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Abstract: Widespread and prolonged defoliation by the European winter moth, 
Operophtera brumata L., has occurred in forests of eastern Massachusetts for more than a 
decade and populations of winter moth continue to invade new areas of New England. This 
study characterized the forests of eastern Massachusetts invaded by winter moth and 
related the duration of winter moth defoliation estimated using dendrochronology to 
observed levels of tree mortality and understory woody plant density. Quercus basal area 
mortality in mixed Quercus and mixed Quercus—Pinus strobus forests in eastern 
Massachusetts ranged from 0–30%; mortality of Quercus in these forests was related to site 
quality and the number of winter moth defoliation events. In addition, winter moth 
defoliation events lead to a subsequent increase in understory woody plant density. Our 
results indicate that winter moth defoliation has been an important disturbance in New 
England forests that may have lasting impacts. 

Keywords: Operophtera brumata; dendroecology; Quercus; exotic species; invasive 
species; site index 
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1. Introduction 

Winter Moth in Massachusetts 

Numerous invasions by forest pests have occurred in the north-eastern United States [1] and these 
invasions can have dramatic ecological [2] and economic [3] effects. Insect invasions in New England 
include European gypsy moth, Lymantria dispar L. [4], hemlock woolly adelgid, Adelges tsugae 
Annand [5], and Asian longhorned beetle, Anoplophora glabripennis Motschulsky [6], among several 
others. Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), is a recent addition to this 
suite of exotic pests and little is known about its impacts to invaded forests in New England. 

Native to Europe, winter moth is an early-season, hardwood defoliator that feeds within expanding 
buds and on young, newly emerged leaves [7–9]. Winter moth was identified in Massachusetts in 2003 
but is presumed to be responsible for high levels of defoliation in the region since the 1990s [10]. 
Populations of winter moth have been detected in Rhode Island, Connecticut, eastern Long Island New 
York, New Hampshire, and Maine [10] and outbreaks of defoliation have been noted within these 
areas. The expanding winter moth invasion is now similar to the escalating invasion of European 
gypsy moth in New England during the early 1900s [11]. In eastern Massachusetts, winter moth may 
now dominate the spring defoliator complex that includes fall cankerworm (Alsophila pometaria Harr), 
spring cankerworm (Paleacrita vernata Peck), Bruce spanworm, (O. bruceata Hulst), forest tent 
caterpillar (Malacosoma disstria Hübner), and European gypsy moth (Lymantria dispar L.). 

In its native range, winter moth occurs as an outbreak species responsible for elevated levels of 
defoliation on a cyclic basis [9,12]. Winter moth has a history of invasion in North America, with 
accidental introductions into Nova Scotia, Canada in the 1930s [7] and British Columbia, Canada and 
Oregon and Washington, USA in the 1970s [13,14]. Although winter moth is a polyphagous feeder, 
host preference and defoliation intensity are influenced by the level of synchrony between egg hatch 
and budburst [8,15,16]. In Nova Scotia, Quercus rubra L. has been cited as a principal host [17] and 
this trend has been observed in Massachusetts as well. Winter moth has been an important defoliator of 
Quercus forests in England [8,18] and Nova Scotia [19] and outbreaks have recently occurred in mixed 
hardwood forests of eastern Fennoscandia [20]. 

Winter moth defoliation reduced host tree radial growth in Europe [18,20] and Nova Scotia [19] 
and also increased mortality of Q. rubra trees in Nova Scotia [7,19]. In eastern Massachusetts, winter 
moth defoliation caused a reduction in radial growth of individual Q. rubra and Q. velutina Lam.  
trees [21]. Radial growth [22,23] and defoliation [24] can be used as predictors of tree mortality, 
indicating that winter moth defoliation may increase tree mortality in forest stands. Insect defoliation 
may alter the trajectory of forest stand dynamics through the creation of canopy gaps via tree  
mortality [25,26]. Canopy disturbance and gap formation following insect defoliation can facilitate 
understory plant establishment and/or growth. For example, defoliation outbreaks by forest tent 
caterpillar, Malacosoma disstria Hübner, and spruce budworm, Choristoneura fumiferana Clemens, 
have contributed to the establishment of multiple cohorts of tree species in mixed-Populus tremuloides 
Michx. forests [26]. Likewise, gypsy moth defoliation has facilitated understory growth [25,27,28]. 

To date, invaded forests in New England have not, as yet, been characterized as to tree species 
composition and structure and no studies have documented the impact of winter moth defoliation on 
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forest stand level mortality in New England. In this study, we used tree core analysis of host and  
non-host tree species in several forests in eastern Massachusetts to document stand-level effects of  
this novel winter moth invasion. The specific objective of this study was to relate tree radial growth 
chronologies, stand-level tree mortality, and understory plant density to winter moth defoliation  
and site quality. Specific research questions addressed included: (1) Does winter moth defoliation 
influence mortality of dominant/codominant Quercus? (2) Is mortality of dominant/codominant 
Quercus mitigated by increased site quality (i.e., Quercus site index)? (3) Does winter moth 
defoliation influence understory plant density? 

2. Methods 

2.1. Study Region 

The tree species composition and climate of eastern North America offer suitable habitat for winter 
moth [10,29]. Eastern Massachusetts represents the oldest and best documented case of winter moth 
infestation in the eastern United States. One of the most developed portions of New England [30], 
eastern Massachusetts is a heterogeneous landscape of urban areas, undeveloped private lands, and 
state, municipal, and private forests. These forests are most often on post-agricultural land and 
dominated by Quercus spp., Acer spp., and Pinus spp. [31]. Soil orders of this region include 
Inceptisols and Entisols formed on sedimentary and granitic bedrock ranging from mafic to acidic [31]. 

2.2. Study Sites 

In 2010 we used aerial detection survey (ADS) maps (years 2004–2010) to locate areas in 
Massachusetts known to have been defoliated in recent years. We also conferred with personnel from 
the Massachusetts Department of Conservation and Recreation (MA-DCR) and University of 
Massachusetts-Amherst to identify areas of known winter moth defoliation. Once sites with a history 
of winter moth presence were identified, we selected 13 sites that met the following criteria: (1) were 
located on state or municipal forests; (2) were on upland soils; (3) had a major hardwood component; 
(4) were discreet forest stands with clear boundaries; and (5) collectively assured representation of all 
geographic areas within the defoliated region. 

2.3. Vegetation Sampling 

Forest stand surveys were conducted within each site. Fixed-radius (12 m) plots were established to 
sample forest stand composition and structure. Tree species, status as live or dead, and diameter at 
breast height (dbh, 1.4 m) were recorded for each tree ≥7.5 cm dbh. In order to roughly age mortality 
at each site, standing dead trees (i.e., snags) were classified using the five-class decay models 
presented by Thomas [32]. Nested 1 m circular plots, located in the four cardinal directions at six 
meters from the plot center, were established to sample tree and shrub saplings (<7.5 cm dbh) and 
seedlings (<1.4 m tall). These tree and shrub estimates were combined for one total measure of 
understory woody plant density in each 12 m plot. 

Total live and dead basal area, basal area by species per hectare, and total stem density by species 
per hectare were calculated. In addition, the percentages of live and dead canopy trees were calculated. 
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The combined percentage of Q. rubra and Q. velutina basal area in dead stems was calculated for each 
site as a potential metric of winter moth defoliation impact. These two species were chosen based on 
our observations that they were the primary species fed upon by winter moth in forested settings. Our 
study focused on defoliation impacts to trees in the dominant/co-dominant canopy stratum. To capture 
this, we used percentage of basal area in dead stems as a metric of tree mortality instead of percentage 
of total trees in dead stems as the former is more heavily weighted towards larger diameter trees 
typical of mature overstory strata. 

2.4. Determination of Winter Moth Presence 

Winter moth trapping studies were implemented in late fall/early winter 2010/2011 to confirm the 
presence of winter moth at the study sites. Two sticky band traps (Bug Barrier Tree Band; 
Envirometrics Systems, Inc. Victor, NY, USA) were placed around the bole at approximately 1.0 and 
1.3 m above the ground on one to three overstory (dominant or codominant) trees within each site to 
trap adult females as they emerged from the soil organic layer and migrated up tree boles for 
oviposition. The occurrence in the late-fall of these flightless females in the sticky band traps confirms 
the presence of winter moth within the stand during the previous growing season. Due to similarities in 
life history, these traps are also effective at trapping native members of the spring defoliator guild 
including fall cankerworm and Bruce spanworm, and the presence of these insects was noted as well. 

2.5. Dendrochronology 

Tree core analysis was used to relate radial growth chronologies to winter moth defoliation and to 
estimate the frequency of winter moth activity in each site. At each study site, one radial increment 
core was extracted from each of 30 overstory (dominant or codominant crown classes) host trees  
(Q. rubra/Q. velutina), and 30 overstory non-host trees (P. strobus L.), when available. Non-host  
P. strobus were cored to serve as a reference in the assessment of winter moth effects on host species 
radial growth. Trees were selected systematically such that the core samples provided an accurate 
stand-level representation of tree radial growth. Cores were labeled in the field and returned to the lab 
for preparation and analysis. In total, 787 (Q. rubra = 227; Q. velutina = 167; P. strobus = 311) trees 
were cored from the 13 study sites. As per Simmons et al. [21], Q. rubra and Q. velutina were 
combined for radial growth analyses and are herein referred to as Quercus when applied to tree  
core and mortality results, as these two species are both in the Erythrobalanus subgenus and can 
hybridize [33]. Although Q. alba L. was present at some of the study sites, this species did not occur in 
sufficient numbers across all sites to be included in radial growth analyses. 

Increment cores were dried, glued to wooden mounts and, to facilitate reading, smoothed with 
increasingly finer sandpaper, finishing with a 600-grit. Cores were aged and measured to the  
nearest 0.001 mm using a dissecting microscope in combination with a Velmex measurement system 
(Velmex, East Bloomfield, NY, USA) and Measure J2X v. 4.1.2 software (VoorTech Consulting, 
Holderness, NH, USA). Cores were subsequently cross-dated using event years [34,35] displayed on 
scatterplots created in MS Excel® (Microsoft Inc., Redmond, WA, USA). Cross-dating and 
measurement accuracy were assessed using the program COFECHA [36]. 
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A ring-width index (RWI) was calculated for each tree so as to remove any growth trends 
associated with tree age, following procedures outlined by Bunn [37]. A modified negative exponential 
curve was fit to the raw ring width data for each core series using the dplR computer package [37] 
within the R statistical program [38]. Data were then detrended within dplR by dividing the annual raw 
ring widths by the predicted values estimated by the modified negative exponential curve. Quercus and 
P. strobus radial growth chronologies were constructed for each site using the average of all the RWI 
values for each species per site. Region-wide Quercus and P. strobus chronologies were constructed 
by pooling all Quercus and P. strobus RWI chronologies from all sites.  

Dendrochronology was also used to age individual Quercus mortality at one of the 13 study sites. 
For this, we selected the site with the highest percentage of Quercus basal area in dead stems and 
felled 10 snags and extracted a cross-sectional disk at 1.3 m above the ground. These disks were dried 
and sanded with progressively finer sandpaper, as above. Three radii per disk, at least 60° from each 
other, were selected for measurement of annual radial growth ring widths using a Velmex 
measurement system and Measure J2X software. These three radii were not averaged, but served as 
replicates to assist in cross-dating. 

Once measured, the three radii per tree were visually “cross-dated” based on within-tree growth 
patterns using scatterplots in Microsoft Excel®. Next, we assigned calendar years to the radial growth 
measurements of the radii by cross-dating them with event years determined by the live tree core 
analysis at the study site in order to assign a year of mortality for the tree from which the disks were 
extracted. Correlation analysis (JMP® Pro 10.0.0 software; SAS Institute Inc., Cary, NC, USA) was 
used to investigate the relationship between snag class and years since mortality. Four of the 10 disks 
were excluded from analysis due to ambiguity in cross-dating. 

2.6. Defining Winter Moth Activity 

Similar to Tikkanen and Roininen [20], three criteria (Figure 1) were used to identify winter moth 
activity region-wide (all 13 sites) and at individual sites. First, repeated measures analysis was used to 
test for divergence between Quercus and P. strobus RWI chronologies across all 13 sites (region-wide) 
and within each individual site from the years 1980–2010, as indicated by the Greenhouse-Geisser 
Epsilon univariate test of the interaction between time (year) and species (JMP® Pro 10.0.0 software; 
SAS Institute Inc.). For the region-wide chronologies, we pooled all Quercus and P. strobus RWI 
chronologies by species for each of the 13 sites. For the individual site analyses, we pooled and tested 
the individual tree chronologies for each species by site. The year 1980 was chosen as the starting 
point of analysis due to the widespread gypsy moth defoliation event that occurred in 1981 in which 
both Quercus and P. strobus were heavily defoliated. By incorporating this event into the radial 
growth analyses of winter moth activity, we were able to start the analyses from a point at which both 
species were affected by the same limiting factor. 

As the second criterion of determining winter moth activity, one-sided t-tests were used to identify 
individual years of divergence in which Quercus RWI was significantly lower than P. strobus RWI; 
these tests were performed a posteriori on Quercus and P. strobus RWI chronologies that differed 
significantly, as determined by the above repeated measures analysis. The significance level (α) of 
these t-tests was calculated using the sequentially rejective, Bonferroni-adjustment [39,40]. As the 
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winter moth invasion is believed to have initiated in the early- to mid-1990s, the domain of the t-tests 
was from the years 1995–2010, inclusive. The year 1995 was chosen as the beginning of individual 
year analyses as this year incorporates much of the (presumed) early winter moth invasion. As such, 
the adjusted alpha for each set of divergences was calculated, beginning with the lowest p-value  
and working successively towards the highest p-value, as: α/n; α/(n−1); α/(n−2);…α/1, where alpha  
(α) = 0.05 and n = the number of individual t-tests (n = 16 for the years 1995–2010). 

Figure 1. Winter moth defoliation event criteria decision tree. 

Step 1: Repeated measures analysis of Quercus and 
P. strobus RWI.  Significant interaction between 
time and species? 

YES NO STOP

Step 2: Sequential Bonferroni adjusted t –tests.
Quercus RWI significantly lower than P. strobus
RWI?

YES NO STOP

Step 3: 18% defoliation threshold.
Quercus RWI lower than 1.094?

YES NO STOP

Winter moth defoliation event.
 

Finally, the third criterion of winter moth activity required that the Quercus RWI value fall below a 
critical threshold of 1.094 in the individual years in which Quercus RWI was significantly lower than 
P. strobus RWI. This threshold was determined using the regression equation for current year winter 
moth defoliation and Quercus RWI provided in Simmons et al. [21], as follows. The defoliation level 
at which the upper 95% confidence interval of Quercus RWI was equal to the y-intercept value of the 
regression was calculated using JMP® Pro 10.0.0 software. This value (17.0%) represents the threshold 
above which Quercus RWI was negatively affected by winter moth defoliation; below this value 
Quercus RWI was not significantly different from the y-intercept value of 1.202 (the expected RWI 
value of Quercus not influenced by winter moth defoliation). This value was calculated as 
approximately 17.0%; thus, a threshold defoliation percentage for identifying winter moth activity was 
set at 18%, which equals a RWI threshold value of 1.094. Thus, criterion three was satisfied when 
individual year Quercus RWI values fell below 1.094. 

Individual years that met these three criteria (Figure 1) were defined as years of elevated winter 
moth defoliation. Subsequently, winter moth activity (per site and across all 13 sites) was quantified by 
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the number of elevated defoliation events within the 1995–2010 period and these were entered as a 
covariate predictor into multiple regression models explained below. 

2.7. Percentage of Quercus Basal Area Consisting of Dead Stems 

We hypothesized that the percentage of Quercus basal area consisting of dead stems estimated from 
our vegetation surveys was positively related to number of elevated winter moth defoliation events 
(Number of WM Defoliation Events), Stand Relative Density (RD, a surrogate for competition), and 
Quercus Site Index (SI, a metric of site quality). Stand relative density estimates were calculated for 
each site using the method developed and outlined by Ducey and Knapp [41] for mixed species  
forests of the northeastern US. Specifically, relative density (RD) was calculated per hectare by the 
summation of individual, live tree relative density values as calculated by: 

RD = Σ (0.00015 + 0.00218SGi) (DBHi/25)1.6 (1) 

where SG = the specific gravity of individual tree species, as provided in Ducey and Knapp [41]. 
Quercus site index (SI) for each stand was calculated by plotting total height estimates of dominant 

and/or co-dominant crown class Quercus trees from the vegetation surveys versus Quercus age, as 
estimated from tree core analyses, on the Upland Oaks Site Index Curves by Olson [42] (in Carmean [43]). 

Multiple regression was used to determine which explanatory variables (Number of WM Defoliation 
Events; Stand Relative Density; Quercus Site Index) had the greatest effect on the response variable 
Percent of Quercus Basal Area in Dead Stems (i.e., the percentage of Quercus basal area consisting of 
dead stems, as defined above). Variance inflation factors (VIF) were used to test for multicollinearity 
of regressors and Studentized residuals were calculated and plotted to test for normality of variables 
and the presence of outliers. Subsequently, Percent of Quercus Basal Area in Dead Stems (in 
proportional form) was arcsin square root transformed. Statistical analyses were performed using 
JMP® Pro 10.0.0 software (SAS Institute Inc., Cary, NC, USA). 

To evaluate the strength of the potential relationships between the above variables, model selection 
for Percent of Quercus Basal Area in Dead Stems (arcsin square root) was performed using the 
corrected Akaike Information Criterion (AICc) value [44]. The model with the lowest AICc value was 
considered the “best” model, however, models with ΔAICc values less than or equal to four (relative 
likelihood ≥0.135) were considered candidate models. Evidence ratios were calculated for each model 
within the set of candidate models and were used to evaluate and identify the model(s) that best 
explained Percentage of Quercus Basal Area in Dead Stems [44]. 

2.8. Understory Density 

Multiple regression was also used to test the influence of Stand Relative Density and Number of 
WM Defoliation Events on the density of understory tree and shrub seedlings and saplings, as 
estimated from the vegetation surveys. Tree and shrub seedling and sapling densities from all plots in 
each stand were pooled together for one overall understory density variable which is herein referred to 
as Understory Density. 
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2.9. Drought 

To evaluate the suitability of P. strobus as a control species and to test if drought events influenced 
radial growth during the 1980–2010 time period, bootstrapped correlation and response functions were 
calculated (individually) between the region-wide Quercus and P. strobus chronologies and the 
monthly (May through September) Massachusetts statewide Palmer Drought Severity Index  
(PDSI) values from the National Oceanic and Atmospheric Administration (NOAA) [45] using the 
DENDROCLIM2002 software package [46]. DENDROCLIM2002 calculates, and tests the 
significance (α = 0.05) of correlation and response coefficients using 1000 bootstrapped samples [46]. 
Bootstrapped correlation and response functions were calculated for the entire time period from  
1980–2010 and the (presumed) pre-winter moth time period (1980–1995). For comparative purposes, a 
PDSI value of 0.0 is considered normal moisture conditions; a PDSI of −2.0 suggests moderate 
drought conditions and PDSI of +2.0 suggests moderately wet conditions [47]. 

3. Results 

3.1. Study Sites 

All 13 study sites were dominated by Q. rubra, Q. velutina, P. strobus, and Acer rubrum L. in 
various mixtures and size classes (Table 1). Sites varied in total live and dead stem densities and basal 
area, as well as percentage of overstory trees characterized as live or dead. Total stem density of live 
and dead Quercus varied between sites and Quercus quadratic mean diameter ranged from 23.5 (± 0.8) 
to 39.6 (± 1.8) cm (Table 1). Understory woody plant density ranged from 11,306–261,313 stems per 
hectare (Table 1). The topography of most sites was flat to gently rolling. Size-class (diameter) 
distribution varied among sites, with sites demonstrating either uni-modal, bi-modal, right-skewed, or 
rotated-sigmoidal distributions. 

Table 1. Name, location, Quercus density and quadratic mean diameter (DBH), and 
understory woody plant density of 13 winter moth study sites, eastern Massachusetts;  
TF = town forest; SR = state reservation; SP = state park; TP = town park;  
CA = conservation area; SF = state forest. 

Site Location 
Quercus 
Density 

(stems/ha) 

Quercus Mean 
DBH (cm) 

Understory 
Plant Density 

Amesbury TF 42°51′ N; −70°58′ W  315.2 32.3 ± 1.3 35,230 

Blue Hills SR 42°13′ N; −71°07′ W   245.3 25.9 ± 1.1 261,313 

Borderland SP 42°04′ N; −71°10′ W 344.4 23.5 ± 0.8 136,943 

Bradley Palmer SP  42°39’N; −70°54′ W 114.9 33.7 ± 2.8 95,226 

Centennial Park 42°18′ N; −71°16′ W 237.4 35.9 ± 1.3 42,794 
Great Brook Farm 
SP 42°33′ N; −71°21′ W 177.0 37.0 ± 1.5 51,524 

Iron Rail 42°36′ N; −70°51′ W 271.0 32.7 ± 2.2 48,168 

 



Forests 2014, 5 2448 
 

 

Table 1. Cont. 

Site Location 
Quercus 
Density 

(stems/ha) 

Quercus Mean DBH 
(cm) 

Understory 
Plant Density 

Lockwood TF 42°38′ N; −70°59′ W 141.4 36.5 ± 1.8 60,830 

Profile Rock SP 41°48′ N; −71°03′ W 140.0 39.5 ± 2.9 112,795 

Turkey Hill CA 42°41′ N; −70°52′ W 78.7 39.6 ± 1.8 59,600 

Wildcat CA 42°41′ N; −71°01′ W 309.4 27.8 ± 0.7 11,306 

Willowdale SF 42°40′ N; −70°54′ W 201.5 37.2 ± 2.1 155,749 

Wompatuck SP 42°13′ N; −70°52′ W 248.4 29.3 ± 0.8 92,554 

Across all 13 sites, the age of Quercus in the overstory ranged from 59–106 years and P. strobus 
ranged from 53–107 years (Table 2). Quercus site index (SI) and stand relative density (RD) values 
differed among sites, as did the percentage of Quercus basal area in dead stems. Quercus site index 
values ranged from 46–77; stand relative density values ranged from 0.60–0.88 (60%–88%)  
(Table 2). The percentage of Quercus basal area in dead stems ranged from 0%–30% among the  
13 study sites (Table 2). Of this mortality, seven sites had greater than 60% of the snags in more recent 
snag classes 1–3 (Figure 2). 

Table 2. Quercus site index values, stand relative density, Quercus and P. strobus mean 
age, percentage of Quercus basal area in dead stems, and number of winter moth 
defoliation events, as determined by dendrochronology at 13 study sites, eastern 
Massachusetts; SI = site index; RD = relative density. 

Site Quercus 
SI 

Stand 
RD 

Quercus 
Age 

P. strobus 
Age 

% Quercus in 
Dead Stems 

Years and # of 
WM Def. Events 

Amesbury TF 77 0.83 76 86 6% 1999; 2001 (2) 
Blue Hills SR 45 0.76 85 84 18% 2008–2010 (3) 
Borderland SP 50 0.69 106 68 12% 2006; 2008-2010 (4) 
Bradley Palmer SP  66 0.84 89 107 28% 2007–2010 (4) 
Centennial Park 65 0.86 89 65 4% 0 
Great Brook Farm SP 71 0.74 95 81 2% 1996; 2005 (2) 
Iron Rail TP 72 0.71 59 53 5% 0 
Lockwood TF 62 0.60 89 78 0% 2001; 2010 (2) 
Profile Rock SP 60 0.81 94 64 3% 2005 (1) 
Turkey Hill CA 65 0.71 67 84 4% 0 
Wildcat CA 66 0.60 72 85 7% 0 
Willowdale SF 68 0.88 90 89 4% 2008-2010 (3) 
Wompatuck SP 46 0.61 97 89 30% 2000; 2008 (2) 
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Figure 2. Percentages of dead trees grouped by snag classes 1–3 (black bars) and snag 
classes 4 and 5 (gray bars) at all 13 sites in eastern Massachusetts; ATF = Amesbury Town 
Forest; BH = Blue Hills State Reservation; BSP = Borderland State Park; BP = Bradley 
Palmer State Park; CP = Centennial Park; GBF = Great Brook Farm State Park; IR = Iron 
Rail Town Park; PR = Profile Rock State Park; TH = Turkey Hill Conservation Area; 
WDC = Wildcat Conservation Area; WIL = Willowdale State Forest; WOM = Wompatuck 
State Park. 

 

Presence/absence trapping studies were conducted at nine of the study sites and winter moth was 
present at each of these sites in varying abundances. Bruce spanworm was not trapped at any site and a 
limited number of fall cankerworm individuals were present on traps at five sites. Winter moth 
presence was confirmed at the additional four sites by interviews with Massachusetts DCR personnel 
and/or previous/tangential trapping studies [11]. 

3.2. Dendrochronology 

Across all 13 sites, repeated measures analysis of Quercus and P. strobus annual RWI values from 
1980–2010 revealed a significant interaction between time and species (univariate Greenhouse-Geiser 
Epsilon p < 0.0001; Figure 3). Two periods of divergence (1985–1990 and 2005–2010) may have 
influenced the significance of the interaction between time and Quercus RWI and P. strobus RWI. 
Although the 1985–1990 divergence was outside the focus of the present study, and thus did not 
receive further analysis, a possible contributing factor for this divergence may include gypsy moth 
defoliation during the early 1980s. Post hoc t-tests of Quercus and P. strobus RWI from 1995–2010 
revealed a significant divergence in Quercus radial growth compared to P. strobus from 2000–2001  
(p < 0.0001 and p = 0.0005, respectively), 2003 (p = 0.0449), and 2005–2010 (p = 0.0130; p < 0.0001; 
and p < 0.0001; p < 0.0001; p < 0.0001, p < 0.0001, respectively). Of these years, the Quercus RWI 
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values fell below the 18% defoliation threshold of 1.094 in 2006–2010, indicating five years of  
region-wide growth divergence between Quercus and P. strobus RWI. 

Figure 3. Region-wide Quercus and P. strobus ring width index (RWI) dendrochronologies 
pooled from 13 sites in eastern Massachusetts from 1980–2010; distinct divergence trends 
exist from 1985–1990 and 2003–2010; * indicates years in which Quercus RWI is 
significantly lower than P. strobus RWI (using t-tests from 1995–2010.) 

 

At the individual site level, repeated measures analysis showed a significant interaction between 
time and species (Quercus vs. P. strobus) from 1980–2010 at each of the 13 sites. Post hoc tests from 
1995–2010 revealed that nine sites contained winter moth defoliation events as defined by individual 
years in which the Quercus RWI value was significantly lower than the P. strobus RWI value and fell 
below the defoliation threshold of 1.094, with the earliest event occurring in 1996 (Table 2). Eight of 
the study sites showed multiple winter moth defoliation events; one (Bradley Palmer State Park) 
showed a prolonged radial growth reduction from 2007–2010 and three (Blue Hills State Reservation, 
Borderland State Park, and Willowdale State Forest) showed a reduction from 2008–2010 (Table 2). 
Thus, Number of WM Defoliation Events at the 13 study sites ranged from 0–4 years (Table 2). 

Dendrochronological analysis of snag tree disks (n = 6) at the site of maximum Quercus mortality 
(Wompatuck State Park) indicated that this mortality occurred from 1987 through 2008 (Table 3), but 
five of the six trees died after 1995. Years since mortality was highly correlated (r = 0.9163) with snag 
class (Table 3). Of the four disks that were unable to be cross-dated, one was in snag class 2, one in 
snag class 3, and two were in snag class 4. 
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Table 3. Diameter at 1.4 m (DBH), snag class, year of mortality and years since mortality 
(calculated from 2010) of six snag trees at Wompatuck State Park, Massachusetts. 

Tree DBH (cm) Sang Class Year of Mortality 
Years Since 
Mortality 

1 30.5 2 2008 2 
2 27.3 2 2006 4 
3 35.8 2 1999 11 
4 25.6 3 1997 13 
5 32.5 3 1996 14 
6 24.0 4 1987 23 

3.3. Drought 

Based on the bootstrapped correlation coefficients, P. strobus RWI was significantly positively 
correlated with July (correlation coefficient = 0.38), August (0.50), and September (0.41) Massachusetts 
statewide PDSI from 1980–2010. Quercus RWI was not significantly correlated with any of the PDSI 
values tested during this time period. However, during the 1980–1995 period, both P. strobus and Quercus 
RWI were significantly positively correlated with August (P. strobus correlation coefficient = 0.61; 
Quercus = 0.52) and September (P. strobus = 0.58; Quercus = 0.36) Massachusetts statewide PDSI.  

Based on the bootstrapped response coefficients, P. strobus RWI responded positively to August 
PDSI during the 1980–2010 and 1980–1995 time periods (response coefficients = 0.23 and 0.34, 
respectively). Quercus did not respond significantly to any PDSI values during either time period. 

3.4. Percentage of Quercus Basal Area Consisting of Dead Stems 

We evaluated 12 models to predict the relationship between the response variable Percentage of 
Quercus Basal Area in Dead Stems and the explanatory variables Number of WM Defoliation Events, 
Quercus Site Index, and Stand Relative Density. These models included the global model (Percentage 
of Quercus Basal Area in Dead Stems, Number of WM Defoliation Events, Quercus Site Index, and 
Stand Relative Density, and the interactions between each variable) and each nested iteration. Five 
candidate models (ΔAICc ≤ 4.00) were identified and, from these, variation in Percentage of Quercus 
Basal Area in Dead Stems (following arcsin square root transformation) was best explained by two 
competing models (Table 4). Based on the “best” model (ΔAICc = 0.0; r2adj = 0.20), variation in 
Percentage of Quercus Basal Area in Dead Stems was most strongly related to Quercus Site Index 
(parameter estimate = −0.009; standard error (SE) ± 0.004). In this model, percentage of Quercus Basal 
Area in Dead Stems declined as Quercus Site Index increased (negative parameter estimate, Figure 4). 
Conversely, a highly competitive model (ΔAICc = 1.04; r2adj = 0.13) indicated that variation in 
Percentage of Quercus Basal Area in Dead Stems was positively related to Number of WM Defoliation 
Events (parameter estimate = 0.050; SE ± 0.030; Figure 5). A third, albeit less competitive, model 
(ΔAICc = 2.78; r2adj = 0.22), explained Percentage of Quercus Basal Area in Dead Stems as a function 
of both Quercus Site Index (parameter estimate = −0.007; SE ± 0.005), and Number of WM Defoliation 
Events (parameter estimate = 0.034; SE ± 0.030). 
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Figure 4. % Quercus BA in Dead Stems (arcsin square root) by Site Index; % Quercus BA 
in Dead Stems = 0.8086 + −0.0085 × Site Index. 

 

3.5. Understory Density 

Four models evaluated the relationship between Understory Density, Stand Relative Density and 
Number of WM Defoliation Events (Table 5). In the best model (ΔAICc = 0.00; r2adj = 0.31), variation 
in Understory Density was positively related to Number of WM Defoliation Events (parameter  
estimate = 27,121.03; SE ± 10,759.48); none of the other three models competed strongly (ΔAICc ≤ 4.00) 
with this “best” model (Table 5). 

Figure 5. % Quercus BA in Dead Stems (arcsin square root) by # of years of winter  
moth defoliation; % Quercus BA in Dead Stems = 0.1876 + 0.0501 × # of years of winter 
moth defoliation. 
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Table 4. Results of multiple regression on Percent of Quercus Basal Area in Dead Stems at 13 sites in eastern Massachusetts;  
ΔAICc = corrected Akaike Information Criterion differences; SE = standard error. 

Model Parameters ΔAICc r2
adj Parameter Estimate SE Log Likelihood Akaike Weight Evidence Ratio 

Stand RD 4.03 −0.09 0.030 0.497 0.13 0.06 7.51 
Site Index 3.48 0.18 −0.010 0.005 0.18 0.08 5.69 
Stand RD   0.381 0.463    
Site Index 2.78 0.22 −0.007 0.005 0.25 0.12 4.02 
# WM defoliation events   0.034 0.030    
# WM defoliation events 1.04 0.13 0.050 0.030 0.59 0.28 1.68 
Site Index 0.00 0.20 −0.009 0.004 1.00 0.46 1.00 

Table 5. Results of multiple regression on Understory Density at 13 sites in eastern Massachusetts; ΔAICc = corrected Akaike Information 
Criterion differences; SE = standard error. 

Model Parameters ΔAICc r2
adj Parameter Estimate SE Log 

Likelihood 
Akaike 
Weight 

Evidence 
Ratio 

Stand RD 9.42 0.19 77,065.34 178,423.80 0.01 0.01 110.89 
# WM defoliation events   26,524.87 11,992.21    
Stand RD * # WM defoliation events   −50,165.78 135,010.40    
Stand RD 5.17 −0.03 159,237.48 196,194.80 0.08 0.06 13.27 
Stand RD 4.04 0.26 80,855.00 170,282.20 0.13 0.11 7.55 
# WM defoliation events   26,031.14 11,393.15    
# WM defoliation events 0.00 0.31 27,121.03 10,759.48 1.00 0.82 1.00 
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4. Discussion 

Quercus species are important components of forests in the eastern United States [48]. Mixed—
Quercus and P. strobus—Quercus forest communities are abundant throughout Massachusetts [49] and 
were the focus of our study. Winter moth was present in the forests we sampled and dead Quercus 
basal area at these sites was positively associated with the number of winter moth defoliation events, 
although Quercus site index was a stronger predictor. Although our study was limited to upland forest 
sites, the polyphagous winter moth is likely present and active in a variety of additional habitats in 
eastern Massachusetts that were not studied. 

Winter moth may be responsible for a reduction of Quercus radial growth in some of the 13 studied 
forest stands. Annual radial growth (RWI) of Quercus, a winter moth host, and P. strobus, a non-host 
species, showed similar patterns between 1980 and 2010, but Quercus RWI was lower during two 
periods: 1985–1990 and 2003–2010. Figure 3 incorporates the widespread gypsy moth outbreak of 
1981 and it is evident that both Quercus and P. strobus radial growth was influenced negatively by this 
event. Quercus and P. strobus both appeared to recover in the years following this outbreak; however, 
in 1985–1990 P. strobus RWI exceeded that of Quercus. Although the radial growth trend from  
1985–1990 is somewhat consistent between the two species groups, some factor or combination of 
factors reduced Quercus radial growth in relation to P. strobus. 

In the period 1995–2010, radial growth of Quercus was significantly lower than P. strobus in 2000 
and 2001, 2003, and from 2005–2010 (Figure 3). The radial growth divergence between these species 
groups in the years 2000 and 2001 is more reflective of an increase in P. strobus radial growth than of 
a decrease in Quercus radial growth. However, the trend that initiated in 2003 and continued from 
2005–2010 is indicative of a stagnation of Quercus radial growth and a concomitant increase in  
P. strobus radial growth. These patterns, and the reduction of Quercus RWI below the 18% winter 
moth defoliation threshold from 2006–2010 suggest that some factor specific to Quercus was active 
during this time period. 

Our analysis of Quercus and P. strobus correlation function to PDSI suggests that P. strobus was a 
suitable control species and that drought did not limit Quercus RWI during the presumed winter moth 
period (1995–2010). The bootstrapped correlation coefficients indicate that both Quercus and  
P. strobus were similarly associated with PDSI from 1980–1995. However, after 1995, while  
P. strobus RWI remained significantly positively correlated with PDSI, the relationship between 
Quercus RWI and PDSI was not retained. Although the two species demonstrated a different response 
function to PDSI, with Quercus showing no response to PDSI and P. strobus responding positively to 
August PDSI, these relationships were retained throughout the entire period tested (1980–2010) and 
were not altered during the presumed winter moth period. Michelot et al. [50] found that radial growth 
of P. sylvestris L. was sensitive to August climate, while that of Q. petraea Matt. and Fagus sylvatica L. 
was not. The positive response of P. strobus, and lack of response of Quercus, to August PDSI in the 
present study is consistent with Michelot et al. [50] and may highlight physiological differences 
between these species. 

While the radial growth of different tree species may vary in response to climate factors [50] and 
drought [51], our result that P. strobus and Quercus RWI were similarly correlated with PDSI prior to, 
but not after, 1995 suggests that some limiting factor specific to Quercus weakened the relationship 
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between this species and PDSI during the winter moth period (1995–2010). Moreover, the positive 
growth trend of P. strobus suggests that this species was experiencing favorable growing conditions 
during the same time period. When considering the positive relationship between winter moth 
defoliation (as defined by dendrochronological analysis) and the percentage of Quercus basal area in 
dead stems, these patterns suggest that P. strobus RWI may have been positively affected by 
preferential winter moth defoliation on Quercus through reduced competition for canopy space (dead 
Quercus) and possibly reduced competition for soil water and nutrients. Although Tikkanen and 
Roininen [20] found that winter moth defoliation did not positively influence radial growth of non-host 
tree species, increased radial growth of non-host species during defoliation outbreaks, presumably due 
to increased light, moisture, and/or nutrients, has been documented in other studies [52,53]. 

While many factors likely influence the radial growth of Quercus at our study sites, several pieces 
of evidence point to winter moth as an important causal agent of relatively low radial growth at some 
sites since 2000. The significant radial growth divergence between Quercus and P. strobus RWI from 
2005–2010 suggests the presence of a stressor that is specific to Quercus. Radial growth analyses of 
individual trees throughout this region (including at some of the study sites of the present study) found 
that winter moth defoliation was a strong predictor of radial growth of Quercus trees defoliated by 
winter moth, when tested concurrently with site and year as random covariates [21]; however, other 
factors (e.g., other defoliators, pathogens, physical stressors) were not tested. According to 
Massachusetts aerial detection survey (ADS) data, winter moth defoliation occurred throughout much 
of eastern Massachusetts from 2004–2011 [11]. Winter moth was the dominant defoliator in, or in 
close proximity (4.8 km) to, our study sites since this species was first incorporated into ADS 
beginning in 2004 and was responsible for 100% of the defoliation events within 4.8 km of our study 
sites from 2008–2010 [54]. It is likely that winter moth was also active within our study area prior  
to 2004, as winter moth was confirmed in 2003 to be responsible for a prolonged outbreak of 
defoliation in eastern Massachusetts in the 1990s and early 2000s [10]. However, it is important to 
note that other Quercus defoliators (including gypsy moth and forest tent caterpillar) were active  
from 2000–2007 [54], and that, in some years, multiple defoliators were present within the study 
region and could have overlapped in our study sites with winter moth. The correlative nature of this 
study does not allow us to differentiate between the effects of different defoliator species or necessarily 
make inferences on the combined effects of multiple defoliators in one season, but what is clear is that 
winter moth was the primary species defoliating trees in our study sites during much of our period  
of interest. 

Our results suggest that winter moth may have also induced tree mortality. We used percentage of 
Quercus basal area in dead stems as a measure of mortality, and as this variable is just a snapshot in 
time, it is not necessarily representative of rates of mortality. Thus, caution must be exercised when 
interpreting the impact of winter moth defoliation on tree mortality. However, the snag data provide 
insight into the utility of “percentage of Quercus basal area in dead stems” as a metric of winter moth 
induced tree mortality. Snag class distributions showed that greater than 60% of the Quercus standing 
dead trees at more than half of our sites were in snag classes 1–3. Dendrochronological analysis of 
snag trees at one site (Wompatuck State Park) revealed that snags in classes 2 and 3 died within the 
last 2–14 years (as dated from 2010). This suggests that much of the mortality at our study sites 
occurred between 1995 and 2010, the presumed period of winter moth activity in the study region. 
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However, there is great error variation in aging standing and fallen dead trees [55] and snag longevity 
can be influenced by geographic region and site conditions [56]. As such, there may be limitations in 
assigning age to snag classes across all 13 study sites with a sample of six trees at one site; this 
warrants caution with the assumption that percent Quercus basal area in dead trees is reflective of 
recent stand mortality. However, our sites were confined to a relatively small geographic region and 
our snag data were solely from Quercus species. In addition, Garber et al. [57] found that snag  
half-times of several species in a New England forest (central Maine) ranged from 6–10 years. This 
supports our inference that much of the observed mortality may have occurred in the last 2–14 years. 

The percentage of Quercus basal area in dead stems at the 13 study sites was best predicted by 
Quercus site index and the number of winter moth defoliation events. Stand-level tree mortality likely 
involves multiple factors that occur at different temporal and spatial scales and, therefore, is difficult to 
predict [58–60]. To model mortality, very large datasets are typically required and even with the 
existence of such datasets, predictive accuracy at the stand level may be low [61–63]. The introduction 
of a novel disturbance agent (i.e., pest or disease outbreak) further complicates this modeling [60]. Site 
index and/or winter moth defoliation may contribute to the presence of dead trees at our study sites, 
but other influential variables likely exist. While site index and winter moth defoliation only  
explained 20% and 13%, respectively, of the mortality across our sites, the lack of relationship 
between stand relative density and % Quercus in dead stems suggests that some density-independent 
factor may have contributed to some of the mortality noted in our stands. Although we cannot be 
certain that Quercus mortality was attributable to winter moth and not some other defoliator, pathogen, 
or physical disturbance, the abundance of winter moth in eastern Massachusetts over the last decade, 
the known relationship between percent winter moth defoliation and radial growth [21], and the 
dominance of dead Quercus trees in snag classes 1–3 (and thus the assumption of tree mortality 
occurring within the 1995–2010 period) collectively implicate winter moth as an important contributor 
to Quercus mortality in these forests. 

Quercus mortality at the 13 study sites was associated with site quality and winter moth defoliation. 
The lack of a clear “best” model explaining percent Quercus basal area in dead stems indicates the 
interrelationship between the variables Quercus site index and the number of winter moth defoliation 
events. At some sites the combination of low Quercus site index and multiple, consecutive winter moth 
defoliation events were associated with high levels of Quercus mortality, relative to other sites. 
Although there may be variation among sites, across all 13 study sites Quercus mortality increased 
with increasing number of winter moth defoliation events. Moreover, site quality influenced Quercus 
mortality, with mortality increasing on poor quality Quercus sites. On more productive Quercus sites, 
high Quercus site index may have compensated for winter moth defoliation and reduced mortality.  

Winter moth defoliation contributing to Quercus mortality in Massachusetts is consistent with 
reports of novel winter moth defoliation in Nova Scotia, as Cuming [7] and Embree [19] observed 
deterioration and mortality of Q. rubra following repeated winter moth defoliation. In addition, the 
relationship between winter moth defoliation, site quality, and tree mortality are similar to the effects 
reported for other defoliators, including European gypsy moth, Lymantria dispar L. [64]. Consistent 
with our inferences on winter moth, consecutive years of defoliation [25,65] and low site index [65] 
contribute to increased gypsy moth-induced tree mortality. 
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Canopy disturbance and gap formation following insect defoliation can facilitate understory plant 
establishment and/or growth [25–28]. The density of understory tree and shrub seedling and saplings 
increased with the number of winter moth defoliation events. This increase in understory woody plant 
establishment and/or growth was likely caused by (1) increased understory light conditions from 
canopy gaps caused by tree mortality and, (2) increased diffuse understory light conditions provided  
by partially defoliated tree crowns. Exotic forest insects can contribute to “invasional meltdown” 
(sensu [66]) in which canopy gaps created by the invasion of exotic forest insects can facilitate the 
success of exotic invasive plants in the understory [2]. Frangula alnus (glossy buckthorn), an exotic 
invasive shrub that is well established in eastern North America [67] and facilitated by canopy gap 
formation [68], was present in the understory of eight of our 13 study sites, often in high densities 
(MJS, unpublished data). Although we did not specifically test for this phenomenon, our result that 
understory density increases with winter moth defoliation and the presence of F. alnus in several of our 
study sites suggests that winter moth defoliation could contribute to invasional meltdown in eastern 
Massachusetts forests. 

It is likely that winter moth defoliation is not the sole contributor to mortality noted at our sites. 
Winter moth likely initiates a sequence of decline that involves a suite of factors. Armillaria fungi have 
been documented as important pathogens in mixed Quercus forests in western and central 
Massachusetts [69,70]; areas spatially adjacent to our study region. Given the proximity of our study 
region to these areas, it is likely that Armillaria species play a similar role in the forests of eastern 
Massachusetts. The relationship between insect defoliation and subsequent attack by secondary agents, 
notably the wood boring two-lined chestnut borer, Agrilus bilineatus Weber, and Armillaria species 
decay fungi, is well established in Quercus forests [71,72]. This decline complex (sensu [73]) 
progresses as an inciting factor (e.g., insect defoliation; drought) stresses a forest stand and facilitates 
invasion by either A. bilineatus or Armillaria spp., or both [74]. Mortality attributable to this decline 
complex can occur up to three years following prolonged defoliation (2–3 years of consecutive 
defoliation events) [72]. This suggests a lag-time between winter moth defoliation and tree mortality 
and may partially explain residual variation in Quercus mortality not explained in our regression 
models and temporal variation in our estimates of year of snag mortality.  

5. Conclusions 

Winter moth has successfully invaded mixed species forests in northeastern U.S. and is associated 
with increased levels of tree mortality in these stands. While the correlative nature of this study 
precludes specific assumptions, some general patterns on the ecology of winter moth invasion in this 
region emerged. First, winter moth has invaded mixed—Quercus and P. strobus—Quercus forests of 
varying age and structure. Second, winter moth defoliation caused a region-wide (eastern 
Massachusetts) reduction in Quercus radial growth, comparable to non-host P. strobus. Third, winter 
moth defoliation events may increase Quercus mortality in infested forests and influence understory 
plant density. Finally, complex interactions among competition, site quality, and duration of winter 
moth activity may, ultimately, determine the severity of effects associated with winter moth 
defoliation. As the winter moth invasion continues to spread in the northeastern United States [11], the 
findings of this study have broad application to Quercus forests within this region. 
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