Next Article in Journal
Previous Article in Journal
Forests 2014, 5(7), 1532-1564; doi:10.3390/f5071532
Article

Assessing Independent Variables Used in Econometric Modeling Forest Land Use or Land Cover Change: A Meta-Analysis

1,* , 2
, 2
, 1,2
, 2
, 2,3
 and 4
Received: 6 March 2014; in revised form: 8 June 2014 / Accepted: 23 June 2014 / Published: 3 July 2014
View Full-Text   |   Download PDF [922 KB, uploaded 3 July 2014]
Abstract: We conducted a meta-analysis on 64 econometric models from 47 studies predicting forestland conversion to agriculture (F2A), forestland to development (F2D), forestland to non-forested (F2NF) and undeveloped (including forestland) to developed (U2D) land. Over 250 independent econometric variables were identified from 21 F2A models, 21 F2D models, 12 F2NF models, and 10 U2D models. These variables were organized into a hierarchy of 119 independent variable groups, 15 categories, and 4 econometric drivers suitable for conducting simple vote count statistics. Vote counts were summarized at the independent variable group level and formed into ratios estimating the predictive success of each variable group. Two ratios estimates were developed based on (1) proportion of times the independent variables had statistical significance and (2) proportion of times independent variables met the original study authors’ expectations. In F2D models, we confirmed the success of popular independent variables such as population, income, and urban proximity estimates but found timber rents and site productivity variables less successful. In F2A models, we confirmed success of popular explanatory variables such as forest and agricultural rents and costs, governmental programs, and site quality, but we found population, income, and urban proximity estimates less successful. In U2D models, successful independent variables found were urban rents and costs, zoning issues concerning forestland loss, site quality, urban proximity, population, and income. In F2NF models, we found poor success using timber rents but high success using agricultural rents, site quality, population, and income. Success ratios and discussion of new or less popular, but promising, variables was also included. This meta-analysis provided insight into the general success of econometric independent variables for future forest-use or -cover change research.
Keywords: forestland use change; meta-analysis; econometric modeling forestland use change; meta-analysis; econometric modeling
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Jeuck, J.A.; Cubbage, F.W.; Abt, R.C.; Bardon, R.E.; McCarter, J.B.; Coulston, J.W.; Renkow, M.A. Assessing Independent Variables Used in Econometric Modeling Forest Land Use or Land Cover Change: A Meta-Analysis. Forests 2014, 5, 1532-1564.

AMA Style

Jeuck JA, Cubbage FW, Abt RC, Bardon RE, McCarter JB, Coulston JW, Renkow MA. Assessing Independent Variables Used in Econometric Modeling Forest Land Use or Land Cover Change: A Meta-Analysis. Forests. 2014; 5(7):1532-1564.

Chicago/Turabian Style

Jeuck, James A.; Cubbage, Frederick W.; Abt, Robert C.; Bardon, Robert E.; McCarter, James B.; Coulston, John W.; Renkow, Mitch A. 2014. "Assessing Independent Variables Used in Econometric Modeling Forest Land Use or Land Cover Change: A Meta-Analysis." Forests 5, no. 7: 1532-1564.


Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert