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Abstract: The loss of tropical forests has continued in recent decades despite wide 

recognition of their importance to maintaining biodiversity. Here, we examine the 

conversion of forests to pastures and coca crops (illicit activity) on the San Lucas 

Mountain Range, Colombia for 2002–2007 and 2007–2010. Land use maps and 

biophysical variables were used as inputs to generate land use and cover change (LUCC) 

models using the DINAMICA EGO software. These analyses revealed a dramatic 

acceleration of the pace of deforestation in the region, with rates of conversion from forest 

to pasture doubling from the first to the second period. Altitude, distance to other crops, 

and distance to rivers were the primary drivers of deforestation. The influence of these 

drivers, however, differed markedly depending on whether coca cultivation or pastures 

replaced forest. Conversion to coca was more probable farther from other crops and from 

settlements. In contrast, proximity to other crops and to settlements increased conversion to 

pasture. These relationships highlight the different roles of coca and pastures in forest loss, 
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with coca tending to open up new forest frontiers, and pastures tending to consolidate 

agricultural expansion and urban influence. Large differences between LUCC processes for 

each period suggest highly dynamic changes, likely associated with shifting underlying 

causes of deforestation. These changes may relate to shifts in demand for illicit crops, land, 

or mining products; however, the data to test these hypotheses are currently lacking. More 

frequent and detailed monitoring is required to guide actions to decrease the loss of forest 

in this highly vulnerable biodiversity hotspot in the Northern Andes. 

Keywords: Andean forests; forest loss; San Lucas Mountain Range; direct factors; 

underlying factors 

 

1. Introduction 

Tropical forests have been widely recognized as key ecosystems that maintain local, regional, 

global biological, and physical processes [1]. They provide habitats for a great diversity of plant and 

animal species [2]; regulate ecological processes such as speciation, dispersal, migration, competition, 

and extinction [2]; and provide a variety of ecosystem services [3]. The global use of resources 

provided by these ecosystems has led to degradation and deforestation, generating habitat loss over 

large tracts of forest. Studies have reported that during the 2000–2012 period, up to 2.3 million km2 of 

forests have been lost [4]. The highest rates of forest loss in the tropics were recorded in South 

America, losing 2101 km2/year of rainforests, and dry forests at a rate of 459 km2/year [4]. 

Tropical deforestation is driven by many factors that can vary from place to place, and through time 

in a single study area [5]. Drivers of deforestation are mostly associated with human activities and can 

be differentiated into underlying and direct causes [6]. Underlying causes can be demographic, 

socioeconomic, political and/or institutional factors that influence direct causes [7–9]. Direct causes 

can be defined as human activities that directly affect the environment and cause a change in the forest 

cover. They can be grouped into three categories: wood extraction, agricultural expansion, and 

expansion of infrastructure [6]. The interactions between these causes affect forest cover, and also 

have impacts on climate change, food production and the livelihoods of the people who depend on 

tropical forests to survive [10]. Researchers studying tropical deforestation recognize the value of 

spatial analysis to assess the causes of deforestation and better understand the dynamics of land  

use change. 

The tropical Andes of northern South America are of particular interest because of their 

vulnerability to climate change and their importance as global biodiversity “hot spots”. The northern 

Andes also have high social and economic importance, providing water to vast human populations, and 

experience high rates of deforestation [11]. In Colombia, Andean forests are the second most 

fragmented natural habitat and harbor the highest human population density. In recent decades, both 

shifting cultivation of illicit crops and conversion to pastures for cattle ranching have been some of the 

direct causes of deforestation reported in the Andean ecoregion [11,12]. 

The San Lucas Mountain Range is located to the northeast of the central Andes in  

Colombia [13,14], and its forests are home to a large number of plants and animals endemic to the 
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northern Andes biodiversity hotspot [14,15]. Lacking any government or private protection, this 

mountain range is vulnerable to deforestation and biodiversity loss [14–16]. Armed conflict and the 

replacement of forests into coca crops, pastures and mining areas threaten local biodiversity [14]. One 

important consequence of the insecurity in San Lucas is the lack of research, which explains why only 

a few studies have been conducted on this mountain range. Since the late 1990s, fewer than a handful 

of studies have described and analyzed the biodiversity of San Lucas, and the conservation challenges 

arising from local political and socioeconomic circumstances [14,15,17]. 

To date, the local deforestation dynamics of San Lucas have not been formally analyzed. Given the 

importance of San Lucas and the lack of recent deforestation analyses, we aimed to quantify and 

analyze region-specific changes in forest cover. We also aimed to analyze the dynamics of forest cover 

change for two periods (2002–2007, 2007–2010), and calibrate and validate a spatial model of land use 

change to investigate the determinants of deforestation [18,19]. We focused our analyses on the change 

from forest to the cultivation of coca and conversion to pastures. We specifically address three 

outstanding questions: (i) What are the dynamics of forest loss for the 2002–2007 and 2007–2010 

periods? (ii) What is the spatial relationship between forest cover loss and other land uses such as crops 

and settlements? Additionally; (iii) What is the influence of specific biophysical variables on the land 

use change of forest cover to pastures and coca crops? 

2. Study Area 

The San Lucas Mountain Range is located at the northeast end of the central Andes of Colombia, 

and its natural boundaries are the Magdalena River to the east, the Nechí River to the west, and the 

Cauca River to the north [15]. San Lucas is located in the transition zone between the Caribbean and 

the Andean climate regimes [14,15] (Figure 1). The mountain range encompasses approximately two 

million hectares of tropical and subtropical forests that span an altitudinal gradient of  

0–2500 m [14,15]. 

The study area encompasses four departmentos or provinces (Antioquia, Bolivar, Sucre, and 

Cordoba) and 25 municipalities, although the degree to which political units correspond to the 

mountain range itself varies (Figure 1). The most recent census by the National Department of 

Statistics (DANE) in 2005 recorded approximately 525,000 inhabitants in these municipalities [20]. 

Most of the population in San Lucas is concentrated in towns and villages characterized by weak 

institutional infrastructure and state control, as well as economic underdevelopment [14]. With 

approximately 20,000 inhabitants [20], Santa Rosa del Sur in Bolivar is the most prominent town in 

San Lucas, and is effectively the spearhead of colonization into the mountain range [14]. The local 

road network is underdeveloped, in many cases created by local inhabitants, and is used to support the 

transportation of different products [14]. 

Given the lack of security in the area and the presence of armed groups, few biological studies have 

been attempted [12,21]. A brief biological survey revealed a great wealth of endemic animals and  

plants [15]. During the last few decades, these forests have undergone deforestation and their 

ecosystem services have degraded. The direct causes of these changes are largely anthropic and include 

gold mining, expansion of the colonization frontier, cattle ranching, and coca cultivation [14,15]. 
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Figure 1. Location and digital elevation model of the study area. 

3. Methods 

3.1. Data 

Our primary data consists of a set of land cover maps that were developed by the “Sistema 

Integrado de Monitoreo de Cultivos Ilícitos” (Integrated Illicit Crop Monitoring System, SIMCI). 

SIMCI is a project of the United Nations Office on Drugs and Crime that conducts an annual census of 

the illicit crops coca and opium poppy in Colombia using remote sensing tools [22]. The maps used for 

this study are the final product of the visual interpretation and classification of Landsat Enhance 

Thematic Mapper Plus (ETM+) multispectral satellite images taken in 2002, 2007, and 2010. Given 

the biophysical conditions of the study area, the maps corresponding to these years were selected 

mainly based on the quality of the images, including a low percentage of gaps and clouds. The 

availability and quality of the maps selected enabled analyses for the first period with a five-year window 

(2002–2007), and a three-year window for a second period (2007–2010). All maps were georeferenced to 

the Transverse Mercator projection, Bogota Observatory Datum [23]. Cell size is 30 m, and the error in 

horizontal position satisfies the requirements of the cartography at scale 1:100,000. 
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The SIMCI land cover maps also have strict verification of the final product through ground and 

aerial truthing [22,24]. In conjunction with the national anti-narcotics police, SIMCI conducts flights 

primarily focused on areas where new coca cultivation is recorded in the satellite imagery, and 

reaching up to 10% of these new areas. These flight-assisted aerial truthing data are then used to adjust 

interpretation of the satellite imagery [25]. 

The original SIMCI maps were classified into 11 categories. For the purposes of this study, we 

reclassified maps into six categories: (a) coca crops; (b) forest; (c) pastures; (d) other covers; (e) other 

crops; and (f) routes. “Coca crops” are of particular interest as areas planted with illicit crops. Given 

the scale of the maps and the size of the coca plots (small number of pixels), these are difficult to 

identify initially, and are subject to partial verification by SIMCI. “Forest” areas correspond to primary 

and secondary vegetation grouped as a single natural land use. The “pastures” designation is used to 

identify artificial grasslands for cattle ranching and farming. Both coca and pastures are direct causes 

of deforestation. By attracting colonists to newly opened forests, coca is also an indirect cause of 

deforestation. “Other cover” represents covers that are considered secondary to the study (e.g., bare 

soil, rock outcrops, sand, flood plains, clouds, and gaps). “Other crops” corresponds to areas with 

shifting cultivation, while “routes” corresponds to primary roads that allow communication between 

the different municipalities across the mountain. 

The original SIMCI maps were modified in two ways: (1) by setting up an initial mask of forest to 

analyze deforestation through time; and (2) all maps were set with the same gaps and clouds to avoid 

under or overestimations of forest loss. After these modifications all maps had the same total of 8.81% 

of gaps and clouds. These geoprocessing adjustments improve the quality of the data, even as they 

reduce the total pixels available for analyses. 

The data for rivers was obtained from the geographic information system for planning and the Land 

Management National Geographic Institute Agustin Codazzi (SIGOT). The Shuttle Radar Topography 

Mission’s (SRTM) 90 m resolution digital elevation models, detailed data of roads, the slope, and the 

aspect were obtained from the Geographic Institute Agustín Codazzi. Detailed road maps were not 

available for different time steps, so that the specificity of these layers is lower than that of land use, 

reducing model complexity. In short, the data on roads captured state-maintained roads and not the 

locally developed network, or its change over time. 

3.2. Land Use Change Spatial Model 

To analyze the dynamics of deforestation we used the software DINAMICA EGO, which involves a 

multi-step stochastic simulation with dynamic spatial transition probabilities to reproduce the 

dimensions and forms of landscape change [26–29]. DINAMICA has been widely used for different 

purposes, among others: simulating spatial patterns of land use through the expansion of the 

colonization frontiers in Amazonia [26]; and modeling future land use change scenarios in Brazilian 

savannas [30] and national parks [31], Kenya’s Eastern Arc Mountains [32], and tropical forest in Lao 

People’s Democratic Republic [33]. These diverse applications show the flexibility of DINAMICA 

EGO as a modeling platform, as it allows adjusting different parameters to fit the model to the 

variables and dynamics of the case of study. 
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The model follows a series of steps (Figure 2) to simulate deforestation [19] in: 2002–2007,  

2007–2010, and 2002–2010. In the first step, the model calculates transition matrices that describe the 

net change in a landscape through discrete periods [18,34]. The single step matrix corresponds to a 

single time step, while the multiple-step matrix corresponds to a time step unit specified by dividing 

the time period by a number of time steps [19]. 

 

Figure 2. Steps in the land cover change simulation model (adapted from [21]). 

Based on our research goal and the general conditions of the San Lucas data, we needed to analyze 

spatial statistics on areas with little data. We therefore selected the “weight of evidence” (WoE) 

method for discrete multivariate statistical analyses [27]. WoE is based on the “Bayes theorem of 

conditional probability” [35]. The theorem uses prior and posterior probabilities to delineate the 

relative importance of data. These probabilities can be calculated with the number of occurrence 

samples, with the whole assessed samples and the probability of existence of the phenomena when the 

predictor variable exists [27]. It assigns positive or negative weight values (WoE+/WoE−) to each map 

pixel that contains the variables that may influence the transition of interest, in this case, from forest to 

another land use In other words, the weight values represent the influence of each variable on the 

spatial probability of a transition occurrence [28,36]. Thus, variables with positive weight values 

(WoE+) promote deforestation associated with a particular transition, while variables with negative 

weight values (WoE−) do not. We used the WoE to analyze the influence of the variables, and to 

generate a deforestation probability map for each period of study. 

To apply this modeling approach, it was necessary to categorize all the continuous (or gray-tone 

variables of Figure 2) variables into discrete bins. These quantitative variables included distance to 

rivers, distance to roads and settlements, and slope, as these are potential determinants of the 

transitions of interest [19]. Once these continuous variables were categorized in step 2, it was possible 

to estimate a WoE for each bin or range and then determine the influence of these variables in the 

transition from forest to coca crops or to pastures (Figure 2). The model selects the number of intervals 

and the size of buffers used to calculate ranks while attempting to preserve the original structure of the 

continuous data variable [19]. The variables considered in the spatial analysis were: (a) distance to 

roads; (b) distance to rivers; (c) altitude; (d) distance to other crops; (e) aspect; (f) slope; and (g) 

distance to settlements. 

After the calculation of the WoE for each variable, a spatial correlation analysis was performed  

(step 4) to determine whether the variables were independent from each other, and to identify their 

degree of association. To measure the degree of independence, we used two statistics: Cramer’s 

coefficient and the joint information uncertainty principle. The first one is based on chi-square (X2), 

and the second one is based on the joint uncertainty between two distributions computed from 

entropies. The range for these figures was 0–1, with values below 0.5 indicating a weaker association 

and higher independence between two variables [19,28,37]. 
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Each time period (2002–2007, 2007–2010, and 2002–2010) was calibrated and validated 

independently. For calibration two transition algorithms were used to allocate cover changes in each 

period. These functions patcher and expander, whose functions generate new patches through a seed 

formation mechanism and the expansion of previously existing patches for the covers of interest [32]. 

These algorithms scan the initial maps for each period and sort out cells with the highest change 

probabilities, arranging them in a data array. Some of the cells are then selected randomly and the 

initial cover map is scanned one more time to perform the selected transitions [31]. The mean and the 

variance of the patches, were also calibrated using the mentioned algorithms and also a final 

parameter, the patch isometry index, which is related with the compaction of the patches, in which 

lower values reflect more fragmented formations [32]. Next, each of the models ran its modeled 

scenario, and these were visually compared to the end-state of the period. These visual analyses helped 

adjust model parameters to improve the simulated maps. Two types of map were obtained as results: 

(1) map of probability of transitions that shows the areas with high and low probabilities of forest 

cover change into pastures and coca crops; and (2) simulated cover map for each of the periods. The 

latter were used during the validation process. 

For validation, we used multiple-resolution windows to compare simulated and observed landscapes 

for each period. This method uses pairwise comparisons of initial and simulated land cover maps, and 

between initial and final landscape of reference for each period [26,31,32]. These comparisons deal 

with one type of change at the time and the two-way similarity measure can be applied to the entire 

map. At the same time, the inherited similarity between the initial and simulated map is eliminated 

from this comparison by ignoring the null cells from the overall count [32]. These approaches are 

useful when comparing maps that do not exactly match on a cell-by-cell basis, but still present similar 

spatial patterns within certain cell vicinity [26]. The validation procedure also retrieves a fuzzy 

similarity index within a gradually expanding window in which a representation of a cell is influenced 

by the cell itself and by the cells in its vicinity [32]. The comparison results in a map that specifies for 

each pixel the degree of similarity on a scale of 0–1, so that zero represents total disagreement and one 

represents identical maps [31]. 

4. Results 

Figure 3 shows that forests decreased, while illicit crops and pastures increased over time. An 

estimated 312,019 Ha of forest were lost from 2002–2007, while illicit crops increased by 4438 Ha and 

pastures by 270,409 Ha. From 2007–2010, 340,842 Ha of forest were lost, while 633 Ha of illicit crops 

and 225,279 Ha of pastures were added (Table 1). 

Table 1. Land use cover recorded at each time. 

Land Use/Ha per Year 2002 2007 2010 

Forest 2,227,931 1,915,913 1,574,470 

Coca crops 941 5379.5 6013 

Pastures 228,558 270,638 495,917 
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Figure 3. Land cover maps for 2002, 2007, and 2010, and conversion of forest to other 

covers between 2002 and 2010. 

No substantial spatial correlations were observed between any of the variables. The maximum 

Cramer index value obtained for the transition from forest to coca was 0.26, and the uncertainty index 
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was 0.11. For the transition from forest to pasture, the maximum Cramer index value was 0.25, and the 

uncertainty index was 0.11. This indicated spatial independence between variables and made removing 

portions of the previous model unnecessary. 

From 2002–2007, the greatest probabilities of transition were from forest to pastures (0.0588) and 

forest to other covers (0.0540); the probability of conversion from forest to illicit crops was 0.0016. 

These trends accelerated from 2007–2010 for most transitions. During this later period, the greatest 

probabilities of transition were again from forest to pastures (0.1178) and to other covers (0.0518), 

while the probability of conversion to coca remained low at 0.0021 (Figure 4). 

 

Figure 4. Transition matrix from forest to other covers of interest: (a) 2002–2007; (b) 

2007–2010. 

Model Calibration and Validation 

For the three periods, the variable distance to other crops showed little influence on the transition 

into coca crops. No relationship was found for distance to roads. Distance to rivers had negative 

weight values (WoE−), indicating higher probability of coca deforestation close to rivers. Distance to 

other crops strongly influenced the transition of pastures. As the distance to other crops decreased, the 

probability of forest conversion to pasture increased. Distance to rivers, was positively correlated with 

forest loss from pastures, with positive weight values (WoE+). Distance to official roads had WoE 

values close to zero for both periods, this variable was unrelated to deforestation. 

Aspect was positively related to transition probabilities from forest to crops or pastures, especially 

for areas facing north, east, and south. Altitude and slope variables showed positive influence on the 

transition into coca crops, so that mountainous areas with some slope had greater probability of 

conversion to coca. Low slope and altitude influenced the transition into pastures, so that the 

probability of transition to pastures decreased in high and very mountainous areas. As the distance to 

settlements increased, the probability transition to coca crops increased. In contrast, the probability of 

transition to pastures increased with decreasing distance to settlements. Figure 5 shows the results of 

the influence and the WoE of selected variables for the first period (2002–2007). 
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Figure 5. Influence of selected variables on transitions from forest to coca or pastures for 

the 2007–2010 period. 

Transition potential maps represent the probability that a particular land cover will be subject to 

change based on the interaction of the WoE of the variables. Red and yellow indicate higher 

probabilities of transition, while blue indicates a lower probability (Figure 6). The probabilities of 

transition for pastures and coca crops have higher values during the first period. The second period 

showed lower values, with decreased probabilities for both transitions. 

Validation for the 2002–2007 period resulted in fitness values of 11.9% for sampling window sizes 

of 1 × 1 cells, and 49.8% for windows of 11 × 11 cells. For the second period, fitness values were 

15.8% for 1 × 1 windows and 65.4% for 11 × 11 windows. For the third period 2002–2010, fitness 

values were 20.0% for 1 × 1 windows and 48.7%. The 2002–2007 model showed a fitness value over 

20% at a spatial resolution of approximately 500 m, the 2007–2010 model showed a fitness value over 

30% at the same resolution and the 2002–2010 model showed a fitness value over 30% as well  

(Figure 7). Since the validation values were the lowest for the longest period and the variables had 

similar behaviors for all transitions, our discussion focused on the analysis of the dynamics of change 

of 2002–2007 and 2007–2010. These shorter windows allowed us to understand in detail the 

complexity of the dynamic of change. 
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Figure 6. Potential change maps from forests to illicit crops (a) and pastures; (b) based on 

the interaction of the different variables. 

 

Figure 7. Model fitness as a function of cell spatial resolution. This allows assessing 

model fitness for changes at different locations. 
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5. Discussion 

5.1. Model Calibration and Distinct Dynamic 

These first quantitative analyses of deforestation in the San Lucas mountain range reveal two 

distinct sets of dynamics in time. Visual analyses of the differences between maps for each time period 

highlight the intensity of land use changes. Quantitative analyses of these changes are shown in maps 

of transition probabilities of interest and transition potential maps (Figure 6). For example, forest areas 

with high probabilities of change in the 2002–2007 map correspond to the establishment of many 

anthropic land uses in the 2007–2010 map. Both qualitative and quantitative analyses indicate that 

forest loss in the 2007–2010 period were greater and more intense than the losses incurred between 

2002 and 2007. 

In general, the interaction between underlying causes such as land tenure and unsatisfied basic 

needs generate the conflict between human activities and forests that drives deforestation [12,38–43]. 

In the San Lucas Mountain Range, diverse agents of deforestation are present in an area where armed 

actors make land tenure insecure, and illicit crops have taken hold. With this background, we focused 

on two important land uses in Colombia: pastures and coca crops. These land uses are of particular 

importance because pastures are the end state of many long-term colonization processes, and coca is 

both a direct agent of deforestation and a catalyst of colonization to new forest sites. The results of 

these spatially explicit Bayesian analyses highlight the differences in dynamics, extent, and physical 

determinants and constraints for these two land uses. 

Transitions to coca and pasture differed in important ways. Illicit crop eradication policies may 

promote deforestation in remote areas by forcing growers to relocate their coca to more isolated areas 

to avoid detection [16,32,42]. This interaction between underlying causes and direct agents, coca 

growers, results in higher coca deforestation rates in remote medium slope areas, where people may 

use available land for illicit crops with greater ease [9,12]. Given the illegality of coca and the fact that 

these crops are associated with armed groups, coca tends to be hidden away in the forest in small plots 

in ways that reduce the risk of discovery and elimination. Our analyses confirm this, as transitions to 

coca were less probable in closest proximity to other crops. Slope and aspect play an important role in 

the agricultural characteristics of coca, because they may affect the production and growth rate of this 

crop [38]. This is consistent with previous studies [12] that demonstrated that optimal growth of these 

crops occurs in an altitude range of 0–2200 m. 

Distance to rivers is another variable that highlights the differences between transitions from forest 

to coca or pasture. Being distant from the river decreases the probability of transition to coca, but 

increases the probability of transition to pasture. This highlights the relationship between access by 

river and deforestation, where rivers can be used as a transport system by colonists and also can serve 

as a source of natural resources for the establishment of colonies. This is consistent with other cases in 

Colombia, particularly in southern parks such as La Macarena, Nukak and Chiribiquete, where 

proximity to rivers generally promotes deforestation [43–45]. 

In contrast to coca dynamics, transitions to pasture are more probable at lower distance to other 

crops. These agents of deforestation prefer level land at lower altitude [11,12,46]. The conversion of 

forests to pastures and the establishment of cattle are closely linked, first as a means to generate 
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revenue [47], and second as a way of claiming tenure. Clearing the forest establishes priority for 

claims to the land and is a prerequisite for land tenure. Cattle strengthen land claims and can be a 

source of credit in addition to direct revenue from trading. Finding that proximity to other crops 

increases the probability of conversion to pasture reinforces the establishment and expansion of the 

colonization frontier as an ongoing dynamic that has not stabilized [34,43]. 

The factor that best exemplifies the difference between forest loss to coca and loss to pasture is the 

distance to settlements. Settlements facilitate the expansion of the agricultural and colonization frontier 

through agriculture for pastures or legal crops, and enhance property values, increasing land claims. In 

contrast, settlements make coca easier to spot, and easier to eradicate by the government. We believe 

migration into the region is increasing local population density, as well as generating more land claims 

across affected municipalities. The boom of activities such as gold mining may cause this migration 

process, placing more pressure on the forest [11,14]. There are no migration or land claim data that 

allow us to test this hypothesis. We anticipate that field work and a validation process with the local 

agents of deforestation are necessary to evaluate the underlying causes that generate forest loss in the 

San Lucas mountain range [48,49]. 

Although we expected to find a relationship between deforestation and distance to roads, official, 

government-sanctioned roads were unrelated to forest conversion in San Lucas. This differs from 

several other studies [40,43,47,50]. This key difference may be explained by the quality of the data 

available for this variable. The official road map included only 2592.25 kilometers of primary roads, 

and not the locally-developed roads and trails that dominate the region. Data on new roads such as 

tertiary roads, and unpaved trails are needed. These small roads are decades old, and may influence 

forest conversion in ways that could not be modeled in our analyses. High-resolution data are 

necessary to discover these roads and uncover the relationship between distance to roads and trails, 

and deforestation. 

5.2. Model Validation and Future Improvements 

We used a multiple-resolution method to validate the model using a sampling window of different 

sizes, moving over the image, and calculating the average fit between the real and simulated scene.  

This allows a comparative analysis between the absolute number of pixels that belong to the same 

class on both scenes given a specific window [28]. Using this approach, the model for 2007–2010 was 

better than the 2002–2007 model. This may be because during the first period much of these activities 

were starting, and much of the expansion of the agricultural frontier was just beginning. The second 

period showed the consolidation of several of those processes, in which the relationship among the 

studied variables and deforestation was clearer and stronger. The time window for each model may 

also affect the results, so that the shorter period more adequately captures forest loss dynamics than the 

five-year period. The longer period may mask forest loss and some early regrowth, while the  

three-year period is focused completely on loss. 

The calibration and validation results are lower in our analyses than in other studies [31,32,51].  

This may be explained by, among others, the quality of variables and their resolution, the lack of 

spatial information for variables related with underlying causes, and the percentage of gaps and clouds 

that increases uncertainty of the covers. Despite the relatively low performance of the models, previous 
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research shows the WoE estimates are robust to low-performing overall models [52–54]. Future 

comparisons with different methods such as the ROC (the receiver operating characteristic, an analysis 

widely applied to assess the performance of spatial models) may illuminate the regions of parameter 

space in which the models presented here underperform. Previous analyses, however, have shown that 

the WoE can be validated using methods with a variety of mathematical foundations [54], and is 

relatively robust as an estimate of covariate influence. 

The aim of the validation procedure is to approximate groups of neighboring cells at different 

spatial resolutions [18,19,28,55]. The poor validation values for the 2002–2007 model may be related 

to the beginning of the expansion of the colonization frontier that does not show a clear spatial pattern 

yet, in the latter period those patterns were established and it became easier for the model to recognize 

them, increasing accuracy. As discussed before, critical data on small roads and trails are missing, as 

are important underlying causes including data on migration and land claims. Once these variables 

become available, additional models may more fully explain the land use conversions on the San 

Lucas mountain range. 

Cultivation of illicit crops is both a direct and indirect cause of deforestation in Colombia [56]. In 

San Lucas, coca cultivation is strongly associated with armed conflict. Even if the region encompasses 

suboptimal areas for the cultivation of coca, armed groups collect income from illicit crops and 

develop illegal trade networks [11,12,38,44,45,57]. As a result, some researchers suggest that the 

presence of armed groups is another variable that should be considered when simulating deforestation [42]. 

More variables that better explain the transition from forest to coca crops, such as those related to 

armed conflict, violence, political development, and eradication, could improve the deforestation 

model and its fitness [39,40]. Finally, the quality of the information used is an important issue to 

consider, as this can affect both the calibration and validation of the models. Future improvements to 

the models introduced here may include developing additional cover classes, reducing gaps in the data, 

and increasing the number of explanatory variables used to capture additional direct causes of  

forest loss. 

6. Conclusions 

This first spatially explicit Bayesian analysis exercise for the San Lucas Mountain Range has 

revealed an increasing pace of regional deforestation, and distinct dynamics for the conversion of 

forest into two alternate land uses: coca cultivation and pastures. Conversion of forest to coca 

cultivation was associated with greater distance to other crops and to settlements. In contrast, 

conversion to pastures was more probable immediately beside other crops and in proximity 

settlements. Compared to findings for the 2002–2007 period, the rate of forest conversion to pasture 

doubled in the 2007–2010 period, highlighting the accelerating pace of forest loss and rapid, 

unplanned expansion of the agricultural frontier. The land cover maps and analyses introduced here 

can inform future monitoring of deforestation hotspots, as well as further analyses of the underlying 

and direct causes of deforestation in the region. 
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