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Abstract: This study is a part of a research program that investigates the potential of 

RapidEye (RE) satellite data for timely updates of forest cover databases to reflect both 

regular management activities and sudden changes due to bark beetle and storms. Applied 

here in the Bavarian Forest National Park (BFNP) in southeastern Germany, this approach 

detected even small changes between two data takes, thus, facilitating documentation of 

regular management activities. In the case of a sudden event, forest cover databases also 

serve as a baseline for damage assessment. A storm event, which occurred on 13 July, 

2011, provided the opportunity to assess the effectiveness of multi-seasonal RE data for 

rapid damage assessment. Images of sufficient quality (<20% cloud cover) acquired one 

day before the storm event were used as a baseline. Persistent cloud cover meant that the 

first “after event” image of sufficient quality was acquired six weeks later, on 22 August, 

2011. Aerial images (AI) for the official damage assessment done by the BFNP 

administration were acquired on that same day. The RE analysis for damage assessment 

was completed two weeks after the post-event data take with an overall accuracy of 96% 

and a kappa coefficient of 0.86. In contrast, the official aerial image survey from the BFNP 
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was first released in late November, eleven weeks later. Comparison of the results from the 

two analyses showed a difference in the detected amount of forest cover loss of only 3%.  

The estimated cost of the RE approach was four times less than that of the standard digital 

AI procedure employed by the BFNP. 
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1. Introduction 

In Central Europe, the most important natural disturbances in forests are storm events [1,2]. 

Disastrous events of, at least, “regional” dimensions have the potential to destabilize the timber market 

and trigger subsequent biotic calamities. Such event sequences occurred in 1991 and 1999 following 

the storms “Vivian/Wiebke” and “Lothar” in Southern and Southwestern Germany respectively.  

The most common biotic calamity following such a storm event is an extreme increase in propagation 

of the European spruce bark beetle (Ips typographus [L.]) [2–5]. Forest area depletion must be 

recorded and spatially located in order to delineate drivers, pressures, threats and impacts, and to issue 

warning signals and take mitigation actions wherever appropriate [6]. However, this requires baseline 

data on forest cover, generally acquired from forest management databases. Currently, forest 

management databases are available only for the state forests in Germany and for some community 

forests (less than 40% of the forests in Bavaria). The update cycles for these databases can be as long 

as 10 years. Increasing frequency and magnitude of disastrous events during recent decades has 

revealed the need for shorter update cycles for such databases. At present, in Bavaria, about 30 to 40% 

of the annual workload of a forest enterprise is in response to unpredictable hazardous events [7].  

In order to prevent follow-on calamities like those described above, it is important to immediately 

clear affected areas, which in turn requires reliable information about the site, its accessibility, existing 

nearby facilities, availability of resources, and administration constraints on management of the 

affected area, such as restrictions which are meant to protect sites of cultural and natural importance. 

To tackle some of these challenges, a Decision Support System (DSS) (Entscheidungs-Unterstützungs-

System Forst-Holz, EUS-FH) project was designed for the forest-wood chain in Bavaria, which at the 

same time enables the fulfillment of both national and international reporting duties. EUS-FH contains 

a database-updating module that is based on remote sensing (RS) data [7]. This module, known as the 

“Remote Sensing-based Inventory and Monitoring System” (RS-IMS), is based on the idea of 

integrating existing data from official sources, such as the Bavarian Surveying and Geoinformation 

Administration (LVG), the Bavarian State Forest Administration, the Bavarian State Research Institute 

of Forestry, community forests, and National Parks like the Bavarian Forest National Park (BFNP) 

with RS data in order to update existing knowledge and to support trend analysis. The development of 

the EUS-FH was prompted by the launch of the German satellite systems TerraSAR-X (TS-X) and 

RapidEye (RE). The spatial resolutions of both systems fulfill the requirements of a 1:10,000 mapping 

scale [8], while the high acquisition frequency of two to three days [9] allows for operational and near  

real-time application of the data acquired. 
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Within the RS-IMS, special attention is given to detecting sudden canopy losses due to either 

natural or human-induced events. Using active sensors, changes due to both regular management and 

sudden events can be assessed within a short time, even under the cloud regime common in central 

Europe, where images with less than 20% cloud cover are rarely acquired. Recent studies, such as 

those by Rappl et al. [10], and Thiele et al. [11], have utilized data from the active sensor,  

TerraSAR-X, for the same area referenced in this study to assess the potential of these data for rapid 

mapping of windstorm events. However, these studies were more experimental than operational due to 

the small area coverage and high cost of the TerraSAR-X data. 

A windstorm, which occurred between late night 13 July, 2011, and early morning 14 July, 2011, in 

the northern part of the BFNP, was the trigger for this study. A few months later, about 70,000 m3 of 

timber was thrown down by the storm [12]. Thus, the conditions for a “regional” event were fulfilled. 

The processing chain within the ‘Remote Sensing based Inventory and Monitoring System’ (e.g., EUS-FH) 

is based on object-based change detection (OBCD) techniques, which have demonstrated advantages 

over pixel-based change detection techniques [13]. Chen et al. [14] classified OBCD methods into four 

groups: image-object, class-object, multitemporal-object, and hybrid change detection. The advantages 

and disadvantages of implementing these methods have been discussed in previous studies [15–17] in 

which hybrid methods performed better than others for forest change detection. OBCD has been used 

in several forest studies undertaken in the last decade to describe forest dynamics due to both biotic 

and abiotic disturbances. These studies have used Landsat [17–20] and SPOT images [15,16], as well 

as data from very high spatial resolution sensors, such as QuickBird and aerial images (AI) [4,21].  

The topics addressed in these studies were as diverse as forest loss and disturbance monitoring, the 

potential and limitations of the techniques used, and the contribution of the results to further ecological 

analysis. However, while these studies utilized multi-annual images to perform annual updates of the 

forest status, they did not make use of multi-seasonal data, as was done in the study presented here. In 

addition, the problem of cloud presence was either avoided completely by working with cloud-free  

data [16], or the use of either more frequent optical data or data from active sensors to enhance the 

results where clouds exist was recommended [17]. In contrast, multiseasonal RE data (acquired  

every 45 days) are now available for the whole of Germany, according to the agreement between the 

German Federal Ministry of Economics and Technology (BMWi) and the RapidEye data provider. 

In the study presented here, an innovative hybrid change detection technique was applied to  

multi-seasonal RE images to update an existing forest cover database. A new approach was developed 

to overcome the problem of partial cloud cover by using substitute data from subsequent data takes. 

This method was implemented on data from two different periods. 

- The first period, between 19 April, 2011, and 22 June/12 July, 2011, helped to update the forest 

cover figures obtained from the most recent forest inventory for the area, which was done in 

order to document changes due to regular management practices. 

- The second period, between 22 June/12 July, 2011 and 22 August, 2011, was after the  

above-mentioned storm event had occurred. This helped to demonstrate the evaluation chain for 

sudden catastrophic events by applying the same method. 

The results of both periods were then compared to the results of the annual official AI survey from 

2011, which was obtained from the BFNP. Finally, the costs of using each of the data sources and 
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associated methods were estimated and compared in order to assess their relative potential for 

operational use. 

2. Experimental Section 

2.1. Study Area 

The study site is located in the northern part of the BFNP in southeastern Germany (49°03’53” N, 

13°21’57” E) along the border with the Czech Republic (Figure 1). Together, the BFNP and the 

Šumava National Park in the southwestern part of the Czech Republic cover an area of 940 km2 and 

form the most extensive protected forest in Central Europe. The BFNP is located in a mountainous 

region, with elevations ranging between 600 m and 1450 m. The BFNP was founded in 1970 as 

Germany’s first national park with an area of 130 km2. In 1997, the park was extended to include a 

total area of 240 km2. Its landscape can be divided into three ecological zones—highlands, hillsides, 

and valleys. In each zone, different compositions of tree species are located. Based on inventory results 

from 2002 to 2003, Heurich and Neufanger [22] calculated the following tree species compositions for 

the dominant layer of the forest in each of these ecological zones: (a) In the highlands—90% Norway 

spruce (Picea abies), 2% beech (Fagus sylvatica), and 8% other broadleaf trees; (b) on hillsides—58% 

Norway spruce, 3% fir (Abies alba), 34% beech, and 5% other broadleaf trees; and (c) in the valleys—83% 

Norway spruce, 5% fir, 6% beech, and 6% other broadleaf trees. Thus, the main species in all of the 

ecological zones in the study area is Norway spruce, which is highly susceptible to damage due  

to calamities. 

Figure 1. Location of the Bavarian Forest National Park. 
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Severe disturbance cycles have been documented in the forest in the Bavarian Forest National Park 

(BFNP) since 1868 [23]. However, the frequency of disturbances has been increasing since 1983 and 

peaked at the beginning of the 1990s when about 17,000 m3 of wood was affected [24]. As a reaction 

to the forest disease discussion, which began in the 1980s and was triggered by the aforementioned 

disturbance cycle in the BFNP, annual inventories using aerial photography have been performed  

since 1988 [4]. At present in the BFNP, in the case of an unpredictable event like storm break, fire, or 

biotic infestation, AI interpretation is always used to investigate the changes. The minimum mapping 

unit used in previous studies of this kind in the BFNP [4,5,25] has always been a patch of at least 5 trees. 

No reports have been issued describing the results of these analyses, but all changes have been 

documented in the annual updates. Despite the fact that automated approaches to change detection 

have been tested [4], visual interpretation is still considered the most reliable approach and is still 

officially used in the BFNP [25]. 

The philosophy of the BFNP administration allows no forest management activities in the core zone 

of the park. However, some small, private residential areas and agricultural fields still exist within  

the park boundaries. Bark beetle management is allowed within the park itself only in a small strip  

of 500–800 m along the boundaries of these areas and along the external boundaries of the park.  

A monitoring and management system has been established to observe calamity development and 

prevent further bark beetle breakouts in the extended zone. 

2.2. Data Sets 

2.2.1. RapidEye Data 

RE data were the primary data used for this analysis. These data consist of five channels: one each 

in the blue, green, red, red edge, and near infrared regions of the spectrum. Typically, the data are 

collected at nadir, with a spatial resolution of 6.5 m (5 m resampled) and a swath width of 75 km.  

The data were ordered as level 3A products and provided by the RapidEye Science Archive (RESA) at 

the German Aerospace Center (DLR). Even at the nominal repetition time of the RE system of 2–3 days, 

only three scenes acquired during the period between April and October, 2011, fulfilled the maximum 

20% cloud cover condition we set for this analysis; the first of these images was acquired on 19 April, 

2011, the second on 22 August, and the third on 1 October. To cover the main growing season from 

May to July, two additional scenes, namely one from 22 June and one from 12 July, were combined to 

produce a dataset meeting the cloud coverage restrictions. 

2.2.2. Ancillary Data 

Reference data containing information about the losses in forest cover in the year 2011 were 

obtained from the BFNP administration and compared to the results of the data analysis performed 

here. Each year, flight campaigns are performed by the park administration to acquire color-infrared 

images (CIR), which are then used to update the databases of the BFNP [4]. Any changes in forest 

extent or condition are identified using visual image interpretation. For the analysis of changes that 

occurred in 2011, five change classes were defined, of which four described the effects of bark beetles, 

and one those of the storm. The change classes due to the bark beetle were referred to as standing 
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deadwood, groups of standing deadwood (max. 5 trees), cleared area of deadwood, and area of  

hand-debarked deadwood [25]. All of the classes described were delineated by hand using stereoscopic 

image interpretation. In 2011, the flight campaign was initiated by the storm event on 13 and 14 July, 

2011. The first date after this event when cloud cover was sufficiently low to allow imaging was  

22 August. 

2.3. Methodology 

2.3.1. Data Preprocessing and Preparation 

The mapping accuracy of change detection using remote sensing systems is affected by the 

following factors: spatial scale, sensor viewing geometry, image geometric accuracy, and radiometric 

normalization [14]. All of the RE images used in this study were collected with the nominal 0° 

pointing geometry, resampled to 5 m pixels, and were ordered preprocessed to level 3A. The geometric 

accuracy of RE level 3A data ranges from less than one pixel to six pixels (5 m–30 m) [9].  

The geometric accuracy of the data as acquired was examined and, when necessary, improved using 

co-registration to the available geo-databases, using ENVI 4.3. As is essential for multi-seasonal data 

evaluation, a combined atmospheric/topographic correction was performed using ATCOR 3 implemented 

in PCI Geomatica software. Thus, the resulting data set represents actual reflectance. 

2.3.2. Detection of Forest Cover Loss 

The basic concept of the method applied is to initially obtain change results using any of the various 

commonly used pixel-based change detection algorithms, and then apply the object-based technique to 

enhance the results [26]. In this way, the calculation time can be reduced by avoiding segmentation of 

the whole image, while at the same time allowing for automation of the process. The processing chain 

that was developed to aid in the annual update of forest databases compares any new data set with a 

previous one by applying a pixel-based technique, and a simple image-differencing algorithm ([27] 

and Figure 2). This algorithm computes the differences between the two images by subtracting the 

pixel values from the initial state image from those of the next state image. The closer the acquisition 

date of the later image data to a change event, the higher the spectral contrast and, thus, the better the 

ability to detect resulting changes. The result of this process is a difference image for each band of data 

representing the changes between the two state images, in which positive values identify pixels that 

became brighter, and negative values identify pixels with lower reflectance values Equation (1). 
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where 
k
ijx  = the pixel value for band k; i and j are the x and y coordinates of each pixel; 1t  = the 

acquisition date of the initial state image; 2t  = the acquisition date of the second state image. 

Equation (1) was solved for each RE band, as well as for a series of indices calculated from the raw 

band data, such as brightness, blue/green ratio, and NDVI. Afterwards, all resulting difference images 

were assessed visually. This evaluation of the huge windthrow area showed very clearly that the red 

edge band outperformed all other bands in quantifying the extent of the wind damage [28].  

The results from the other bands and indices overestimated the losses in forest cover. 
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Figure 2. Overall methodology followed for the detection of loss in forest cover in the 

BFNP for the first period and second period. 

 

Losses in forest cover resulted in positive values, due to the increase of reflectance in all bands 

(except the green band) in the second stage image. Therefore, only areas with positive values were 

used for further analysis. This can be explained by the fact that forest has the lowest reflectance of any 

vegetative land cover, and, thus, any losses in forest cover will result in brighter reflectance values [29]. 

However, the areas with positive values in the initial result included not only areas of lost forest cover, 

but also areas where the changes in reflectance were due to clouds and their shadows, water bodies, 

and variations in phenology—especially in fields surrounding the forests. In the next step, a difference 

image representing all positive values was produced to be refined in the object-based environment. 
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For the object-based analysis (OBIA), eCognition software from Trimble (formerly Definiens) was 

used. A rule set, consisting of a batch of commands, was developed in eCognition for this study. The 

multi-resolution segmentation algorithm, which allows for the integration of a geo-database into the 

segmentation process and assigns weights to all bands, was used. In the segmentation process, the 

difference image that represents all detected positive values was used to create objects based on its 

borders. This was done to ensure that the exact extraction of the pixel-based change detection resulted 

in the formation of objects. Additionally, a few parameters, such as scale parameter, shape, and 

compactness, were estimated based on a trial and error iteration procedure (see Table 1). In the second 

part of the process, all objects were initially classified as “change” or “no change” based on the 

difference image representing positive values. The results were then refined in order to detect only the 

areas where forest cover was lost between the two data takes. To be assigned as lost forest, an object 

had to meet all of the following three criteria:  

(I) Existence of forest during the first stage (first data take) or before the first stage, as derived 

from additional RE data from previous image takes, in case of the presence of clouds during 

first data take. 

(II) Forest absence in the second stage (second data take). 

(III) Forest absence after the second stage, in case of the presence of clouds during the second data 

take, also derived from later RE data takes. 

Table 1. Multi-resolution segmentation parameters used in eCognition. 

Parameter First Period (April–June/July) Second Period (June/July–August)

Scale 20 20 
Shape 0.1 0.1 

Compactness 0.9 0.9 

Bands weights 
All bands from April and August, 

the given weight was 1 
All bands from April, August and 
October, the given weight was 1 

The indices used to refine the results by these criteria are presented in Table 2. Criterion number 

one excluded all changes that occurred outside the forest area, such as changes due to water bodies or 

seasonal variations in plant phenology in nearby fields. Where clouds were present, criterion number 

one used also previous RapidEye data from before stage 1 to check the existence of the forest. 

Criterion number two examined whether the areas where the changes occurred were actually still 

forested in the second stage. If this was found to be the case, these changes were excluded from the 

forest change category and instead attributed to seasonal changes due to forest plant phenology. Where 

clouds were present in the second stage image, criterion number three safeguarded that the remaining 

changes did not belong to forest cover, by using subsequent RE data from after the second stage. After 

the application of all three criteria, objects that were still seen as changes in forest cover were assigned 

as lost forest. 
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Table 2. The indices used to create the three criteria used to extract the forest loss areas 

(see Figure 2). 

Criterion First Period (April–June/July) Second Period (June/July–August)

Forest present before/during stage 1 
Blue/Green ratio (April) 

Brightness (April) 
NDVI (April) 

Blue/Green ratio (April) 
NDVI (April) 

Forest absent during stage 2 
Blue/Green ratio (June/July) 

NDVI (June/July) 
Blue/Green ratio (August) 

Forest absent after stage 2 
Blue/Green ratio (August) 

NDVI (August) 
NDVI (October) 

2.3.3. Accuracy Assessment and Comparison with the Aerial Images Results 

The change detection performance was assessed via an error matrix. Polygons were used as 

sampling units rather than points, as points tend to underestimate the accuracy of object-based  

results [30]. Each polygon was formed by centering a circle of 60 m in diameter on one corner of a 

(350 × 350 m2 cell size) grid. This diameter was based on the average size of the objects formed during 

the change detection process. The reference values (change/no change) for these sampling units were 

assigned based on visual interpretation of the three RE scenes from April to October, additionally 

supported by interpretation of the aerial images from August. If any change was found within a 

polygon, it was assigned to the change category. Then, the agreement between the change detection 

results and the reference value was visually assessed for each polygon. In total, 849 polygons 

distributed systematically over the study area were used for the accuracy assessment. Out of this 

process, the overall user and producer accuracies, as well as the kappa coefficient were  

obtained [31,32]. This accuracy assessment process was carried out for the results from both the RE 

and the aerial images, and the results were compared to one another. 

2.3.4. Cost Comparison between RapidEye Data and Aerial Images 

For the cost calculation, it was assumed that reference data would already be available before the 

occurrence of a storm event and thus, only data from after the storm event need be acquired. Three 

main cost categories were taken into consideration: the price of the raw data, the cost of data  

pre-processing and data analysis. The raw data cost was calculated based on the number of images 

needed to cover the study area. At least a thousand aerial images of the resolution regularly used by the 

annual survey are necessary to cover this study area, at a cost of €18 per image, according to LVG. 

While only four RE images are enough to cover the same area, an additional four images were needed 

in this case to overcome the problem of cloud cover. Therefore, eight RE images were acquired, at a 

cost of €593 each. The costs for preprocessing and data analysis were calculated based on the working 

hours (WH) needed to complete them. An hourly rate of thirty-five Euros/hour (€35/h) was assumed, 

based on the average gross/hour of the actual public payment scheme in 2011 for workers with 

appropriate skills. Preprocessing steps included: Geometric correction, triangulation and atmospheric 

correction (only for RE data). The data analysis consisted of visual interpretation for the aerial images, 

and implementation of the hybrid method for the RE data, as described in this study. 
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3. Results 

3.1. Solving the Problem of Cloud Cover 

In order to determine the amount of forest cover lost using the multi-seasonal RapidEye data, the 

problem of cloud cover in the images had to be overcome. Figure 3 shows an example of how the 

method handled the problem of cloud presence during the second image acquisition period (from 22 

June/12 July to 22 August). The results of the initial changes are presented in Figure 3 (left and 

middle), while Figure 3 (right) shows the final results for “lost forest” and the changes, which were 

excluded after refinement by application of the three criteria. 

Figure 3. Example of how additional data from an additional Rapid Eye (RE) image were 

used to overcome the problem of the presence of clouds in two RE images used for change 

detection analysis. Initial analysis of the changes between an image from 22 June/12 July 

(left) and one from 22 August (middle) indicated differences, which were actually due to 

either clouds or lost forest. Additional data from the image from 1 October (right) 

facilitated the exclusion of those changes due to clouds and produced the final results 

showing the actual losses in forest cover, by implementing (1) first criterion; (2) second 

criterion; and (3) third criterion. 

 

In this example, the first criterion excluded the objects that were not forest on 22 June, and the 

second criterion excluded the objects that were still forest on 22 August. However, few objects were 

actually excluded until the third criterion was implemented. The third criterion used the data collected 

on 1 October to exclude all objects still identified as forest. Thus, only the changes that represented an 

actual loss of forest cover remained. 

3.2. RapidEye Analysis and Accuracy Assessment 

The change detection result in Figure 4 shows the amount of forest cover lost during the first period 

from 19 April to 22 June/12 July. The polygons representing lost forest cover are shown overlaid on 

top of the two RapidEye images from April and June. As can be seen, the areas within the polygons 

appear to be darker in the April image than they do in the June image due to the loss of forest cover. 
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Such a visual comparison shows that the method being tested here achieved relatively accurate 

mapping of the losses. Most of these losses were probably due to management against bark beetle. 

Based on the analysis, an area of about 157 ha of forest cover were lost during this period. The change 

detection result in Figure 5 shows the amount of forest cover lost during the second period (from 22 

June/12 July to 22 August). Visual comparison between the images from June and August shows that 

the result accurately delineated the losses in forest cover, most of which were due to the catastrophic 

wind storm that occurred in July. Based on this analysis, an estimated area of about 235 ha of forest 

cover was lost during the second period. 

Figure 4. Example of some of the forest cover losses during the first period of analysis 

from 19 April to 22 June/12 July which were detected using RapidEye data. 

 

Figure 5. An example showing the forest cover losses during the second period of analysis 

from 22 June/12 July to 22 August detected using RapidEye data. 

 

In total, an area of about 392 ha of forest cover was lost during the period from April to August 

(Figure 6—left). The statistics from the accuracy assessment are presented in Table 3. Overall, the 

change detection method used here returned satisfactory results in terms of identifying the amount of 
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forest cover lost, given a 5-m spatial resolution. With reference to the error matrix (Table 3), an overall 

accuracy of 96.7% and a kappa of 0.86 were achieved—a result which indicates a high level of 

agreement with the reference data. 

Table 3. Error matrix for the change detection results using RapidEye data. 

Reference 

Change Detection RE Change No Change User’s Accuracy % 
change 104 15 87.4 

no change 13 717 98.2 
producer's accuracy % 88.9 98.0 kappa 0.86 

   overall accuracy 96.7% 

The user and producer accuracies for the “lost forest” class were 87.4% and 88.9% respectively, 

indicating the overall success of the classification. In addition, the high producer’s accuracy indicates a 

good degree of success in identifying most of the forest cover that was lost. However, a few losses 

were not detected and a few objects were mistakenly identified as losses when no actual loss had 

occurred. These errors were checked against the high-resolution aerial images as will be discussed later. 

3.3. Accuracy Assessment of the Aerial Images 

In order to assess the success of the results of the RapidEye data analysis in comparison to the 

results of the aerial image interpretation, the accuracy assessment of the aerial image was 

accomplished using the same method. The resulting forest cover losses, derived through on-screen 

digitizing of the aerial images, are shown in Figure 6 (right). 

Figure 6. An example showing total forest cover losses during the period from 19 April to 

22 August detected using (left) analysis of RapidEye data and (right) visual interpretation 

of aerial images. 

 

The accuracy assessment statistics are presented in Table 4. An overall accuracy of 98.1% and a 

kappa of 0.92, and user and producer accuracies for the “lost forest” class of 100.0% and 86.3% 
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respectively were achieved. A 100% user’s accuracy is expected from a visual interpretation of aerial 

images. Based on aerial image interpretation, an area of about 373 ha of forest cover loss was estimated. 

Table 4. Error matrix for the change detection results using Aerial images. 

Reference 

Change Detection AI Change No Change User’s Accuracy % 
change 102 0 100.0 

no change 16 733 97.9 
producer's accuracy % 86.4 100.0 kappa 0.92 

   overall accuracy 98.1% 

3.4. Results and Cost Comparison between RapidEye and Aerial Images 

The resulting maps of forest cover losses in the study area from both RapidEye data analysis and 

aerial images are presented in Figure 7. Statistics showing the level of agreement in hectares between 

the two results are depicted in Table 5. With reference to the intersection statistics, as observed, the 

agreement between the two results was found to be very high, and 361 hectares of forest loss were 

classified identically in both. 

Figure 7. Example showing the forest cover losses that were detected only when using 

aerial image interpretation, those which were detected only when RapidEye data was used 

and those which were detected using both methods. 

 

A comparison of the map produced from the analysis of the RapidEye images with the one 

produced using aerial image interpretation showed generally a very high similarity in the lost forest 

patch shape and spatial distribution. However, there were some differences between the two outcomes. 

Most of these differences were at the edges of patches and within the “lost forest”, as seen in Figure 7. 
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The differences between the two results were quantified and analyzed. Then, they were separated into 

two groups—changes detected only using RapidEye (31 ha, or 8% of all losses) and changes detected 

only using aerial images (12 ha, or 3% of all losses) (Table 5). 

Table 5. Calculated forest losses by data and method utilized. 

Data Source 
Total Area Detected 

in Hectares 

Area Detected Only by a Specific 
Dataset in Hectares and (% of Total 
Area Detected Using This Method) 

RapidEye 392 31 (8%) 
Aerial images 373 12 (3%) 

RapidEye and Aerial images 361 

Visual comparison of the changes detected solely by RapidEye data with the reference data shows 

clearly that these were actual changes in forest cover caused by either forest harvest or trees being 

thrown by the storm (Figure 8). However, an examination of the changes detected only by the aerial 

image analysis showed that some of these changes were not detectable using the RapidEye data, as will 

be discussed later. 

Figure 8. Two examples showing objects classified as “lost forest” overlaid on a RapidEye 

image from 19 April (left), a RapidEye image from 22 August (middle), and aerial images 

from 22 August (right). In example A, forest cover losses that were detected solely by 

RapidEye images are shown. In example B, the aerial image on the right clearly shows the 

windthrown trees detected solely by the analysis using RapidEye data. 

 

The costs of using RE and those associated with AI were estimated. The results of this comparison, 

presented in Table 6, show that implementing the RE methodology cost €5,660, while the visual 
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interpretation of the AI would have cost an estimated €22,200. This indicates that visual interpretation 

of AI would cost about four times as much as the method using RE data. 

Table 6. Cost comparison of change analysis using RapidEye data and aerial images. 

Category RapidEye (Euros) Aerial Images (Euros) 

Raw data (8 images × €593) = 4750 (1000 images × €18) = 18,000 
Preprocessing (10 WH × €35) = 350 (40 WH × €35) = 1400 
Data analysis (16 WH × €35) = 560 (80 WH × €35) = 2800 

Total 5660 22,200 

4. Discussion 

Implementing this methodology using RapidEye data to detect changes in forest cover produced 

accurate results, and even small changes in forest cover were detected. The results were comparable to 

those produced using the official aerial images mapping provided by BFNP. The availability of  

multi-seasonal RapidEye data enabled the detection of forest losses over two periods of time within 

one year. This allowed for a better definition of the factors that caused the changes in forest cover.  

As an illustration, during the first period alone, from April to June/July, a substantial area of about 157 ha 

of forest cover was lost. This change was due solely to management undertaken as protection against 

the bark beetle, which indicates the aggressiveness of the calamity. In contrast to RE data, aerial 

images are only collected once a year in the special case of the BFNP and triennially in the rest of 

Bavaria. This means, it is not feasible to acquire such timely information from aerial images given the 

current image update frequency. Additionally, a predefined acquisition date is not possible for the 

aerial image survey. In the BFNP, the survey typically takes place at the end of the vegetation period. 

Another advantage, of using the multi-seasonal data, was its helpfulness in overcoming the problem of 

clouds. In contrast, using less frequently acquired optical data is usually a challenge due to cloud and 

haze presence [6,17]. 

The hybrid technique developed here employed multi-seasonal RapidEye data and provided rapid 

mapping of forest cover losses with up to 96% accuracy. Comparable results, depending on the 

resolution of the sensor, have been reported in the literature when object-based methods have been 

used for forest cover change detection using image datasets from sensors of high spatial resolutions. 

For example, Desclée et al. [16] implemented OBCD with SPOT data for forest change detection and 

achieved an overall accuracy of 93% and a kappa of 0.84. In addition, Duveiller et al. [17] estimated 

the deforestation in central Africa using Landsat data and OBCD with an overall accuracy of 91%. 

McDermid et al. [19] also used Landsat and OBCD in forest change detection and achieved an overall 

accuracy of 84% and a kappa of 0.69. Moreover, some studies which have utilized a hybrid method 

similar to that used here have achieved comparable results. In Canada, McDermid et al. [20] applied 

the hybrid method to Landsat data and reported an overall accuracy of 93% and a kappa of 0.889. 

Another study applied this method using a combination of SPOT data and aerial images and reported 

an overall accuracy of 94% [15]. However, none of these studies focused on sudden changes; but 

instead detected inter-annual changes over periods of three to 35 years. Additionally, they did not deal 

with the problem of cloud presence, but rather, recommended either using more frequently acquired 

optical data or active system observation. 
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As an alternative solution using data from satellite sources to map the same storm event addressed 

here, Rappl et al. [10] and Thiele et al. [11] demonstrated the use of data from the active satellite 

system, TerraSAR-X, to overcome the problem of clouds. This also allowed for rapid mapping of the 

remaining forest cover after the storm, and made comparison to pre-event forest cover estimates 

derived from RapidEye data or aerial images feasible. Although their results offered rapid estimation 

of the destruction, it was not possible to compare their results to ours, as there was no accuracy 

assessment conducted. In addition, the relatively small area of coverage and high cost of the 

TerraSAR-X data and aerial images remain an issue in using them more frequently, such as for 

operational use. 

Technically, juxtaposing the performance of the RapidEye change detection performed here against 

that of the aerial images, some differences were detected. Some of these differences were due to the 

influence of the user in aerial image interpretation, who will naturally try, during manual digitization, 

to delineate objects that have smooth borders rather than zigzag ones. Moreover, in the manual 

digitization procedure, many small patches, which do not represent actual forest cover losses, were 

included in the “lost forest” class. The implications of manual delineation were discussed by  

Heurich et al. [4], and Kautz et al. [5], and can be explained by the minimum size of the unit of interest, 

which is a group of trees or even a stand, rather than a single tree. Our analysis of the differences 

between the AI interpretation and the RapidEye analysis showed that the RapidEye approach was able 

to detect solely many of the changes that occurred—about 8% of all losses. However, few objects of 

those 8% were mistakenly identified as losses, this was due to differences in phenology between April 

and June/July, and those objects were located mainly in deciduous stands. This can be explained by the 

increase in the spectral reflectance in the red edge bands in this period due to the change from leaf-off 

to leaf-on. Only 3% of all losses were not detected by RapidEye, and these were mainly due to the very 

small extent of these changes, such as only a few single trees, which had fallen within a healthy stand. 

Therefore, they were too fine to be detected using spectral information alone without actual visual 

interpretation of AI. Another reason these changes were not found is that they were located among the 

deciduous stands and shaded areas of the surrounding remaining trees; therefore they were difficult to 

detect using spectral properties alone. Also, it might be that a few of the changes detected in the AI 

interpretation occurred before April, 2011, and therefore, were not detectable in the RapidEye change 

analysis. However, some of these changes were still easily detectable at the center of the damages but 

not at the periphery. This was due to the complex structure at the periphery, which included thrown 

trees and healthy standing ones. Similar results were found using Landsat data and the hybrid method 

in Brazil [18], in which there were also a few objects which were mistakenly identified as losses, when 

in fact, no actual loss had occurred. The majority of these mistakenly identified losses were due to 

shaded areas among the tree crowns, especially in less dense forest stands. 

From an operational point of view, the hybrid method implemented here allows flexibility and 

adaptability to a subsequent data set. This ensures continuous monitoring supported by the high 

temporal resolution of RapidEye data. Although the analysis of the RE data achieved fast and cost 

effective results, 3% of the changes detected in the official AI survey were not detected using the RE 

analysis. On the other hand, the RE data and analysis cost only 25% of that of the aerial image analysis. 

Even though, RE results cannot be expected to fully achieve the results possible using aerial images, 
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they can provide additional support for subjective and time-consuming visual interpretation of  

aerial images. 

5. Conclusions 

This study investigated the feasibility of updating forest cover databases in cases of both regular 

management activities and sudden events that cause changes in forest cover, such as bark beetle 

attacks and storm events, by means of RE satellite data. Overall, the five-meter spatial resolution of 

RapidEye data was suitable for performing detection of forest cover changes. Use of the RE data 

achieved rapid and cost-effective results that were comparable to those obtained from aerial image 

interpretation. The high temporal resolution of the RapidEye constellation was useful for the regular 

forest cover updates on a seasonal basis. This shows the potential of the new high temporal resolution 

satellites (e.g., Landsat 8 and Sentinels) for use in forest database updates. Hence, sudden changes may 

be detected in very short period, and addressed efficiently using appropriate management techniques. 

Local authorities and stakeholders may benefit from the outcomes of this study. The information 

generated is invaluable to decision makers in planning initial clean-up operations following forest 

disturbances due to storm events and biotic calamities, as well as in updating existing forest databases. 

Although the work described here was restricted to forests in the BFNP, the motivation for the 

study arose from the EUS-FH project goal [7]. The study found that RE mapped 97% of the changes 

detected using AI interpretation at only 25% of the cost of AI interpretation. In addition, the annual AI 

survey is available only for the BFNP, while surveys are done only once every three years for the rest 

of Bavarian state. Moreover, multi-seasonal RE data (acquired every 45 days) are available for all of 

Germany. Thus, we conclude that the generalization of the methodology presented here to the project’s 

other test areas distributed throughout Bavaria appears to be a must. 
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