Forests 2013, 4(1), 122-136; doi:10.3390/f4010122
Article

Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees

1,* email, Jr. 2email, 3email and 1email
Received: 28 November 2012; in revised form: 8 February 2013 / Accepted: 19 February 2013 / Published: 22 February 2013
View Full-Text   |   Download PDF [605 KB, uploaded 22 February 2013]
Abstract: Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtained species richness and stand management data from relevant literature to develop a regression tree model that can be used to predict understory species richness from forest inventory data. Our model explained 57% of the variation in herbaceous species richness in the coastal plain pine forests of the southeastern USA. Results were verified using field data, and important predictors of herbaceous richness included stand age, forest type, time since fire, and time since herbicide-fertilizer application. This approach can make use of available forest inventories to rapidly and cost-effectively estimate understory species richness for subtropical pine forests.
Keywords: herbaceous richness; understory richness; pine flatwoods; regression tree; forest inventory; richness model
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Timilsina, N.; Cropper, W.P., Jr.; Escobedo, F.J.; Lima, J.M.T. Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees. Forests 2013, 4, 122-136.

AMA Style

Timilsina N, Cropper WP, Jr, Escobedo FJ, Lima JMT. Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees. Forests. 2013; 4(1):122-136.

Chicago/Turabian Style

Timilsina, Nilesh; Cropper, Wendell P., Jr.; Escobedo, Francisco J.; Lima, Joanna M.T. 2013. "Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees." Forests 4, no. 1: 122-136.


Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert