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Abstract: Terrestrial laser scanning (TLS) data makes possible to directly characterize the 

three-dimensional (3D) distribution of canopy foliage elements. The scanned edges of these 

elements may result in incorrectly point measurements (i.e., “ghost points”) impacting the 

quality of point cloud data. Therefore, estimation of the ghost points’ spatial visibilities, 

measurement of their characteristics and their removal are essential. In order to quantify 

the improvements on data quality, a method is developed in this study to efficiently correct 

for ghost points. Since the occurrence of ghost points is governed by a number of factors, 

(e.g., scanning resolution and distance, object properties, incident angle); the developed 

method is based on the analysis of the effects of these factors under controlled conditions 

where canopy-like objects (i.e., leaves, branches and layers of leaves) were scanned using a 

continuous-wave TLS system that employs phase-shift technology. Manual extraction of 

ghost points was done in order to calculate the relative amount of ghost points per scan, or 

ghost points ratio (gpr). The gpr values were computed in order to: (i) analyze their 

relationships with variables representing the above factors; and (ii) be used as a reference 

to evaluate the performance of filters used for extraction of ghost points. The ghost points’ 

occurrence was modeled by fitting regression models using different predictor variables 
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that represent the variables under study. The obtained results indicated that reduced models 

with three predictors were suitable for gpr estimation in artificial leaves and in artificial 

branches, with a relative root mean squared error (RMSE) of 4.7% and 3.7%, respectively; 

while the full model with four predictors was appropriate for artificial layers of leaves, 

with relative RMSE of 4.5%. According to the statistical analysis, scanning distance was 

identified as the most important variable for modeling ghost points occurrence. Results 

indicated that optimized distance-based filters relative to the scanning distance have 

improved the outcomes in ghost points detection, in comparison to standard filtering 

criteria. These results suggest that more accurate characterization of forest canopy 3D 

structures can be achieved by removing ghost points using the new developed method. 

Keywords: continuous-wave LiDAR; mixed pixel effect; ghost points filter;  

experimental setup 

 

1. Introduction 

Quantifying the three-dimensional (3D) structure of an individual tree or forest stand is a 

challenging task due to the complex organization of all the elements involved, predominantly at the 

canopy level (e.g., stems, branches, and leaves) [1]. Diversity exists in the shape and size of these elements, 

in the range of plant form and in the combination of forms that give a canopy architecture [2–4]. Light 

detection and ranging (LiDAR) remote sensing used for terrestrial laser scanning (TLS), is a tool to 

generate point clouds (x, y, z) that describe canopy structure as a whole, providing information about 

the distribution of biomass [5], and also characterizes the spatial distribution of canopy elements at a 

high level of detail [6]. Three primary types of TLS technologies are being employed in commercial 

laser scanners [7]: (i) time-of-flight discrete-return scanners; (ii) time-of-flight waveform scanners; and 

(iii) continuous-wave phase-shift scanners. Time-of-flight discrete-return instruments provide high 

accuracy at large range. This category of scanners has been the most used for vegetation structure 

assessments [8]. In addition to the point cloud data, most TLS instruments also record the instrumental 

(i.e., raw) point intensity value. It is well known that intrinsic errors in TLS-based range measurements 

as well as errors due to the interaction of the laser beam with the environment impact the quality of 

these point clouds. As reported by [9], extra noise might be added due to the reflective properties of 

objects and angle of incidence of the laser beam. Similarly, regarding the laser beam/object interaction, 

an important source of noise is the imperfect scanning of edges of the measured elements. This 

condition, defined as a “mixed pixel” effect [10], occurs at spatial discontinuities in the space wherever 

the laser beam lies partially on two surfaces with different distances from the sensor. In this scenario, 

the laser beam is reflected by both the foreground and background surfaces, and the sensor receives a 

mixture of the two signals. Depending on the type of laser scanner, the resulting range measurement 

may be reported at the distance to the foreground object, the background, somewhere in between, or, 

even at distances closer than the foreground object or further than the background [11–13]. The 

incorrectly measured points affecting the subsequent processing of these data [14] will be called 

hereafter “ghost points”. Scenes with a high number of edges or discontinuities, in color or distance, 
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are more prone to the formation of ghost points. The proportion of ghost points may increase 

significantly when the scanned areas include dense understory and/or thin objects. 

Considering the measurement setup, a number of variables govern ghost points occurrence, namely, 

scanning resolution and distance, object properties (e.g., size and reflectivity) and incident angle [12]. 

From these variables, only the scanning resolution is internal to the scanner and user-configurable, 

while the rest are external to the scanner. The effect of these variables on the occurrence of ghost 

points have been comprehensively studied and discussed in [9,12,15–18]. Previous research has 

focused on understanding the sources of error in the sensing and modeling process [18–20]. Similarly, 

other studies have aimed to characterize laser instruments and analyze the effect of various operating 

parameters in order to identify edges and remove the unwanted data points by means of e.g.,  

two-dimensional edge-detection processes [21], and algorithms to detect depth discontinuity and 

mixed pixels in 3D data [20,22]. A manual selection and correction of the point cloud during the TLS 

data preprocessing procedure has also been tested [9], but this technique is not efficient to delete ghost 

points on large datasets (e.g., real forest canopies). More recent studies, however, have improved 

quality of TLS data collected in forest environments by investigating the morphology of canopy gaps 

and correcting for the bias introduced by points on time-of-flight TLS data [23]. Improved data is also 

obtained when default and customized filters (i.e., threshold filters for range and intensity) are used to 

remove ghost points on datasets from continuous-wave and time-of-flight TLS systems [7]. However, 

these filters do not provide consistent improvement throughout the whole dataset, mainly due to the 

limitations of TLS systems (e.g., effective range, radial scanning) and their specific characteristics 

(e.g., beam diameter and divergence) [12]. In order to accurately develop filtering techniques for 

removing ghost points, it is essential to understand which variables, internal and/or external to the 

instrument, contribute the most to their occurrence. This is especially important in forest canopy 

research, since ghost points represent true interceptions of the laser beam, therefore, they should be 

considered in gap probability analysis (e.g., leaf area index, canopy cover), but have to be filtered out 

for structural analysis (e.g., study of single stem shape) [7]. In addition, since sensitivity of edge 

detection algorithms decreases with increasing range, more accurate results can be obtained by 

selecting adaptive threshold functions, so that within the ranges of interest the filter could be as 

sensitive as possible [21]. 

The main goal of this paper is to quantify the improvements on data quality by measuring the 

characteristics of the ghost points obtained from TLS measurements. This was done under controlled 

conditions, using artificial measurement setups, simulating forest canopy scenes and applying adaptive 

techniques for detection and correction of ghost points. The second objective is to estimate the effects 

of object properties, scanning resolution, distance and incident angle on the quality of continuous-wave 

TLS data, in terms of ghost points occurrence.  

2. Materials and Methods  

2.1. TLS Instrument  

The TLS instrument used in this study was the panoramic-type FARO
®

 LS 880HE (FARO
®

 

Technologies Inc., Stuttgart, Germany), which uses a continuous-wave laser operating at 785 nm and 
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the phase-difference technique to measure the 3D position of objects within a range of 76 m. The laser 

power of the scanner is 20 mW and the returning intensity is recorded in 11 bits (0 to 2048). While 

operating, the laser beam is deflected by a rotating mirror, giving the angular coverage of 320° on the 

vertical plane. A rotating motor allows the 360° azimuth scan. For the present study, the scanning area 

was reduced to the area of interest, in order to avoid unnecessary data recording. 

2.2. Measurement Setups  

The scanning distance, incident angle, and scanning resolution were modified throughout a series of 

controlled indoor TLS measurements to assess their impact on the occurrence of ghost points. 

Scanning distance refers to the distance between the sensor and the target; incident angle is the 

orientation of the target relative to the sensor, i.e., the angle between the laser beam and the normal to 

the target at the point of incidence of the laser beam; and scanning resolution is defined by the angle 

between neighboring laser beams, both in the vertical and horizontal plane. The angle in the full (1:1) 

resolution is 0.009° (in both planes), in the half (1:2) resolution is 0.018° and in the quarter (1:4) 

resolution is 0.036°. For the FARO
®

 LS 880HE, overlapping laser beams are expected, generating data 

redundancy at some resolution levels and range [24]. However, this is not meaningful for the data 

processing explained further. For the TLS measurements, three setups installed on a rotating platform, 

that mimic canopy-like structures, were used (Figure 1): (i) non-woody materials (hereafter called the 

leaves setup) are reproduced by squares made of Canson
®

 paper with identical size (i.e., 5 cm × 5 cm) 

and in a range of different reflectance values (Table 1). This type of paper has a vellum texture 

minimizing specular reflection; (ii) woody materials (hereafter called the branches setup) are 

represented by plastic pipes in a range of different diameters and covered by Canson
®

 paper with 

identical reflectivity; and (iii) overlapping layers of leaves (hereafter called the layers setup) are 

represented by groups of leaves having identical size and reflectivity (Table 1). Figure 1 shows the 

three setups on the rotating platform. Distance between objects is fixed to 3 cm in the leaves setup 

(Figure 1a). In the layers setup (Figure 1b), there are 10 cm between the front and the middle layer and 

12 cm between the middle and the back layer. In this setup, the distance between the objects is kept  

to 3 cm; except for the pairs of objects located on the same layer and close to the center of the platform, 

where the distance is 5 cm. The distance between the objects in the branches setup (Figure 1c) is 15 cm. 

The reflectance properties of the materials were measured at the wavelength of the TLS laser beam 

(i.e., 785 nm), with a FieldSpec
®

 3 (Analytical Spectral Devices Inc., ASD, Boulder, CO, USA). 

Table 1. Overview of the different setups. Reference configuration is underlined. 

Variable Leaves Setup Layers Setup Values Branches Setup 

Scanning distance 
2.5 m, 5 m, 7.5 m,  

10 m, 12.5 m, 15 m 

2.5 m, 5 m, 7.5 m,  

10 m, 12.5 m, 15 m 

2.5 m, 5 m, 7.5 m,  

10 m, 12.5 m, 15 m 

Incident angle 0°, 15°, 30°, 45°, 55° 0°, 15°, 30°, 45°, 55° 0°, 15°, 30°, 45°, 55° 

Scanning resolution 1:1, 1:2, 1:4 1:1, 1:2, 1:4 1:1, 1:2, 1:4 

Reflectance 785 nm 10%, 50%, 90% 50% 30% 

Dimension 5.0 cm × 5.0 cm 5.0 cm × 5.0 cm 
5.0 cm, 8.0 cm,  

10.0 cm diameter 
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Additionally, the impact of reflectance and diameter was studied in the leaves and the branches 

setup, respectively. These values were not changed and were constant during the measurements.  

A reference configuration was chosen and other variables were changed one at a time. Table 1 

provides a technical overview of the different setups. 

Figure 1. Measurement setups with canopy-like structures installed on the rotating 

platform. (a) The leaves setup showing the dimensions of the setup and six objects with 

reflectance values (left to right): 10%, 50%, 90%, 10% 50% 90%; (b) The layers setup 

showing 15 objects with reflectance value of 50%; (c) the branches setup showing three 

objects with a reflectance value of 30%. 

 

(a) (b) (c) 

2.3. Manual Extraction of Ghost Points and Ghost Points Ratio Computation 

Each point cloud obtained from the corresponding scan was visualized and managed in a 3D 

environment. Here, ghost points were visually detected in two different ways, depending on the setup. 

First, in the leaves and the branches setups, the evaluated space within the point cloud comprised the 

space occupied by each individual object and its immediate surroundings, i.e., after visualization of 

edges of objects, points further away from these edges, and located more than five times the angle 

between neighboring beams, defined by the scanning resolution, were not included. This was 

determined in order to avoid counting irrelevant scan points and/or scan points belonging to adjacent 

objects. Within this space, and since the objects had known shape and dimension, valid scan points and 

ghost points were identified (Figure 2a,c). Second, the space examined in the layers setup comprised 

the larger space occupied by all layers of leaves, i.e., the entire cluster of leaves and immediate 

surroundings were included (Figure 2b). The scan points belonging to the background were excluded 

from the analysis. Then, ghost points were manually removed from the considered space (Figure 2d–f) 

and a ghost points ratio was calculated as:  

                 (1) 

where: gpr is the ghost points ratio within the space, with values from zero to one; sp the total number 

of scan points within the space under analysis; and vsp the number of valid scan points corresponding 

to the object. If gpr = 0, means no ghost points within the space, while if gpr = 1 means there are only 

ghost points within the space. 
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Figure 2. Visualization of the point clouds in the space under analysis for (a) the leaves 

setup; (b) the layers setup; and (c) the branches setup. Valid scan points are shown in blue, 

ghost points are shown in red; (d–f) show the valid scan points after manual extraction of 

ghost points, for the leaves setup, the layers setup, and the branches setup, respectively. 

 

With a black background placed as shown in the Figure 1, there will be no measurement errors 

behind the objects, nor in the middle of objects. This applies to leaves and branches setup, as seen in 

Figure 2a,c, respectively. As concerns the layers setup this is also true, at least for the noise points 

originating from the back layer. However, it is rather difficult to determine the origin of noise points 

that are between layers (Figure 2b). 

2.4. Statistical Analysis  

Linear regression models were fitted for analyzing the influence of the variables behind the 

measurement setups (Table 1) on the occurrence of ghost points. The response variable gpr (ghost 

points ratio) was modeled as a function of the variables (i.e., predictor variables) described in  

Section 2.2. Several models were fitted by the least square method, and these models arise from the 

combination of the variables that determine each measurement setup. For instance, for the leaves and 

the branches setup, four predictor variables were involved, thus fifteen models from all possible 

combinations of these variables were fitted as follows: one model having all four predictor variables; 

four models having a subset of three different predictor variables; six models having a subset of two 

different predictor variables and four models having one predictor variable. In the layers setup, three 

predictor variables were studied, thus seven models were fitted as follows: one model having all three 

predictor variables; three models having a subset of two different predictor variables and three models 

having one predictor variable. All fitted models were compared by assessing: (i) the fulfillment of 

statistical assumptions of linear regression models (i.e., normal distribution and homoscedasticity of 
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the residuals); (ii) the statistical significance of the estimated parameters; and (iii) the residual standard 

error. For comparing models having a different number of parameters, e.g., a model having all 

predictor variables (“full model”) versus a model having only a subset of the predictor variables 

(“reduced model”), a test of hypothesis was carried out based on the F-statistics computed using the 

estimated variance residuals of both models and their respective degrees of freedom. The full models 

for the leaves, the layers and the branches setups are expressed in Equations (2)–(4), respectively. 

                                       (2) 

                                    (3) 

                                       (4) 

where:      ,        and       are the ghost points ratio in the  th trial for the object  ,    and   in 

the leaves, the layers and the branches setups, respectively;     is the distance to the object;     is the 

reflectance of the object;     is the scanner resolution;    is the incident angle;     is the diameter of 

the object;    is the  th random error with a Gaussian distribution with mean equal to zero and variance 

equal to    
 ; and   ,   ,   ,    and    are parameters of the model. 

2.5. Extraction of Ghost Points 

A distance-based filter was created to detect and remove ghost points. Each point is examined and 

given a quality value in accordance with a filtering criterion, as explained hereafter. First, in order to 

properly process the data, the point clouds were projected to a 2D format. According to [25], the most 

efficient file structure for extracting data is the projection used by [26] for hemispherical photographs. 

This format, also known as “plate carrée”, is often used for cartographic and GIS data processing. 

Next, under this new format, the filter was able to compare each scan point with the scan points in an 

adjacent area. The adjacent area was oriented towards the rows and columns, as they can be seen in the 

2D projection of the data (Figure 3). The “kernel size” was the size (expressed in pixels) of the 

adjacent area used for comparison. For each scan point the filter considers the scan points in the kernel 

and determines the amount of points that are at approximately the same distance from the scanner as 

the scan point being evaluated. A scan point was recognized as valid scan point if the difference in 

distance was smaller than a “distance threshold”. Additionally, there is an “allocation threshold”: the 

percentage of scan points in the kernel that falls within the distance threshold. The evaluated scan point 

remains in the point cloud if both the distance and allocation criteria are met. Otherwise, if this quality 

value was outside the threshold, the scan point was recognized as ghost point and removed. The filter 

was applied to every single scan point within the point cloud. The standard values assigned to the filter 

were: kernel size = 3 × 3, distance threshold = 2 cm, and allocation threshold = 50%. These values 

were selected based on the default values used in filters of 3D data processing software (e.g.,  

FARO
®

 Scene). 

The configuration of the filter could be modified, by using several combinations of distance and 

allocation thresholds to detect and remove the ghost points. Improvements to the filtering will be 

possible by knowing the influence of the different variables of the gpr, and after the statistical analysis 

described in Section 2.4. Finally, gpr calculations using both standard and modified configurations of 
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the filter were compared with the reference gpr obtained after the manual extraction of ghost points 

from Section 2.3. 

Figure 3. Schematic of the 2D projection of the data. Blue pixels represent foreground 

objects and grey pixels may represent the background object or empty space. A single scan 

point being evaluated and its corresponding adjacent area (kernel) of 3 × 3 are enclosed 

within dotted lines. 

 

3. Results 

3.1. Ghost Points Ratio (gpr) Distribution 

The ghost points ratio (gpr), our response variable, shows different distribution and ranges by each 

setup, as presented in Figure 4. 

Figure 4. Histograms of ghost points ratio (gpr) values over the total number of 

measurements (N). (a) The leaves setup (N = 126); (b) the layers setup (N = 42) and  

(c) the branches setup (N = 126). 

 

The typical gpr in the leaves setup is between 0.25 and 0.3, the smallest gpr is below 0.1 and the 

largest is between 0.5 and 0.55. However, gpr above 0.45 is atypical. In general, gpr values in the 

leaves setup are larger than in the branches setup, where typical gpr is between 0.1 and 0.15, and gpr 

between 0.05 and 0.25 are frequent. The smallest gpr is below 0.05 and the largest is between 0.35 and 

0.4. In the layers setup, typical gpr is between 0.2 and 0.3, and gpr between 0.2 and 0.4 are quite 

frequent. Similarly to single leaves from the leaves setup, the smallest gpr is below 0.1 and the largest 
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is between 0.5 and 0.6. Figure 5 presents the gpr distribution and variability per setup and per variable 

common to the three measurement setups. 

Figure 5. Boxplots displaying the distribution of ghost points ratio (gpr) by distance, angle 

and resolution. The box represents the interquartile range of the data (the 25th and 75th 

percentiles), and the whiskers represent the inner 10th and 90th percentiles. (a–c) the 

leaves setup; (d–f) the layers setup; (g–i) the branches setup. Box plots with different 

letters indicate significant differences between them (Tukey test, p < 0.05), and n.s. indicates 

differences that are not significant (p > 0.05). Outliers are represented by plus (+) sign. 

 

In general, the inter-quartile range (IQR) increases from the layers setup to a rather large IQR in the 

branches setup. 

The first predictor variable, i.e., the distance to the object, has a clear influence on the gpr, showing 

an ascending trend in all three measurement setups (Figure 5a,d,g). Median gpr values are smaller at 

shorter distances, becoming greater at longer distances. Variability increases slightly from shorter to 

longer distances, as well as the extreme values. Although the leaves setup and the layers setup have 
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larger gpr values than the branches setup (see also Figure 4), a larger variability of gpr is observable in 

the branches setup, for the whole range of different distances. 

Secondly; Figure 5b,e,h present the gpr calculated per incident angle, showing moderately variable 

median values across the range of angles evaluated in the experiments. A clear drop in gpr in Figure 5e, 

when the incident angle goes from 0° to 15°, is explained by the organization of objects (i.e., artificial 

leaves) forming the layers setup. At 0° the objects from the front layer are arranged in line with the 

objects on the middle layer, from the instrument perspective (Figure 1). Thus, objects on the front layer 

cover the biggest part of objects on the middle layer. Likewise, the back layer is affected by occlusion 

from objects on the middle layer. At 15° parts of the objects that were occluded at 0°are now reachable 

by the laser beam and this is valid for larger incident angles. The ranges of variability show no 

particular trend, with extreme values slightly farther from the median at incident angle of 55°, and 

much closer to the median at 0°. A high variability of gpr in the branches setup is observable for the 

whole range of different angles. 

Thirdly; Figure 5c,f,i; display the influence of the scanning resolution on the gpr values, with a 

declining trend in gpr when increasing resolution. Variability decreases and extreme values are closer 

to the median in high resolution datasets from the branches and the layers setups. However this is not 

the case in the leaves setup. 

Finally, the effects of leaf reflectance and branch diameter on the gpr were also studied (Figure 6). 

Figure 6. Boxplots of ghost points ratio gpr. (a) Three reflectances; and (b) three 

diameters in the leaves (N = 126) and the branches (N = 126) setup, respectively. The box 

represents the interquartile range of the data (the 25th and 75th percentiles), and the 

whiskers represent the inner 10th and 90th percentiles. Box plots with different letters 

indicate significant differences between them (Tukey test, p < 0.05), and n.s. indicates 

differences that are not significant (p > 0.05). Outliers are represented by plus (+) signs. 

 

The three boxes of Figure 6a have similar median, with a minor decrease in gpr when increasing the 

reflectance. Variability and extreme values are relatively equal in leaves with medium (50%) and high 

(90%) reflectance. In turn, variability of gpr in less reflective objects (10%) is larger, with extreme 

values farther from the median. In the branches setup (Figure 6b), the diameter of the objects seems to 

have a moderate influence on the gpr. Median values decrease from small to large diameter. Variability 

of gpr decreases in larger branches. On the medium and large branches (0.08 m and 0.1 m), extreme 
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values are at similar distance from the median. The smallest branch (0.05 m) presents a larger spread 

of the data. 

3.2. Statistical Analysis  

The best reduced models for the leaves, the layers and the branches setup are expressed in 

Equations (5)–(7), respectively; and are found after fitting the corresponding number of models; i.e., 

fifteen models for the leaves and the branches setups and seven models for the layers setup. 

                              (5)  

                          (6)  

                              (7)  

The model for the leaves setup does not include the incident angle ( ). The relative root mean 

squared errors (RMSE) of the full model (Equation (2)) and the best reduced model (Equation (5))  

are 4.7% and 4.8%, respectively. The p value of 0.540 indicates that H0 (variance of the error are equal 

between the two models) cannot be rejected. 

For the layers setup, the relative RMSE of full model (Equation (3)) and the best reduced model 

(Equation (6)) are 4.5% and 5.6%, respectively. The small p value of 3.587e-05 indicates that H0 

(variance of the error are equal between the two models) is rejected. 

Finally, the model for the branches setup does not include the incident angle ( ). The relative 

RMSE of the full model (Equation (4)) and the best reduced model (Equation (7)) are 3.7% and 3.7%, 

respectively. The p value of 0.162 indicates that H0 (variance of the error are equal between the two 

models) cannot be rejected. Table 2 presents the regression coefficients of the reduced models  

(i.e., Equations (5)–(7)). 

Table 2. Regression coefficients of the best reduced models for the leaves, layers and 

branches setup. 

Model Variable Coefficient Estimate Standard Error 

Leaves  

(Equation (5)) 

Intercept    0.151 0.022 

       0.026 0.002 

       −0.051 0.013 

       −0.173 0.029 

Intercept    0.181 0.034 

Layers  

(Equation (6)) 

        0.029 0.002 

        −0.263 0.047 

Intercept    0.219 0.020 

Branches  

(Equation (7)) 

       0.016 0.001 

       −2.033 0.162 

       −0.121 0.022 

3.3. Extraction of Ghost Points from Point Clouds 

A required step, before applying filters for extraction of ghost points, is the examination of the main 

variables that these filters use to process the data. For this reason, a subdivision of the leaves and the 
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branches setup is done. The datasets from leaves with 10%, 50% and 90% reflectance were named L1, 

L2 and L3, respectively. The datasets from branches with 0.05 m, 0.08 m and 0.1 m diameter were 

named B1, B2 and B3, respectively. Subdivision of the layers setup was not possible, thus, this dataset 

was named LA. 

Figure 7 plots the variability in distance and intensity of valid scan points. Variability in distance of 

valid scan points from individual leaves within the leaves setup is below 10 mm with extreme values 

close to the median. The variability within the branches setup presents an expected increase in the IQR 

when increasing the diameter, with similar distance to extreme values from the median. The layers 

setup presents a particularly increased IQR, which was also expected, given the variables distance to 

the different layers of leaves. In this case, the behavior of the variability is assumed to be equivalent to 

the variability of L2 (Figure 7a). In conclusion, the recorded distances between sensor and objects 

presents reduced variability, meaning that the distance-based filter is applicable to these datasets. 

Figure 7. Boxplot of (a) distance and (b) intensity of valid scan points per setup. L1: leaf 

reflectance 10%, L2: leaf reflectance 50%, L3: leaf reflectance 90%, B1: branch diameter 

0.05 m, B2: branch diameter 0.08 m, B3: branch diameter 0.1 m, LA: layers setup. The box 

represents the interquartile range of the data (the 25th and 75th percentiles), and the whiskers 

represent the inner 10th and 90th percentiles. Reference configuration from Table 1 was 

used: scanning distance = 10 m; incident angle = 0°; scanning resolution = 1:2. Outliers are 

represented by plus (+) signs. 

 

Contrasting behavior is perceived for intensity, where it can be seen from Figure 7b that the 

variability of the intensity of valid scan points in the leaves setup is high, with extreme values far from 

the median and various outliers. An even greater variability is seen in the branches setup. The layers 

setup presents a similar situation as the leaves setup with a greater number of outliers. In summary, 

attempting to define appropriate thresholds on an intensity-based filter becomes problematic, even 

under the controlled conditions of this experimental study. However, if the aim is to develop an 

effective filter using this property, intensities can be calibrated with external references. 

The mean percentage of ghost points recognized by the distance-based filter with the standard 

configuration, is presented in Table 3. The gpr from manual extraction of ghost points is used as 

reference data. 
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Table 3. Mean percentage and standard deviation (SD) of ghost points detected using a 

distance-based filter. The standard configuration was used for the filter: kernel size = 3 × 3, 

distance threshold = 2 cm, and allocation threshold = 50%. 

Setup Mean (%) SD 

L1 71.52 10.2 

L2 66.37 13.1 

L3 67.00 10.4 

LA 67.54 13.2 

B1 62.26 6.4 

B2 65.88 12.4 

B3 63.67 7.8 

It is observable that the distance-based filter underestimates the amount of ghost points in all setups, 

ranging from 71.5% of detection in the less reflective leaf to 62.3% in the smallest branch, meaning 

that, in general, the filter is not able to detect all ghost points that were identified manually. 

Given the results from the statistical analysis in Section 3.2, evidencing that the distance between 

sensor and object is the main variable influencing ghost points occurrence, the filter was modified to 

efficiently detect and remove the ghost points from point clouds collected at different distances. Thus, 

the configuration (i.e., distance and allocation threshold) of the filter was changed, considering the 

average points per configuration on each experimental setup and optimizing the percentage rate of 

detection. Table 4 gives a detailed overview of the values used to optimize the distance-based filter and 

the improvements on the ghost points detection, contrasting the amount of ghost points identified after 

manual extraction with the ghost points recognized by the filter. 

Table 4. Overview of the distance-based configuration at different distances and 

percentage of ghost points detected using the optimized distance-based filter. d (m): 

distance threshold, a (%): allocation threshold. L1: leaf reflectance 10%, L2: leaf 

reflectance 50%, L3: leaf reflectance 90%, B1: branch diameter 0.05 m, B2: branch 

diameter 0.08 m, B3: branch diameter 0.1 m, LA: layers setup. SD: standard deviation. 

Setup  2.5 m 5 m 7.5 m 10 m 12.5 m 15 m Mean (%) SD 

L1 
d (m) 0.01 0.01 0.01 0.015 0.015 0.015 97.7 8.6 

a (%) 50 50 62.5 62.5 62.5 75   

L2 
d (m) 0.006 0.007 0.007 0.012 0.018 0.02 102.3 10.1 

a (%) 50 50 62.5 62.5 75 75   

L3 
d (m) 0.005 0.006 0.007 0.008 0.01 0.012 100.5 3.7 

a (%) 50 50 62.5 62.5 62.5 62.5   

LA 
d (m) 0.006 0.007 0.008 0.009 0.01 0.017 101.7 2.5 

a (%) 50 50 50 50 50 50   

B1 
d (m) 0.008 0.008 0.008 0.015 0.015 0.015 101.0 8.8 

a (%) 62.5 62.5 62.5 62.5 75 75   

B2 
d (m) 0.009 0.01 0.01 0.018 0.02 0.02 99.5 4.6 

a (%) 62.5 62.5 62.5 62.5 75 75   

B3 
d (m) 0.009 0.01 0.01 0.018 0.02 0.02 98.3 7.8 

a (%) 62.5 62.5 62.5 62.5 75 75   
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In spite of the slight under and over estimation, the results after using the optimized distance-based 

filter confirm significant improvements in ghost points detection for all setups, with standard deviation 

below 10%. The largest overestimation is presented in L2 with 2.3 percentage points. The largest 

underestimation is presented in L1, with −2.3 percentage points. 

4. Discussion  

Ghost points were manually identified from the point clouds to determine the reference gpr and 

enable filter performance evaluation in data quality improvement. While this manual method presented 

some disadvantages, such as, subjective selection of ghost points and increased processing time, it was 

the most direct way to generate a reference dataset. Results show that gpr is mainly influenced by:  

(i) the distance between the sensor and objects being evaluated; (ii) scanning resolution and (iii) the 

angle of incidence. The latter variable, however, has no significant influence on the leaves and the 

branches setup. These results are in agreement with the findings by [12] on their modeling of edge loss 

from one solid object. Main outcomes after manual extraction of ghost points confirmed that gpr was 

relative to the size of objects. This could be seen on the branches setup, where objects with three 

different diameters were tested. With higher total area, the relative amount of edge points becomes 

smaller and thus the number of ghost points decreases. This may be a problem with thin structures in 

forest canopies (i.e., twigs), in cases where the object has less angular width than the width of the laser 

beam, it is possible that no measurement reports the true position of the object, but instead all scan 

points may be classified as ghost points [22]. The fact that variability of gpr in the branches setup is 

higher than in the leaves and in the layers setups (Figure 5) is also explained by the different size of 

branches used in this study. 

The impact of object reflectance on ghost points is verified, as in [18,20,21]. The effect on gpr if 

scanning resolution increases is comparable to the effect on gpr if objects are larger. Similar results 

presented in [12], suggest that attention must be paid to the beam size and divergence, in order to avoid 

redundancy on the data caused by overlapping when measuring in high resolution at reduced distances. 

Conversely, if the beam divergence is larger than the resolution, information loss can occur and an 

accurate representation of the measured object becomes difficult [27]. On the present study, the latter 

situation is less likely to occur. Yet, overlapping is present on the following scenarios: from the beam 

exit to ±8 m when using scanning resolution 0.036°; to ±47 m using 0.018°; and at all ranges  

with 0.009°. The gpr is not affected by this redundancy because is indicating a simple ratio between 

valid and ghost points detected on an object. 

It is worth noting that, even though the selection of the space to be analyzed was restricted to the 

immediate surroundings of the object, the interaction of the laser beam with the background might 

have had an effect on the amount of ghost points outside the defined space. Continuous-wave 

operating laser scanners, like the one used in this experiment, have the inherent problem of producing 

ghost points anywhere along the line of sight of the laser beam [10]. Furthermore, the distance between 

the object and the background is also important. According to [12], when the background surface is 

less reflective or further away from the object, less energy is reflected from the background surface, 

and the ghost points range is shifted toward the front surface, as can be seen in Figure 2. In that sense, 

reducing the reflectivity of the back surface will make the second response too weak to influence the 
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positioning result, as can occur at canopy level, in areas where there is no background. On the other 

hand, findings in the behavior of ghost points occurrence using time-of-flight laser scanners indicate 

that this type of instruments will always work in the first response mode, disregarding the signal 

strength between the object and background signals [22,28,29]. 

Multiple regression analysis was useful in these experimental situations where predictor variables 

were controlled. Several predictor variables were investigated simultaneously, finding that more than 

one key predictor variable influenced the response (i.e., gpr) in each setup. The analyses for the leaves 

and the branches setup indicate that corresponding reduced models are statistically equal. Both reduced 

models do not include incident angle as predictor variable, meaning that the effect of incident angle in 

the gpr is not significant. In contrast, after the analysis in the layers setup, we infer that the difference 

in gpr estimation between the full and reduced models is significant, thus, all predictor variables  

in the full model influence gpr. Incident angle is significant in this setup, most probably as a 

consequence of the symmetric organization of objects conforming the layers, as mentioned in the 

description of Figure 5e.  

Although the use of TLS intensity data as reflectance information has been proved to be effective to 

separate foliage from wood in trees and other applications [8,30], it is not useful to define a fixed set of 

filter parameters under the conditions of the present study. Intensities should be calibrated with an 

external reference if the aim is to develop an effective intensity-based filter. Radiometric calibration 

would be needed to find a sequence of corrections that convert the raw intensity information into a 

value proportional or equivalent to target reflectance [31]. Furthermore, and according to the 

manufacturer’s information, the digital value of the intensity also depends on the parameters of the 

analogue to digital conversion. Nevertheless, the radiometric calibration does not necessarily guarantee 

an effective detection of ghost points if they are within the same range of intensity values as the valid 

scan points of the object under observation. 

A distance-based filter is suitable and applicable to improve the quality of the datasets of this study. 

Reducing the distance threshold lead us to decrease the allocation threshold as well, in order to identify 

the ghost points at different distances. This becomes useful for this type of indoor experiments with 

solid objects. However, if the filtering routine is applied to real forest canopy data, probably a different 

criteria has to be chosen. Indeed, increasing the distance threshold with increasing distance between 

object and sensor, and at the same time increasing the allocation threshold (Table 4), give more 

probabilities that adjacent points from actual objects are detected by the filter. Given the complexity of 

a forested scene, where all types of objects, distances and inclinations are present at once; a preferred 

approach to apply these results should consider: (i) selection of the appropriate scanning resolution;  

(ii) in situ determination of species composition, assessment of leaf reflectance and leaf angle distribution; 

(iii) a first classification of the point cloud data in photosynthetic and non-photosynthetic material, 

based on the intensity values and preferably including the aforementioned radiometric calibration. 

After that, the distance-based filter can be applied to the photosynthetic material, taking into consideration 

the reflectance properties and with average thresholds similar to those presented in Table 4. It is 

recommended to consider a customized filtering in function of the zenith angle when including incident 

angle for ghost points detection (i.e., layers setup). The outcome can then be used for vegetation 

structure analysis, when the objective is to accurately model, for example, the branches and trunks within 

forest canopies [7]. In summary, considering the aforementioned recommendations, the developed 
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method in this study will not only remove ghost points at the edge of canopy perimeters when gaps are 

distinguishable [23], but will also delete ghost points from scenes with overlapping objects and 

consequently improve continuous-wave TLS data quality. 

5. Conclusions 

This study gives evidence that the ghost points’ occurrence in point cloud data, collected using a 

continuous-wave TLS, is affected by a number of variables depending on object properties and their 

organization in the space. Improvements to the quality of TLS data from different experimental setups, 

including single and overlapping objects, was achieved through elimination of these ghost points using 

filtering techniques. An intensity-based filter is not suitable for this experiment without considering 

radiometric calibration. Applying distance-based filter algorithms, using the appropriate combination 

of thresholds is recommended to detect and remove ghost points. There is certainly an inevitable 

search for a trade-off while configuring filtering algorithms, in order to avoid deletion of valid scan 

points and, at the same time, improve ghost points recognition. Hence, even though it would be enough 

to remove ghost points up to a level if post-processing algorithms work reliably, a rather intensive 

filtering was preferred for the processing of ghost points. This comes with the risk that valid scan 

points may be deleted, but additional processing procedures such as voxelization, may assist to correct 

the misclassified spaces that might have been created by using such intensive filtering. This research 

was a first step in the deletion of ghost points from simulated canopy scenes and its transferability to 

natural environments is not straightforward. Further research is necessary, in order to validate the use 

of the optimized filter on complex scenes, such as real forest canopies, where all types of objects, 

distances and inclinations are present at once. Scanning technology, in situ measurements within the 

3D scene and classification after radiometric calibration are factors to bear in mind in order to obtain 

reliable results. This will deliver an enhanced data quality before further processing, allowing to build 

a more accurate representation of the 3D structure of forest canopies. 
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