primary production (NPP/GPP) [27]. Given its simplicity, 3-PG is more accessible to local forest 
managers than other research models, which often depend upon complicated physiological principles. 
Compared to other simplified models that produce total carbon fixed and biomass, 3-PG also yields tree 
mass along with allocation to stem, foliage, and roots based on allocation equations [27]. This makes the 
3-PG model more practical when distributions of biomass and tree growth constraints become a major 
concern to foresters. 

Similar to other models, 3-PG requires a range of inputs which can be summarized into  
three categories—climate data, species parameters (listed in Table 1), and site variables. Climate data 
are provided in monthly time steps and include total short wave radiation, mean precipitation, number 
of frost days, and minimum and maximum temperatures [27]. Information about soil depth, available 
soil water (ASW), initial stocking and stand age and individual species parameters are also  
required [29]. These site variables and species parameters can be derived from the literature and field 
measurements [30]. 3-PG utilizes climate modifiers which are dimensionless numbers ranging from 0 to 
1, representing the extent to which a climatic factor can constrain photosynthesis by high daytime vapor 
pressure deficits (VPD), soil water deficits, and extreme minimum/maximum temperatures [27]. The  
3-PG model estimates the site productivity and climatic modifiers for a given species at a stand level. 
Site productivity is expressed at either annual or monthly time steps and includes stand density (TPH), 
leaf area index (LAI), mean annual increment (MAI), mean diameter at breast height (DBH, also known 
as DOB1.3), stand volume, and basal area (BA). For this study, species parameters for Chinese fir are 
shown in Table 1. They were derived as noted by [2,31,32]. One of the key benefits of the 3-PG model 
is that it is a physiological model driven by key physiological parameters. As a result, parameters do not 
need to be empirically fitted every time. We note that we have undertaken this approach successfully in a 
number of previous papers [28–30,33,34]. 
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Table 1. Physiological Principles in Predicting Growth (3-PG) Parameters of Chinese fir. 

Meaning/Comments Name Unit Value Source 
Allometric relationships & partitioning 

Foliage: Stem partitioning ratio @ D = 2 cm pFS2  0.72 This study 
Foliage: Stem partitioning ratio @ D = 20 cm pFS20  0.38 This study 

Constant in the stem mass v. diameter. relationship aS  0.0118 [32] 
Power in the stem mass v. diameter. relationship nS  3.223 [32] 

Maximum fraction of net primary production  
(NPP) to roots 

pRx  0.6 [32] 

Minimum fraction of NPP to roots pRn  0.2 [32] 
Litterfall & root turnover 

Maximum litterfall rate gammaFx 1/month 0.0485 [32] 
Litterfall rate at t = 0 gammaF0 1/month 0.001 [32] 

Age at which litterfall rate has median value tgammaF months 23 This study 
Average monthly root turnover rate gammaR 1/month 0.02 [32] 

Temperature modifier (fT) 
Minimum temperature for growth Tmin degree °C 0 [32] 
Optimum temperature for growth Topt degree °C 17.5 [32] 
Maximum temperature for growth Tmax degree °C 40 [32] 

Frost modifier (fFRost) 
Days production lost per frost day kF days 1.0 [32] 

Soil water modifier (fSW) 
Moisture ratio deficit for fq = 0.5 SWconst  0.6 This study 
Power of moisture ratio deficit SWpower  7 This study 

Fertitlity effects 
Value of “m” when FR = 0 m0  0 Default 

Value of “fNutr” when FR = 0 fN0  0.4 This study 
Power of (1-FR) in “fNutr” fNn  1 This study 

Age modifier (fAge) 
Maximum stand age used in age modifier MaxAge years 150 This study 
Power of relative age in function for fAge nAge  4 Default 

Relative age to give fAge = 0.5 rAge  0.95 Default 
Stem mortality & self-thinning 

Max. stem mass per tree @ 1000 trees/hectare wSx1000 kg/tree 175 This study 
Power in self-thinning rule thinPower  1.3 This study 

Specific leaf area 
Specific leaf area at age 0 SLA0 m2/kg 8 This study 

Specific leaf area for mature leaves SLA1 m2/kg 4 This study 
Age at which specific leaf area = (SLA0+SLA1)/2 tSLA years 3 [32] 

Light interception 
Extinction coefficient for absorption of  

PAR by canopy 
K  0.5 Default 

Age at canopy cover fullCanAge years 3 [32] 
Maximum proportion of rainfall  

evaporated from canopy 
MaxIntcptn  0.033 This study 

LAI for maximum rainfall interception LAImaxIntcptn  5 This study 
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Table 1. Cont. 

Meaning/Comments Name Unit Value Source 
Production and respiration 

Canopy quantum efficiency alpha 
molC/ 

molPAR 
0.033 [32] 

Ratio NPP/GPP Y  0.5 [32] 
Conductance 

Maximum canopy conductance MaxCond m/s 0.02 [32] 
LAI for maximum canopy conductance LAIgcx  3 This study 

Defines stomatal response to VPD CoeffCond 1/mBar 0.05 Default 
Canopy boundary layer conductance BLcond m/s 0.2 This study 

Basic Density 
Minimum basic density—For young trees rhoMin t/m3 0.3 This study 
Maximum basic density—For older trees rhoMax t/m3 0.37 This study 

2.5. Model Runs 

The 3-PG model was applied in two phases: First to obtain the current and future species distribution 
and secondly to estimate the productivity including stand volume (m3/ha), and NPP (MgC/ha/year) of the 
species in areas where it is predicted to currently occur and to occur under the applied climate projections. 

2.5.1. Distribution Modeling 

To simulate the distribution of the species the 3-PG model was run for 20 years using the current, 
climate, and a second and third run completed using the modeled climate normals for the 2020s  
(2011–2040) using the A1 and A1B climate projections to reach maximum LAI and canopy closure. The 
simulations were then stopped and the four monthly modifiers were extracted. The degree that  
available soil water, suboptimal temperature, frost, and VPD restricted photosynthesis was then  
determined for winter (December–February), spring (March–May), summer (June–August) and fall  
(September–November), as well as annually. 

A decision-tree analysis was then applied to assess the extent to which the 3-PG modifiers could 
predict the distribution of Chinese fir. This type of analysis is increasingly common for ecological 
research, as decision tree approaches are not dependent on the assumption of normally distributed data 
and are well-suited to dealing with collinear and categorical datasets [28,35–37]. Decision tree 
approaches automatically separate the dependent variables (presence or absence of the species) into a 
series of choices that not only identifies the importance of each constraining variable, but also establishes 
thresholds that best separate one species from another [28]. The decision-tree analysis was undertaken with 
a 10-fold cross validation technique, similar to a “jackknifing” procedure, which starts by using all available 
data (the reference tree). The total dataset is partitioned randomly into 10 equally sized groups (or folds). 
One set is held in reserve, while the other nine are pooled and a model is generated. The accuracy of the 
model is assessed using the remaining 10% of the data not used in model development. This process is 
then repeated ten times, resulting in ten different test trees and ten different accuracy assessments. The 
decision rules of the ten models are then merged to produce a final decision tree with an overall accuracy 
assessed by averaging the independent results of the ten simulations [38]. 
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Presence-only data were used to train the decision tree model using an approach adapted from [39], 
who undertook a detailed review of methods to predict species distributions from presence only data and 
proposed approaches which were then assessed against actual presence/absence data. Following this 
approach we first generated a number of random “pseudo” absences matching the number of presences. 
These points were randomly located through the region however they had to be at least 1 km away from 
existing presences. An initial decision tree was then used to predict likely absences using the modifiers 
generated by the 3-PG model. Random “pseudo” absences which had a less than or equal to 30% 
probability of being a “true” absence were removed from the absence list. A second and final decision 
model was then developed using the filtered “pseudo” absences along with the presences to predict the 
current Chinese fir distribution. To predict the future distribution under climate projections A1B and A2 
we applied to the same decision rules. 

2.5.2. Productivity Modeling 

To predict the productivity of the species, 3-PG was again run for a period of 20 years. Predictions of 
stand volume and NPP were then extracted and analyzed. The species distribution models generated in 
the previous phase were then applied as masks to clip model predictions to locations where Chinese fir 
was predicted to be present. A threshold of 450 m3/ha was then used to extract and calculate  
the total area of predicted present sites that have an equal or greater volume than the pre-set  
threshold value. 

3. Results and Discussion 

3.1. Climate Modifiers 

The spatial variation in the climatic modifiers as they constrain photosynthesis for Chinese fir during 
the most unfavorable month is shown in Figure 2a–d. Optimum conditions for photosynthesis are indicated 
by the number 1; whereas zero indicates complete shutdown for at least one month out of each year. 
Deviations from frost and optimum temperature conditions imposed greater constraints in the north west 
of the region with little constraint along the coastal regions of the country. The impact of soil water is 
more spatially variable with the Yangtze River basin and the northern tip of Fujian province along with 
the northeastern coastal regions having less drought constraint compared to inland and southern areas. 
High evaporative demand during the summer is typical throughout much of the interior. 

The importance of each of the climatic modifiers used in the model was ranked during the decision 
tree analysis (Figure 3). A higher score in Figure 3 does not indicate more limitations on tree growth, 
but indicates the likelihood of each climate variable on changing the results of the decision tree model 
on predicting species’ distribution. The results indicate that the most important modifiers that impact the 
distribution of the species are fall vapor pressure deficit, winter temperature, and winter soil water. Other 
climatic modifiers, such as summer VPD and fall temperature also drive the distribution but are less 
significant (<20%). 
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Figure 2. Spatial variation of climatic modifiers produced by the 3-PG model. All modifiers 
were scaled between zero and one, where one represents the optimum condition for Chinese 
fir growth and zero indicates growth shutdown for at least one month; (a) Frost; (b) soil 
water; (c) temperature; (d) evaporative demand (VPD). 

 

Figure 3. Overall importance (%) of 3-PG climatic modifiers. 

The monthly climate modifier trajectories under current climate are shown in Figure 4. Frost is the 
least critical modifier, which is to be expected given the location of our study area where winters tend 
to be relatively warm and dry. In contrast, optimal temperature conditions for the species occur  
bi-modally throughout the year in early spring and late fall. Temperatures and VPD in mid-summer are 
the two most restrictive modifiers due to temperatures exceeding 38 °C in some areas, well surpassing 
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the species’ optimum of 17 °C. In warmer months, regional atmospheric air pressure drops with an 
increment of VPD leading to a reduction of stomatal conductance, explaining the dip in VPD. 

 

Figure 4. Climatic modifiers in a monthly time-step; (a) Soil water and temperature,  
(b) frost and VPD. 

3.2. Decision Tree 

A confusion or error matrix allows an assessment of the performance of the algorithm and is often used 
to assess model accuracy [40]. The accuracy of the decision tree shows absences (n = 24,832) had an 
overall 70.3% accuracy; whereas presences (n = 69,999) have a higher overall accuracy of 88%. According 
to the confusion matrix of predicted and actual presence/absence, an internal model agreement of predicted 
versus actual presence/absence, known as the kappa index, is calculated to be 0.60. 

The predicted distribution of Chinese fir under current climate conditions is shown in Figure 5a, 
matching field observations that the species grows between approximately 21° to 35° N and 101° to  
121° E in mainland China as well as the central area of Taiwan. This result agrees with other 
distributional studies of the species in both the mainland and Taiwan natural Chinese fir  
forests [2,41,42]. Given the accuracy of the model and the confidence from this agreement, we applied 
the decision tree rules to the two future climate projections to assess the Chinese fir distributions under 
projected climate conditions. Figure 5b and c indicate that under climate projection A1B and A2, the 
species is likely to experience a northward shift with minor changes in the south resulting in an overall 
increase in species distribution area compared to current climate conditions. Comparing the two projected 
climate projections, Figure 5b shows that for projection A1B, regions in the central region of China are 
likely to become more suitable for Chinese fir, however the northward shift is not as marked as under 
the A2 projection. 

3.3. Productivity and NPP Estimates 

Using stand volume as a key productivity indicator provides an indication of the growth potential 
under the various climate projections. Results are masked by the distribution ranges predicted in the 
previous phase. The results indicate stand volume at 20 year ranges from 150 to 650 m3/ha.  
Highly productive stands were modeled to occur in the south-east coastal regions, east interior areas, and 
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central Taiwan; while stands with relatively poor productivity occurred in the northern part of the study 
area. It is these areas that are projected to become more suitable for Chinese fir into the future. Based on 
historic data [2,43], we assume that areas with 450 m3/ha or greater stand volume at age 20 are most 
suitable for productive Chinese fir plantations. Results suggest that in total, 4.3% (~12,000,000 ha; Figure 
6a and 3.3% (~9,000,000 ha; Figure 6b) of the modeled species distributions have a stand volume of 
more than 450 m3/ha under projection A1B and A2, respectively. Both projections indicate that Taiwan 
and central China would potentially be the most suitable for Chinese fir plantation. 

 

Figure 5. Chinese fir distribution under different climate projections; (a) current; (b) A1B 
projection; (c) A2 projection. 
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Figure 6. High productive sites (>450 m3/ha stand volume) within predicted present areas; 
(a) A1B projection; (b) A2 projection. 

Existing stands, if not diminished by climate change, tend to gain more growth over the same growing 
period under the projected climate. In Figure 7b and c it is apparent that stands currently occupying areas 
in southern Sichuan and northern Guizhou provinces (center of the study area) are likely to develop into 
more productive forests based on these stand volume predictions. 

Distributions of the productivity regimes for stand volume are shown in Figure 8. Under the current 
climate conditions (Figure 8a), the distribution is more symmetrical than under the change projections 
where the shape is skewed towards lower productivity stands. It is also apparent that peaks of productivity 
are slightly shifted to lower values from the current climate to predicted future climate conditions. This 
change in productivity distribution results from the newly established distribution of the species in the 
northern region of the study area (Figure 7). The peak in distribution in the A1B projection is explained 
by the increase in area where the climate is projected to become more suitable for Chinese fir. Compared 
to A1B, which represents a moderate development and population growth, the A2 projection 
demonstrates a more severe decline in volume, as the A2 climate projection mimics greater population 
increase, economic development, and limited climate adaptation and mitigation activities. 
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Figure 7. Volume (m3/ha) at age of 20 years, predicted by 3-PG; (a) current climate;  
(b) A1B projection; (c) A2 projection. 
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Figure 8. Histograms of predicted volume (m3/ha) with areas (km2) under climate 
projections; (a) current (baseline); (b) A1B projection; (c) A2 projection. 

Net primary production was also calculated using the 3-PG model. Figure 9 shows the current annual 
carbon uptake of Chinese fir (baseline), averaging 18 Mg/Dry matter/ha/per year, or 930 g carbon/m2/year 
across the region. Figure 10 shows the percent change between the baseline and two future climate 
projections. Although changes in NPP are more profound in projection A1B (Figure 10a), both 
projections indicate a NPP decrease in southern China and a noticeable increase (>50%) in central China. 
  

Stand Volume (m3/ha) 

A
re

a 
(k

m
2 ) 

a 

b 

c 



Forests 2015, 6 374 
 

 

Figure 9. Total NPP (MgC/year) of Chinese fir under current climate. 

 

Figure 10. Percent changes in NPP between baseline and climate projection; (a) A1B 
projection; (b) A2 projection. 



Forests 2015, 6 375 
 
3.4. Model Application and Limitation 

Understanding and quantifying the potential climate impacts on Chinese fir offers benefits to  
forest managers. Chinese fir is considered as one of the most important conifer species in China, especially 
in southern China where timber is a major economic driver. Our work indicates that climate change will 
likely have a dramatic impact on Chinese fir growth and distribution. Forest managers at a local scale will 
need to adapt by developing management strategies that are best suited to future climates. At the provincial 
or national level, distribution patterns and forest productivity will assist forest policy-makers to generate 
more accurate and scientific-based policies. Information on both the distribution and productivity of 
Chinese fir is important for forest management. Although, impacts on plantation productivity under 
changing climate is critical for local managers, distributional information is of equal importance as it 
offers information on the potential suitable locations of planting Chinese fir in the future. Therefore, 
combined with other regional factors (e.g., economic limitation, local demands etc.) the results of this work 
could contribute to the decision-making process by providing candidate plantation locations as well as 
their productivities, both of which will assist local managers better adapt the changing climate. 

The 3-PG model estimates the mean annual NPP of 930 gC·m−2·a−1, which is 10% higher than the 
national field data of 840 gC·m−2·a−1 provided by [43]. Since the NPP calculated in this study is for 
stands at their maximum growth potential or peak stand productivity (age 20 years), we believe that these 
estimates of Chinese fir are reasonable and correspond well to other studies. The NPP change predicted by 
3-PG model provides a spatial and temporal outlook of climate change impacts on Chinese fir’s carbon 
stocking. Although Liu et al. (2014) [22] achieved similar results in terms of species geographic 
distribution and NPP estimates using PnET-II and MaxEnt models, a 3-PG based modeling approach, 
besides offering accurate carbon stocking predictions, is also able to provide more insights into the direct 
relationship between climate change, local forest industry needs as well as nation-wide afforestation 
strategies by providing more commonly used forest parameters (e.g., stand volume, DBH, stem density [29]; 
Figure 6). The use of 3-PG model combined with decision tree model has shown to be capable of 
predicting and mapping the impact imposed by climate change. Previously the model has been applied 
to species including lodgepole pine (Pinus contorta) and Douglas-fir (Pseudotsuga menziesii) in the 
Pacific region of North America [44,45]. In addition, by comparing the species distribution and NPP 
change maps from Liu et al. (2014) [22], we believe that the results of this study provide a valid and 
analytical estimate of Chinese fir productivity under a changing climate and encourage the model 
application to other species and with more climate projections if possible. 

Compared to bioclimatic modeling approaches, which assume that there is an equilibrium between the 
species distribution and its current climate [46,47], physiological models such as the 3-PG model, utilize 
the physiological tolerance of the species in their predictions of the climate. For example length of daylight 
period, cloudiness, and other considerations are inherently dealt with in this approach. 

As with any modeling approach, assumptions and caveats are made and required. For the 3-PG model 
we applied the same species parameters across all climate projections and we did not consider any 
changes in species’ intra genetic variability. Similarly with our exclusive focus on Chinese fir, we 
assumed that other species did not benefit from the changing climate and gradually out-competed Chinese 
fir. More caveats are that the newly established stands may be more vulnerable to forest disturbances  
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(i.e., fire, wind, and insect etc.), and that patterns of natural disturbances do not remain the same  
through time. 

The development of Dynamic Global Vegetation Models (DGVMs), on the other hand, requires much 
more sophisticated and complex parameterizations and validations that are able to represent physical, 
biophysical, and physiological processes [48,49]. The complexities of DGVMs prevent the model from 
applications to a specific species and region [50]. Although the DGVMs output is more likely to generate 
more accurate simulations, the potential and value of physiological models cannot be underestimated in 
a sense of offering the best available guide to regional level management. 

4. Conclusions 

Results of this research using a simple physiological modeling (3-PG) combined with decision tree 
analysis, suggest that Chinese fir is likely to expand northward into Northern China with low productivity 
stands initially occurring in these regions. This result agrees well with previous studies [2,22,41,42]. 
Among all of the climatic modifiers, fall VPD, winter temperature, and winter soil water are the three 
key factors that drive the distribution of the species over the region. Under a changing climate, warmer 
temperatures will extend the species-growing season but also increase temperature stress in summer. 

This work provides a physiologically driven assessment of the distribution and productivity of 
Chinese fir, generating relevant information for the local forest and plantation managers (i.e., estimation 
of volume) as well nation-wide policies-makers (i.e., information on carbon stocking assessment) on 
how a changing climate impacts Chinese fir’s distribution and productivity. 
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