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Abstract: Tree species in mountainous areas are expected to shift their distribution upward 

in elevation in response to climate change, calling for a potential redesign of existing protected 

areas. This study aims to predict whether or not the distributions of two high-mountain tree 

species, Abies (Abies kawakamii) and Tsuga (Tsuga chinensis var. formosana), will 

significantly shift upward due to temperature change, and whether current protected areas 

will be suitable for conserving these species. Future temperature change was projected for 

15 different future scenarios produced from five global climate models. Shifts in Abies and 

Tsuga distributions were then predicted through the use of species distribution models 

(SDMs) which included occurrence data of Abies and Tsuga, as well as seasonal temperature, 

and elevation. The 25 km × 25 km downscaled General Circulation Model (GCMs) data for 

2020–2039 produced by the Taiwan Climate Change Projection and Information Platform 
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was adopted in this study. Habitat suitability in the study area was calculated using maximum 

entropy model under different climatic scenarios. A bootstrap method was applied to assess 

the parameter uncertainty of the maximum entropy model. In comparison to the baseline 

projection, we found that there are significant differences in suitable habitat distributions for 

Abies and Tsuga under seven of the 15 scenarios. The results suggest that mountainous 

ecosystems will be substantially impacted by climate change. We also found that the 

uncertainty originating from GCMs and the parameters of the SDM contribute most to the 

overall level of variability in species distributions. Finally, based on the uncertainty analysis 

and the shift in habitat suitability, we applied systematic conservation planning approaches 

to identify suitable areas to add to Taiwan’s protected area network. 

Keywords: climate change; species distribution; systematic conservation planning; mountain 

trees; uncertainty 

 

1. Introduction 

Forest tree species generally have long life spans and this makes them particularly vulnerable to 

climate change [1]. The ranges of vegetation in boreal, temperate, and tropical forest ecosystems are 

shifting in latitude and elevation in response to climate change [2–5]. This is due to the intrinsic 

physiological tolerances plant species have for various climatic and environmental variables as well as 

biotic factors, such as interspecies competition and parasite prevalence [6]. In addition, plant 

reproductive success can be affected by different climate conditions during a variety of developmental 

stages. Therefore, climate change could have substantial influence on their reproductive cycles [7]. 

Rapid changes in temperature and other climate parameters, such as changes in precipitation at high 

elevations, have significant impacts on plant communities [8,9]. For instance, the biological impacts of 

global warming have already been observed in the Alps; these include: tree line shifts to higher  

altitudes [10] and the reduced ranges of alpine plant species as their distributions shift to ever higher 

altitudes [9,11–13]. However, not all species tend to shift to higher elevations as expected; in fact, they 

may respond individualistically to changes in the environment [14–17]. Hence, by comparing differences 

in the direction and magnitude of shifting distributions between species, we can come to a better 

understanding of the exact forces and processes behind species distribution dynamics [18] and the 

variability of predictions made about future distributions. 

Species distribution models (SDMs) are statistical algorithms used to predict the potential distribution 

of a species using presence-only or presence-absence records of a species and their corresponding 

independent variables which describe climatic and environmental factors [19,20]. SDMs are a widely 

used approach to evaluate the impacts of climate change on species and communities [21–25]. SDMs 

are essential tools for both predicting the impacts of climatic change on biodiversity, and designing 

conservation plans and policies which best mitigate the effects of climate change [26]. Recent notable 

examples are by [19,20,27–33]. However, it is recognized that there are significant limitations in 

projecting future species distribution using SDMs [34,35]. 
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Most protected area networks have not yet taken the effects of future climate change into account [36]. 

However, if climate change progresses as projected, current protected areas may be inadequate to ensure 

the long-term persistence of certain species [36]. It is important to modify our biodiversity protection 

strategies in order to mitigate the impacts of climate change, especially in mountainous areas which are 

expected to be greatly impacted by climate change induced range shifts. It is incumbent on policy makers 

to take projections of future species distributions into account, and systematic conservation planning 

approaches [37] are increasingly being used to support these decisions [33]. 

In practice, inherent uncertainty due to the variability of both SDMs and projected future climatic 

models under different emission scenarios [38–41] is a particular challenge when considering the 

reconfiguration of conservation area networks. The variability arising from four different sources, 

namely: input data, SDMs, General Circulation Models (GCMs) and Greenhouse Gas Emissions 

Scenarios (GESs) [41,42], is critical in assessing future species distribution uncertainty. According to 

the study of Buisson et al. (2010), the main contributing factors to variation in projections of future 

species distributions are SDMs and GCMs [41]. A bootstrapping method, used to estimate the parameter 

uncertainty, climate uncertainty, and model uncertainty [38], provides an easy-to-implement tool to 

assess uncertainty without the assumption of a statistical distribution [43]. Selle and Hannah (2010) 

proposed a bootstrap approach to evaluate parameter uncertainty in dynamic catchment models [43]. To 

fully incorporate uncertainty in the process, Guilhaumon et al. (2008) used the nonparametric 

bootstrapping procedure to calculate the confidence interval of the parameters in nonlinear regression 

models for predicting bird species richness [44]. In this study, the variability in species distributions 

caused by the three different uncertainty sources, including SDMs, GCMs, and GESs were assessed 

using the bootstrap resampling technique. The relative proportion of each source of uncertainty that 

contributed to the overall variability of the final species distribution models was then quantified using a 

general linear model. 

Here we project the impacts of climate change on the distribution of two high-mountain tree species 

of conservation importance in Taiwan: Abies (Abies kawakamii) and Tsuga (Tsuga chinensis var. 

formosana). The presence-only dataset of Abies and Tsuga are used to identify correlations to their 

corresponding background climatic and environmental variables. We use the trained maximum entropy 

model and future climate data to forecast the species future distributions. We then use the bootstrap 

resampling technique to analyze the variability from our dataset and from the parameters in the maximum 

entropy model, GCMs, and GESs. The Wilcoxon nonparametric statistical test is applied to check for 

significant differences in elevation shifts of the Abies and Tsuga ranges under future climate scenarios 

and the baseline scenario. We conclude by assessing the effectiveness of current protected areas under 

different climate change scenarios and apply the Zonation conservation planning software to identify 

additional conservation areas which provide refugia for the modeled high-mountain species faced with 

climate change induced range shifts. 
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2. Materials and Method 

2.1. Study Area and Sampling Data 

Taiwan is a mountainous island in eastern Asia. It is bisected by the Tropic of Cancer, which divides 

the island’s climate into tropical monsoon in the south and sub-tropical monsoon in the north. 

Approximately 60% of the island is comprised of mountainous regions, including the north-south 

Central Range, the Hsueh Shan Range, and the Yu Shan Range, which contain more than 200 summits 

over 3000 m in elevation. Due to the complicated geology and mountainous environment, there is a high 

degree of diversity in vegetation. The vegetation of Taiwan can be divided into six zones [45] including 

the alpine zone, the Abies zone, the Tsuga-Picea zone, the Quercus zone, the Machilus-Castanopsis 

zone, and the Ficus-Machilus zone, based on the dominant species and climate at different altitudes. The 

coniferous forests are divided into three zones [45]:  

(1) Alpine vegetation zone (mainly composed of Juniperus squamata forests and scrubs); 

(2) Subalpine coniferous forests (Abies zone); 

(3) Upper montane coniferous forests (Tsuga-Picea zone). 

The high-mountain coniferous forest zones are dominated by species such as Abies kawakamii, Tsuga 

chinensis var. formosana, Picea morrisonicola and Pinus armandii var. mastersiana. Due to the high 

prevalence of Abies (Abies kawakamii) and Tsuga (Tsuga chinensis var. formosana), these two species 

were selected as the target species in this study. The Abies species, which is endemic to Taiwan, has an 

altitudinal range between 3000 m and 3500 m above sea level [46] with a cold and humid  

environment [47]. Abies, one of the 40 fir species known worldwide, is also endangered. This is possibly 

due to its specific survival needs, which restrict it to a narrow habitat. This species has received little 

conservation attention [46]. The ecotone of Abies and Tsuga exists at the lower elevations around 3000 

m. The Tsuga is widely distributed on moist north facing slopes at 2500–3100 m elevation; and it is 

mixed with Chamaecyparis formosensis and C. obtusa var. formosana in the prevalent cloud forests 

around 1800–2400 m. In the northern part of the island, which is affected by the northeastern monsoon, 

the lower limit of Tsuga is approximately 1500 m. 

We compiled the raw dataset used in this study from the Third Forest Resources and Land Use 

Inventory in Taiwan (TFRLUI) published by the Forestry Bureau in the Council of Agriculture [48]. 

The inventory data, from 1990 to 1995, included land-use types, forest types, timber, animal resources 

and soil types. The investigation of each forest plot involved systematic sampling every three kilometers 

from the starting point at 121.5135° E, 25.03534° N. A total of 3996 ground plots were selected from 

aerial photos of the national forests. For this study, vegetation raster cells, currently classified as sustaining 

an Abies and/or a Tsuga population, were chosen for modeling. All forests’ survey data (Figure 1c,d) 

were used for predicting spatial distributions based on various climate scenarios from different GCMs. 

In this study, the five GCMs, CSIRO-Mk3.5 (CS), GFDL-CM2.1 (GF), MIROC3.2 (medres) (MI), 

MPI-ECHAM5 (MP), and MRI-CGCM2.3.2a (MR), and three greenhouse gas emissions scenarios, B1, 

A1B, and A2, were adopted to represent different temperature sensitivities for the period 2020–2039 [49]. 

Unfortunately, GCMs output data has a horizontal resolution between 250 and 600 km; since SDMs 

generally require a grid resolutions on the order of 1–5 km2 [50], the direct application of SDMs on 
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GCM output data is rarely possible. The original GCMs output data for 2020–2039 was downscaled to 

the resolution of 25 km × 25 km by the Taiwan Climate Change Projection and Information Platform 

(TCCIP), and then was downscaled to the resolution of 3 km ×3 km (Figure 1f) by Area-to-Point (ATP) 

co-kriging and validated through the use of weather station networks from the Central Weather Bureau 

(Figure 1b) and a high resolution digital elevation model (Figure 1e) [51,52]. 

Figure 1. (a) The topography of Taiwan; (b) locations of weather stations; (c) sample sites 

(presence-only) for Abies; (d) sample sites (presence-only) for Tsuga; (e) elevation data from 

a digital elevation model; (f) downscaled annual temperature data for 2020–2039. 

 
(a) (b) 

 
(c) 

 
(d) 
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Figure 1. Cont. 

 
(e) 

 
(f) 

2.2. Maximum Entropy 

The distributions of the focal species were estimated by maximum entropy based on the site where 

the species were recorded and the correlating background environmental variables (driving factors). A 

logistic regression analysis using SPSS (Statistical Package for the Social Sciences, SPSS Inc., Chicago, 

IL, USA) identified the environmental variables with greatest influence on distribution, which were then 

used in the SDMs. The candidate variables included: moisture, precipitation, slope, aspect, elevation, and 

temperature. However only four significant environmental variables were identified by the logistic 

regression, and subsequently used in this study: average annual temperature, average spring monthly 

temperature, average summer monthly temperature, and elevation. Though precipitation is often a 

crucial factor determining tree species distribution, for mountainous regions of Taiwan, where annual 

precipitation often exceeds 3000 mm, from the macroscopic prospective this may not be a limiting factor 

in most regions of our study area. Aspect is also an environmental factor which is often crucial to tree 

species distribution. However, in relatively low latitude regions, such as Taiwan, aspect may not be as 

important compared to high latitude regions, especially when considering the humid conditions intrinsic 

to Taiwan. Our field experience substantiates the findings of our logistic regression model because 

distributions of both Abies kawakamii and Tsuga chinensis var. formosana were observed across large 

ranges which span both steep slopes and valleys, indicating that their distribution is predominantly 

determined by macro-climate environmental factors such as temperature. 

Following Dudík et al. (2007), an unknown probability distribution (ݔ)ߨ over a space X across the 

entire study area was estimated, and the presence records were used to determine a set of constraints that 

were likely to be satisfied by [53] (ݔ)ߨ. The focal species were only present at certain locations in the 

set of location samples (ݔଵ, … ,  ୫), each of which corresponds to specific environmental variables. Theݔ

expected value [ݖ]ߨ of	ݖ, selected environment variables, under the distribution ߨ is defined as:  
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[ݖ]ߨ = ෍(ݔ)ݖ(ݔ)ߨ௫∈௑  (1)

where ܺ is the entire study area. 

Since the empirical average of z (ߨ෤[ݖ]) and the expectation of z ([ݖ]݌) are both very close to its true 

expectation (ߨ෤[ݖ] ≈ [ݖ]ߨ  and [ݖ]݌ ≈ [ݖ]ߨ ) [54], many distributions (ݔ)݌  satisfy the constraint [ݖ]݌ ≈  is (ݔ)݌ whose entropy is largest should be chosen. The entropy of (ݔ)݌ however the ,[ݖ]ߨ

defined as follows [54]:  

Maximize (݌)ܪ = ෍(ݔ)݌݈݊(ݔ)݌௫∈௑  (2)

Subject to |݌[݂] − |[݂]෤ߨ ≤ (3) ߚ

where β is the estimated upper bound (tolerance) of how close ݌[݂]  is to ߨ෤[ݖ]  (the empirical 

distribution of the focal species). The (ݔ)݌ can be written as the following function (Gibbs model):  (ݔ)݌ = exp(∑ ௡௝ୀଵ(ݔ)௝ݖ௝ߣ )∑ exp(∑ ௡௝ୀଵ(ݔ)௝ݖ௝ߣ )௫∈௑  (4)

where ߣ௝ is the coefficient of jth environmental variables (features) ݖ௝. 
2.3. The Bootstrapping Method 

2.3.1. Evaluating Data and Model Performance 

The bootstrapping method was implemented by randomly selecting 80% of the presence records from 

the survey data used to estimate the distribution of focal species by the maximum entropy method. The 

remaining 20% of the presence data were used as a test dataset and applied to validate the performance 

by computing the area under the receiver operating characteristic curve (AUC) value. This procedure 

was done iteratively creating 1000 maximum entropy species distribution models and corresponding 

validation AUC values. 

2.3.2. The Confidence Region of SDM Parameters 

The ellipsoidal confidence regions, which are generalizations of univariate symmetrical confidence 
intervals, for the coefficients of the environmental variables in the maximum entropy model, ߣ௝, are 

generated by using the nonparametric bootstrapping procedure [55]. The confidence regions can be 

written as the following equation [55]:  ܴ = ቄߠ෠ − ඥߗ෠ × :ݎ ݎ ∈ ܴఈቅ (5)

where ܴఈ is any region such that ܲ ቂඥߗ෠ × ൫ߠ − ෠൯ߠ ∈ ܴఈቃ =  was set to 0.95. The shape of the	and α ;ߙ

region R depends on the shape of the region ܴα, which is ellipsoid in this study. 
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2.4. Variability Analysis 

Uncertainties intrinsic to future species distribution models based on future climate models are many 

and varied [38–41]. Although it has been demonstrated that SDMs contribute significantly to the total 

variability of future species distribution projections [22,60], the overall uncertainty in suitable future 

habitats arising from this variability has rarely been considered [56–60]. In order to enhance the reliability 

of projections, it is necessary to quantify the uncertainty from several sources. In this way, we can construct 

an ensemble of relatively reliable forecasts [61]. 

In this study, the SDM model variability arising from three different sources of uncertainty, including 

SDM parameters, GCMs and GESs was quantified. Evaluation of relative variability originating in SDM 

parameters was undertaken by randomly generating 1000 sets of coefficients via a sample presence 

bootstrapping technique. Coefficients falling within the 95% confidence range were then compared with 

those coefficients falling outside of the confidence range. The Wilcoxon test was adopted in this study 

to identify the significant differences in elevation of projected suitable habitats for the two focal species, 

under 15 future scenarios (5 GCM × 3 GES) and the baseline scenario, based on the parameters from 

1000 sets of coefficients. This procedure led to a factorial design which crossed 1000 sets of the SDM’s 

coefficients, five GCMs and three GESs, thus resulting in 15,000 different projections of future 

distribution for each species. Based on this design, the proportion of the three different sources of 

uncertainty, GCM, GES, and SDM model’s parameters, were quantified using a general linear model, 

which was assessed by calculating the ratio between the deviances explained by each source against the 

null deviance [41]. 

Besides the sources of uncertainties, the local and spatial uncertainties were also quantified in this 

study. The local uncertainty at location k ( ௟ܲ௞) can be defined by the following equation [62]:  

௟ܲ௞ = ݊௣(݃௞)/1000 (6)

where 1000 is the number of realizations, and ݊௣(݃௞) is the number from the 1000 realizations in which 

the simulated species were present at location k. 

The joint probability (Pj, global uncertainty) in m occurrence locations (ݑଵ, ,ଶݑ (௠ݑ⋯,ଷݑ  was 

written as follows [63,64]:  

௝ܲ = ݊௣(ݑଵ, ,ଶݑ ௠)/1000 (7)ݑ⋯,ଷݑ

where 1000 is the number of realizations, and ݊௣(ݑଵ, ,ଶݑ  ௠) is the number from the 1000ݑ⋯,ଷݑ

realizations in which the simulated species were present at m locations; m is the number of cells, out of 

1000 realizations, in which the given critical probability, or cutoff point that could be viewed as the 

given minimal habitat suitability threshold, is satisfied; np is the number of realizations, out of 1000, 

whose projected focal species distributions are entirely within the given critical probability area. 

2.5. Identifying Protected Areas 

Zonation is a systematic conservation planning decision support tool. It generates a hierarchy of 

conservation priorities over all cells in a landscape based on their conservation value [65]. We used 

Zonation to delineate protected areas for the modeled species under the baseline and the climate change 

scenarios. The selections were made based on occurrences of conservation targets and pseudo targets, 
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which represent the possible occurrences of target species following distribution predictions. In core-area 

Zonation, cell removal is done in a manner that minimizes biological loss by picking cell i that has the 

smallest δ:  

i

jij

j
i c

wSQ
Max

)(
=δ  (8)

where wj is the weight (or priority) of species j and ci is the cost of adding cell i to the reserve network [66]. 

The critical part of the equation is Qij(S), which is the proportion of the remaining distribution of species 

j located in cell i in the remaining set of cells, S. When a part of the distribution of a species is removed, 

the proportion located in each remaining cell increases. 

We then computed an index which integrates both the estimated habitat suitability and conservation 

status, as indicated by Zonation, to identify cells of greatest suitability for Abies and Tsuga within a protected 

area network under 15 future scenarios and the baseline scenario. The matching of climate suitability 

with conservation area for species ݎ, in a given grid cell ݓ, can be expressed as (ܵ௪௥ ) [67]:  ܵ௪௥ = ௪௥ܵܪ × ௪ܣܥ  (9)

where ܵܪ௪௥  is the suitability score of grid cell w for a given species	ݎ, and ܣܥ௪  is 1, if the grid cell ݓ 

was selected for protection; otherwise, ܣܥ௪  is 0. The ܵ௪௥  ranges from 0, for grid cells which are 

unsuitable for species or are not selected for conservation, to 1, for grid cells which have both high 

suitability for the focal species and are also selected for conservation. The habitat suitability within 

protected areas for species	r over the study area can be written as the following equation:  ܵ௥ =෍ ܵ௪௥ே௪ୀଵ  (10)

where ܰ is the number of grid cells in the study area. Moreover, the proportions of habitat suitability 

covered by protected areas for species ݎ, (ܲܥ௥), can be expressed as:  ࢘ܲܥ = ܵ௥ ෍ ௪௥ே௪ୀଵൗܵܪ  (11)

Large ܲܥ௥ values correspond to large protected area networks which possess a large number of high 

quality habitat cells. 

3. Results and Discussion 

3.1. SDM Performance, Focal Species Distribution and Their Shifts in Elevation 

The validation AUC values calculated from 1000 iterations of our SDM range from 0.8 to 0.96 for 

Abies and from 0.85 to 0.95 for Tsuga. The mean and the standard deviation of the 1000 AUC values 

are 0.88 and 0.021 for Abies and 0.91 and 0.015 for Tsuga. The higher mean AUC value and lower 

standard deviation correlate with more precise maximum entropy predictions. The high accuracy of the 

predictions leads to higher consistencies between predicted distributions of focal species and presence 

data distributions of Abies (Figures 1b and 2a) and Tsuga (Figures 1c and 2b). 
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Figure 2. The predicted baseline habitat suitability for: (a) Abies; (b) Tsuga. 

(a) 
 

(b) 

The trees species future distributions under different scenarios are presented in Figures 3 and 4. The 

distributions are slightly different for the two species; however, the SDMs reveal that the species prefer 

to live in areas with low temperatures and high altitudes. 

Figure 3. Predicted habitat suitability in Central Mountain Range area for Abies in 12 

future scenarios (3 GES × 2 GCM × 2 parameter) for 2020–2039. 

(a) (b) (c) (d) 
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Figure 3. Cont. 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Figure 4. Predicted habitat suitability in Central Mountain Range area for Tsuga in 12 future 

scenarios (3 GES × 2 GCM × 2 parameter) for 2020–2039. 

(a) (b) (c) (d) 
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Figure 4. Cont. 

 
(e) (f) (g)

 
(h) 

 
(i) (j) (k) 

 
(l) 

3.2. Variability Analysis 

The discrepancies in results of species habitat shifts with constant GCMs and GESs were interpreted 

as the uncertainty introduced by maximum entropy model parameters. The distribution of coefficients 

of the environmental variables in the maximum entropy model for Abies and Tsuga, which are elevation, 

average annual temperatures, average spring monthly temperatures and average summer monthly 

temperatures, based on bootstrap resampling are shown in Figure 5. For Abies, they are in the range of 

0.29 to 4.70, −3.42 to −1.19, −2.02 to 1.11, and −4.59 to −0.97, respectively. For Tsuga, they are in the 

range of −1.26 to 1.61, −3.29 to −1.98, −2.57 to −0.31, and −3.49 to −1.20, respectively. The dashed 

lines in Figure 5 show the SDM’s parameters fitted by the original data, which approximate the mean 

parameters of 1000 sets of bootstrap resampling data indicating the low bias of the estimated parameters. 

For evaluating the variability of parameters, 1000 sets of coefficients which were within the 95% bootstrap 

confidence interval were used to estimate the future distribution of the modeled species. The nonparametric 

Wilcoxon test was then used to identify significant differences in habitat elevation between the baseline 

scenario versus each future scenario (Table 1). The shifts in elevation were based on species current 

distribution, and the significant environmental variables which these distributions correspond to. 
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Figure 5. The bootstrap histogram of the coefficients in maximum entropy model for Abies: (a) elevation; (b) average annual temperature;  

(c) average monthly spring temperature; (d) average monthly summer temperature, and for Tsuga: (e) elevation; (f) average annual temperature; 

(g) average monthly spring temperature; (h) average monthly summer temperature. The blue line is the fitted kernel density. 

 
(a) (b) (c)  

(d) 

 
(e) (f) (g) 

 
(h) 
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According to the results of predicted temperature data from different GCMs and GESs (Table 1), greater 

temperature increases correlate with a higher “count”, which represents the number of statistically 

significant differences in habitat elevation under baseline and future climate scenarios in 1000 SDM 

outputs. Moreover, a higher “count” indicates a greater reliability in predicting the upward shift in focal 

species distribution. The homogeneity of the “count” between the 15 scenarios was tested using the  

chi-square test, which contrasts the non-homogeneity of the “count” between the 15 scenarios (p value  

< 0.0001) for each species. The “count” under scenarios 2, 3, 6, 7, 8, 11 and 13 for Abies and scenarios 1, 

2, 3, 6, 7, 8, 11 and 13 for Tsuga are significantly higher (+) than that under other scenarios (Table 1). In 

addition, scenario 8 has the largest “count” for Abies (668) and Tsuga (841). The highest average annual 

temperatures and average summer monthly temperatures in scenario 8 lead to the most drastic upward shift 

in distribution for both species. As for other scenarios, the temperature in scenario 2, 3, 6, 7, 11 and 13 all 

increase leading to a higher “count” for each species. Moreover, as can be seen from Table 1 as the “count” 

approaches extreme values, which are 0 or 1000, only slight variability of parameters in the maximum 

entropy model are observed. The scenarios with large variability from parameters in predicting the upward 

shift of the focal species distributions are scenarios 2, 6 and 13 for Abies and scenarios 1, 2 and 7 for Tsuga. 

This result indicates that the intermediate increments of temperature change lead to the highest variability 

in SDM parameters. In other words, we have higher confidence when predicting the upward shift of tree 

species under scenarios which project larger increments of temperature change. 

Table 1. The difference in temperature under each climate change scenario (for 2020–2039) 

in comparison to the baseline scenario, and the number of statistically significant differences 

in the optimal elevation of focal species habitat in 1000 different sets of outputs, which are 

contained in the 95% bootstrap confidence interval. 

Scenario GES GCM 

Change of Average Temperature (°C) Significant Shift in Elevation of Habitat 

Annual Spring Summer 
Abies Tsuga 

Count Uncertainty Count Uncertainty

1 

B1 

CS 0.77 1.03 0.75 193 (−) 0.16 489 (+) 0.25 

2 GF 0.88 0.76 0.93 466 (+) 0.25 571 (+) 0.25 

3 MI 1.02 1.22 0.93 576 (+) 0.24 805 (+) 0.16 

4 MP −0.03 −0.06 −0.2 0 (−) 0.00 0 (−) 0.00 

5 MR 0.34 0.17 0.59 0 (−) 0.00 2 (−) 0.00 

6 

A1B 

CS 0.88 1.17 1.02 514 (+) 0.25 722 (+) 0.20 

7 GF 0.84 0.52 0.82 341 (+) 0.23 442 (+) 0.25 

8 MI 1.09 1.08 1.07 668 (+) 0.22 841 (+) 0.13 

9 MP −0.03 −0.06 −0.2 0 (−) 0.00 0 (−) 0.00 

10 MR 0.38 0.33 0.67 3 (−) 0.00 29 (−) 0.03 

11 

A2 

CS 0.78 1.13 0.89 355 (+) 0.23 589 (+) 0.24 

12 GF 0.67 0.69 0.79 149 (−) 0.13 368 (0) 0.23 

13 MI 0.91 1.29 0.91 489 (+) 0.25 757 (+) 0.18 

14 MP −0.03 −0.06 −0.2 0 (−) 0.00 0 (−) 0.00 

15 MR 0.35 0.31 0.51 0 (−) 0.00 1 (−) 0.00 

Note: The symbols (+), (0) and (−) represent the “count” as being significantly higher than, equal to, and significantly lower 

than expected based on the chi-square test; GES: Greenhouse Gas Emissions Scenarios; GCM: General Circulation Model; 

CS:CSIRO-Mk3.5; GF: GFDL-CM2.1; MI : MIROC3.2 (medres); MP : MPI-ECHAM5 (MP); MR : MRI-CGCM2.3.2a. 
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The variability in projecting future species distributions does not only originate from SDM 

parameters but also arises from GCMs and GESs [59,61]. The outputs of all GCM × GES combinations 

cover a wide range of potential future climate conditions; thus, the need to evaluate the variability from 

both GCMs and GESs is increasing [41]. The variability arising from the three uncertainty sources 

analyzed in this study, GCMs, GESs, and bootstrapped parameters, are listed in Table 2. The proportions 

of variability are estimated by calculating the ratio between the deviance explained by one source and 

the null deviance with the generalized linear model based on 15,000 different future projections for each 

species [41]. Due to the high variation of increasing temperature between each GCM based on the same 

GES, the contributions of GCMs, which are 31.3% for Abies and 42.8% for Tsuga, are significantly 

higher than that of GESs, which are 0.9% for Abies and 0.2% for Tsuga. This result is consistent with 

that of the “count” in five GCMs based on the same GES which are significantly different from one 

another in Table 1. This implies that a high level of variability between different GCMs exists, and that 

this variability affects predictions of future species habitat distributions. 

Table 2. Proportion of variability from three different uncertainty sources, including model 

parameters, GCMs and GESs. 

 Source of Uncertainty Contribution (%) 

 parameters 67.9 
Abies GCMs 31.3 

 GESs 0.9 

 parameters 57 
Tsuga GCMs 42.8 

 GESs 0.2 

In contrast, the proportions of variability originating from GESs are small because, all else being 

equal, the predicted temperatures under the three GESs are similar. This result corroborates the studies 

by both Stott & Kettleborough (2002) and Buisson et al. (2010), who found that the variability from 

different GESs is small [41,68]. On the other hand, the proportion of variability in predicting upward 

shifts of tree species originating from SDM parameters is quite large, being 67.9% for Abies and 57.0% 

for Tsuga. This means that the variability from the model's parameters has a strong effect on predicting 

the shift of focal species. This result is in accordance with the study by Buisson et al. (2010), who suggested 

that the high proportions of the total variability in future projections are from SDMs [41]. In summary, 

the above findings suggest that variability originating from both SDM parameters and GCMs should be 

of first concern as they contribute most to the total variability in predicting the upward shift of focal species. 

3.3. Local and Global Uncertainties 

Figure 6 shows the proportion of habitat in 1000 realizations under the baseline scenario for Abies 

and Tsuga, which provides a measure of local uncertainty associated with a single location (grid). Under 

each scenario, the areas with high (95%) habitat coverage were located in the center of Taiwan where 

the central mountain range is located. As for the global uncertainty, given a critical probability of species 

occurrence, a higher joint probability means greater reliability (lower global uncertainty) of the mapped 

locations of species occurrences. The joint probabilities increase with the critical probability under each 
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scenario (Table 3). Kerry et al. (2010) and Goovaerts (2009) suggest the critical probabilities 75% and 

90% are enough to generate a reliable joint probability. In this study, the joint probabilities under each 

scenario are larger than 0.5 when the critical probability reaches 0.75 [63,69]. 

Table 3. The global uncertainty under baseline and 15 future scenarios. 

Cut-off 
Scenario 

Abies Tsuga 

0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95

B 0.43 0.58 0.65 0.7 0.78 0.9 0.43 0.58 0.65 0.7 0.78 0.9 
s1 0.49 0.56 0.62 0.72 0.82 0.89 0.49 0.56 0.62 0.72 0.82 0.89
s2 0.45 0.54 0.65 0.73 0.82 0.91 0.45 0.54 0.65 0.73 0.82 0.91
s3 0.47 0.62 0.66 0.73 0.83 0.91 0.47 0.62 0.66 0.73 0.83 0.91
s4 0.42 0.52 0.69 0.74 0.79 0.88 0.42 0.52 0.69 0.74 0.79 0.88
s5 0.46 0.54 0.66 0.71 0.8 0.92 0.46 0.54 0.66 0.71 0.8 0.92
s6 0.45 0.51 0.67 0.72 0.84 0.91 0.45 0.51 0.67 0.72 0.84 0.91
s7 0.44 0.53 0.59 0.77 0.81 0.89 0.44 0.53 0.59 0.77 0.81 0.89
s8 0.55 0.6 0.67 0.74 0.81 0.89 0.55 0.6 0.67 0.74 0.81 0.89
s9 0.42 0.52 0.69 0.74 0.79 0.88 0.42 0.52 0.69 0.74 0.79 0.88

s10 0.48 0.54 0.62 0.72 0.81 0.91 0.48 0.54 0.62 0.72 0.81 0.91
s11 0.5 0.53 0.66 0.75 0.82 0.9 0.5 0.53 0.66 0.75 0.82 0.9 
s12 0.47 0.53 0.62 0.74 0.86 0.91 0.47 0.53 0.62 0.74 0.86 0.91
s13 0.45 0.52 0.68 0.74 0.83 0.91 0.45 0.52 0.68 0.74 0.83 0.91
s14 0.42 0.52 0.69 0.74 0.79 0.88 0.42 0.52 0.69 0.74 0.79 0.88
s15 0.46 0.56 0.64 0.7 0.82 0.9 0.46 0.56 0.64 0.7 0.82 0.9 

Figure 6. The proportion of habitat in 1000 realizations (local uncertainty) under the baseline 

scenario for: (a) Abies; (b) Tsuga. 

 
(a) 

 
(b) 
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3.4. Implications for Protected Areas 

Only a limited number of conservation planning studies have taken the effects of climate change into 

account. However, climate change can induce rapid shifts of species distribution resulting in existing 

protected areas no longer ensuring the long-term persistence of certain species [36,67]. In this study, for 

Abies and Tsuga, the climate suitability (S) and the climate suitability within protected areas (Scons), 

including Taiwan National Parks, Taiwan Wildlife Refuges, and Taiwan Major Wildlife Habitats are 

likely to decrease under most future scenarios (Table 4). However, the proportions of suitable habitat 

protected for Abies and Tsuga under the baseline and 15 future climate scenarios are very similar to each 

other, which are 87.2%–90.9% and 85.3%–88.7% for Abies and Tsuga, respectively. This result is not 

consistent with previous studies’ concern that climate change may lead to the failure of protected areas 

to cater to the needs of focal species [36,67,70–72]. In our study area, despite the shrinkage of focal 

species habitat under many of the future scenarios, the existing conservation areas are still adequate. In 

fact, the proportions of species habitat protected under many of the future climate scenarios increase in 

comparison to the baseline scenario as reduced total area of suitable habitat force species into 

conservation areas. 

Table 4. Total habitat suitability (S) and habitat suitability within protected areas (Scons) 

and the proportion of suitable habitat under existing protected areas (CP) under baseline and 

15 future climate scenarios (for 2020–2039) for Abies and Tsuga. 

Scenario S Abies Scons CP (%) S Tsuga Scons CP (%)

B 199.7 174.2 87.2 295.3 252.8 85.6 
145.4 161.6  90 226.2 199.6 88.2 

s2 155.6 140.6 90.4 221.9 196.3 88.5 
s3 152.8 138.4 90.6 211.7 187.7 88.7 
s4 207.0 179.7 86.8 305.5 260.7 85.3 
s5 175.5 155.8 88.8 258.7 223.6 86.4 
s6 154.3 139.6 90.5 215.4 190.9 88.6 
s7 159.5 143.8 90.1 230.2 202.5 88 
s8 149.6 136.0 90.9 209.2 185.5 88.7 
s9 207.0 179.7 86.8 305.5 260.7 85.3 

s10 172.3 153.5 89 252.0 218.3 86.7 
s11 158.2 142.7 90.2 220.8 195.4 88.5 
s12 163.0 146.4 89.8 233.3 204.8 87.8 
s13 155.1 140.2 90.4 214.1 189.8 88.6 
s14 207.0 179.7 86.8 305.5 260.7 85.3 
s15 176.7 156.7 88.7 257.7 222.8 86.5 

Nonetheless, new protected areas can play an important role in protecting Abies and Tsuga under 

climate change. In most of our climate change scenarios the proportion of suitable habitat covered by 

existing protected areas is higher than the baseline scenario because the total area of future suitable 

habitat declines. As such, increasing protected areas as determined by Zonation will be necessary to 

offset the loss of suitable habitat [71] (Figure 7). The additional area to be protected depends on the level 

of climate change. Therefore the union of all areas suitable under the 15 climate change scenarios and 
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not currently protected would be optimal in establishing the most robust conservation area (Figure 7b). 

Interestingly, when considering the worst case scenario, that is the one which projects the largest 

increment of temperature change, a smaller protected area is identified in comparison to that correlating 

to all 15 climate change scenarios (Figure 7c). 

Figure 7. Current protected areas in Taiwan, including Wildlife Refuges, National Parks and 

Major Wildlife Habitats, and the additional areas determined by Zonation which are currently 

outside of existing protected areas: (a) under baseline; (b) all future climate scenarios (the 

extra conserved area under future climate scenario is the union of that under 15 future scenarios); 

and (c) future climate scenario (the worst scenario with the largest increase of temperature). 

Note: * The difference in additional conservation area between baseline and future climate 

scenarios. The period of future climate scenario is for 2020–2039. 

 
(a) 

 
(b) 

 
(c) 

4. Conclusions 

The upward shift of mountainous and alpine habitats is expected under climate change. In Taiwan, 

an island that is 60% mountainous, the high elevation habitats will be directly influenced by increasing 

temperatures. In this study, the ensemble forecasting framework used to predict shifts in elevation of 

Abies and Tsuga habitats allowed for more robust decisions in conservation planning by taking multiple 

sources of variability into account, namely: SDM parameters, GCMs and GESs. The findings indicate 

that the projected shift in elevation of each species habitat differs among climate change models and 

among 1000 SDM realizations based on different sets of parameters. To a lesser degree, variability in 

predictions originating from different emission scenarios was also found to contribute to overall uncertainty. 

Our results show that most of the variability originates from the model’s parameters as well as the GCMs, 

indicating that uncertainty has a strong influence on predicting the shift of the modeled species distribution. 
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Although most of the climate change induced shrinkage of habitats is already covered by existing 

protected areas, in order to offset the loss of suitable habitat and reduce uncertainties caused by climate 

change, we suggest additional habitat be added to the network of protected areas. 
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