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Abstract: Cyclaneusma needle-cast has a major impact on the New Zealand forest 

industry. The causal agent, Cyclaneusma minus, causes most severe damage to 11–20  

year-old trees and currently there are no economically viable procedures for control of the 

disease in New Zealand. Here we present a method for genetic transformation of C. minus 

using protoplasts generated by incubation with Glucanex™ enzyme. C. minus was 

transformed with a gene encoding green fluorescent protein (GFP) and expression was 

stable after successive sub-culturing of the strain in the absence of selective pressure. 

Expression of the gfp gene allowed us to utilize an in vitro GFP-based screening method to 

identify strains of Trichoderma with potential for biocontrol of this disease. The strain that 

showed the most promise as a potential biocontrol candidate exhibited a low level of 

inhibition by uncharacterized metabolite(s) that C. minus secretes into the medium, and 

consistently caused a loss of GFP expression from the GFP-labeled C. minus strain. The 

interaction between C. minus and the biocontrol strain, in the interaction zone where GFP 

expression was lost, was determined to be fungicidal. The utility of such biocontrol strains 

is discussed. This study represents the first genetic manipulation of C. minus and will pave 

the way for further studies of the life cycle and infection biology of this organism. 
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1. Introduction 

Cyclaneusma minus (Butin) DiCosmo, Peredo and Minter [1] is an ascomycetous fungus associated 

with disease in Pinus spp. Like many fungi, Cyclaneusma has undergone name changes during its 

research history and this has been documented elsewhere [2,3]. In addition, taxonomic classification of 

Cyclaneusma and Naemacyclus has been ambiguous [4]. Recent phylogenetic analysis has suggested 

that Cyclaneusma and Naemacyclus be treated as Leotiomycetes incertae sedis [5]. 

C. minus causes needle-cast in Pinus species worldwide, such as in Christmas tree plantations  

(P. sylvestris L.) [6,7]. Its association with disease is complicated by the fact that it can be found in 

asymptomatic tissue, and hence is often regarded as an endophyte or latent pathogen [8–10]. In 

Europe, Cyclaneusma minus is frequently reported as an endophyte. It has been recently isolated in 

Estonia although it is not acting as a serious pathogen [11]. In South Africa C. minus occurs mainly as 

a saprophyte on dead needles and is not associated with disease symptoms [12]. C. minus infects many 

Pinus species including P. radiata D. Don which is the predominant plantation species in New 

Zealand. Cyclaneusma needle-cast (CNC) currently causes the greatest economic loss compared to any 

other disease in the P. radiata plantation industry in New Zealand, costing $38 million each year [13].  

CNC is most severe in P. radiata plantations with trees aged 11 to 20 years old, in New Zealand, 

although infection with C. minus is observed in trees from age three years [2]. Early observations 

showed a predominance of severe infections in isolated trees in a stand [14], as opposed to a part of a 

stand or a whole stand being infected. But more recently the disease has presented as mild infection in 

part of the stand or the whole stand, with individually infected trees observed less often [15]. This 

change in disease pattern has been attributed to the elimination of highly susceptible tree genotypes from 

planting stock in New Zealand [13]. Until recently the species of Cyclaneusma present in New Zealand 

were reported be C. niveum and C. minus [3]. C. minus has also been shown to consist of the “verum” 

and “simile” varieties [16], although recent research has suggested that these two varieties are actually 

separate species [17]. There is an urgent need for more detailed studies of the genetics, epidemiology 

and infection biology of this pathogen. Development of a genetic transformation system for C. minus 

would provide a useful tool to facilitate these studies. For example the use of reporter genes such  

as the green fluorescent protein (gfp) gene has become a popular method for monitoring fungal  

interactions [18,19]. GFP-labeling has been used to observe interactions of fungi with their plant hosts 

or with other fungi [20,21]. Therefore, GFP-labeling could provide a useful tool for studies of C. minus 

infection biology. 

Several options for control of CNC have been investigated. In New Zealand, planting of tree 

genotypes less susceptible to disease during the 1990s has resulted in reduced levels of infection 

compared to those planted in the 1970s [22]. Genetic resistance has also been observed in  

P. sylvestris [7]. Silvicultural trials showed that stocking density and pruning had no effect on disease, 

although delayed thinning did provide control of CNC [2]. Fungicide trials performed in the 1980s 
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achieved reductions in infection levels, but not at a level where the cost of spraying could be  

justified [23], hence fungicide treatment is not a viable option for control. It has been shown by 

modeling that CNC disease severity is sensitive to environmental conditions. This information will 

provide a baseline to predict the impact of CNC under future climate scenarios [24]. 

Research into biocontrol for diseases of pine has gained momentum in recent times, including 

studies of biocontrol for nursery diseases [25,26], wood stain fungi [27,28] and wood decay [29]. 

Trichoderma species have been investigated for control of Phythophthora cinnamomi Rands in  

P. radiata roots [25] and for enhancing induced resistance to infection by Diplodia pinea (Desm.) 

Kickx [30]. Biocontrol has also been successfully used for control of Armillaria-induced P. radiata 

seedling mortality with a formulation of Trichoderma spores (ArborGuard™) [31–33]. A recent study 

has also investigated the potential for Trichoderma and Clonostachys species to control Fusarium 

circinatum Nirenberg and O’Donnell, the causal agent of pitch canker [34]. 

The use of biocontrol for Dothistroma septosporum (Dorog.) Morelet, another fungal pathogen of 

P. radiata, has been previously studied [35]. Screening of various fungal and bacterial strains using a 

novel method with green fluorescent protein (GFP)-labeled D. septosporum revealed several 

biocontrol strains with potential for use in control of dothistroma needle blight (DNB). This screening 

method uses GFP as an indicator of metabolic activity in the pathogen and also utilizes the hygromycin 

resistance selection marker (also encoded by the plasmid containing the gfp gene) to determine if the 

interaction is fungicidal or fungistatic. This method also takes into account the effect of inhibitory 

metabolites, produced by the pathogen, on the biocontrol strains [35]. The ability of biocontrol strains 

to provide control for CNC, as well as DNB, would present a unique opportunity for dual disease 

control for the forestry industry in New Zealand, especially considering no other means of control 

currently exist for CNC. 

The aims of this work were, firstly, to develop a transformation system for C. minus, using the 

green fluorescent protein (gfp) gene and, secondly, to use the C. minus gfp transformant to determine if 

strains of Trichoderma spp. shown to be antagonistic to another foliar pine pathogen, D. septosporum, 

are also antagonistic to C. minus. 

2. Materials and Methods 

2.1. Source and Maintenance of Fungal Cultures 

Cyclaneusma minus strain NZFS3617 was isolated from a symptomatic Pinus radiata tree in 

Kaingaroa Forest, New Zealand (Margaret Dick, Scion, Rotorua, New Zealand). All Trichoderma 

strains tested as potential biocontrol candidate strains were obtained from the Bio-Protection Research 

Centre, Lincoln University, New Zealand. Dothistroma septosporum strain FJT20 [35] was utilized as 

a positive control in some experiments as it has been previously transformed with the gfp gene. E. coli 

strain XL1-Blue [36] was used for plasmid propagation. 

Dothistroma cultures were routinely maintained on dothistroma medium (DM) [37]. C. minus and 

Trichoderma strains were maintained on potato dextrose agar (PDA; Merck, Dramstadt, Germany).  

E. coli strain XL-1 was maintained on Luria-Bertani (LB) medium [38]. Pine minimal medium with 

glucose (PMMG) was used as an alternative medium to PDA for growth experiments and competition 
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assays [35]. All fungal culture incubations were performed at 22 °C, and E. coli incubations were 

performed at 37 °C. 

2.2. Plasmid and Propagation 

Plasmid pCT74, containing the gfp gene, has been described previously [18]. The plasmid was 

propagated by growth in E. coli XL-1 and extracted using an alkaline lysis method [38]. Plasmid DNA 

was restriction digested with SalI to confirm the correct size and quantified using a Nanodrop-1000 

spectrophotometer (Thermo-Fischer Scientific, Waltham, MA, USA).  

2.3. Protoplast Preparation and Transformation of C. minus 

Protoplast generation and transformation were performed using a method based on that of 

Bradshaw et al. [39]. Ground mycelium of C. minus was inoculated onto PDA medium overlaid with 

sterile cellophane, and incubated at 22 °C for 6 days. Cellophanes with C. minus growth were removed 

from the agar and incubated with a sterile Glucanex™ (Novozymes Corp., Bagsværd, Denmark) 

solution (20 mg·mL−1 in OM buffer; 1.4 M MgSO4, 10 mM Na2HPO4, pH adjusted to 5.8 with  

100 mM NaH2PO4) at 30 °C with shaking at 110 rpm, for approximately 18 h. Protoplasts were placed 

into Corex centrifuge tubes in 5 mL aliquots and overlaid with 2 mL of ST buffer (0.6 M sorbitol,  

100 mm Tris-HCl pH 8.0). Following centrifugation for 5 min at 20 °C and 1085× g, protoplasts were 

collected from the interface and washed twice with 5 mL of STC buffer (1 M sorbitol, 50 mm CaCl2, 

50 mm Tris-HCl pH 8.0) with further centrifugation for 5 min at 20 °C and 1085× g. The protoplasts 

were resuspended in STC buffer at a concentration of 107–108 per mL. Twenty µL of polyethylene 

glycol (PEG) 6000 solution (40% w/v PEG, 1 M sorbitol, 50 mM CaCl2, 50 mM Tris-HCl, pH 8.0) 

was added to 80 µL aliquot of protoplasts. Approximately 2.5 µg of pCT74 DNA was added to the 

protoplasts, mixed gently and incubated on ice for 30 min. Additional PEG solution (900 µL) was 

added and protoplasts were mixed gently and incubated at 20 °C for 20 min. Aliquots (100 µL) were 

added to sterile, molten, non-selective medium (potato dextrose broth [PDB] containing 0.8 M sucrose 

and 0.8% [w/v] agar) and poured over base agar (PDB containing 0.8 M sucrose and 1.5% [w/v] agar). 

Plates were incubated at 22 °C overnight. Selective overlay medium containing hygromycin B  

(100 µg/mL) was prepared and poured over the plates. Incubation was continued at 22 °C.  

2.4. DNA Extraction 

The wild-type strain and a putative transformant of C. minus were grown in PDB for eight days 

with shaking at 200 rpm. D. septosporum strain FJT20 was grown in DM broth for seven days with 

shaking at 200 rpm. Mycelia were harvested by centrifugation at 4000 rpm for 10 min (Eppendorf 

centrifuge 5810) and stored at −20 °C prior to freeze-drying. DNA was extracted using a previously 

described method [40]. DNA was further purified using a Perfect Prep Gel Cleanup column 

(Eppendorf, Hamburg, Germany) starting from step five of the manufacturer’s instructions. DNA was 

eluted in 60 μL of sterile milliQ water and quantified using a Nanodrop-1000 spectrophotometer 

(Thermo-Fischer Scientific, Waltham, MA, USA). 
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2.5. PCR Amplification of the gfp Gene from the Transformant 

To confirm the presence of the gfp gene in putative transformants, DNA was amplified using 

primers rtGFPfwd1 and rtGFPrev1 [35]. DNA from wild-type C. minus and D. septosporum FJT20 

were used as negative and positive controls respectively, as well as a no-template control to check for 

contamination. PCR reactions were performed using the FIREPol DNA Polymerase kit (Solis BioDyne, 

Tartu, Estonia), according to the manufacturer’s instructions. Each 25 µL PCR reaction typically 

contained 10× buffer BD (2.5 µL), 1.5 mM MgCl2, 0.4 μM of each primer, 1.25 U of FIREPol® DNA 

Polymerase, 1 µL of DNA (approx 50 ng) and PCR-grade water (up to 25 µL total volume).  

The cycling conditions consisted of an initial denaturation step of 95 °C for 4 min, then 30 cycles of  

94 °C (1 min), 55 °C (1 min) and 72 °C (1 min), and a final extension step of 72 °C (10 min).  

Gel electrophoresis was performed with 1% (wt/vol) agarose in TBE and visualized by UV 

transillumination after staining with ethidium bromide. 

2.6. Southern Hybridization 

For hybridization, digested genomic DNA from wild-type and putative transformant strains, as well 

as D. septsporum FJT20 was transferred to Amersham Hybond-N+ nylon membranes (GE Healthcare 

Ltd., Buckinghamshire, UK) by capillary transfer [38]. A gfp gene probe was labelled using a DIG 

high-prime DNA labelling system (Roche Applied Science, Penzberg, Germany). Hybridizations were 

carried out at 42 °C in Roche standard hybridization buffer containing formamide [50% deionized 

formamide, 5× SSC, 0.1% (w/v) N-lauroylsarcosine, 0.02% (w/v) SDS, and 2% (w/v) blocking reagent]. 

2.7. Comparison of Growth Rates 

Growth of the C. minus wild-type and the confirmed transformant were compared on PDA and 

PMMG (pH 4.0 and 7.0) to determine if transformation of C. minus with the gfp gene had any 

detrimental effects on growth. A 6 mm mycelial plug was inoculated onto each medium for both 

strains. Plates were prepared in triplicate and incubated at 22 °C. Growth measurements were 

performed at time intervals over 20 days. Data were analyzed in Microsoft Excel; a TTEST was used 

to determine if there was significant difference in growth rates between the strains. 

2.8. Screening Potential Biocontrol Strains 

Competition assays were performed with gfp-labeled C. minus (FJT95) as described by  

McDougal et al. [35], on both PDA and PMMG medium, except that the gfp-labeled C. minus strain 

was incubated for nine days prior to co-inoculation with biocontrol strains. For assessment of 

fungicidal or fungistatic effects, plugs were cut from colonies of FJT95 on the biocontrol challenge 

plates that had completely lost GFP fluorescence. These were then sub-cultured onto PDA medium, 

containing hygromycin B at pre-determined minimum inhibitory concentrations (MIC) ranging from 

100–180 µg·mL−1.  
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3. Results 

3.1. C. minus Protoplast and Transformation Yield, and GFP Expression 

Approximately 6 × 108 protoplasts were obtained from mycelium grown on four cellophane discs. 

A higher yield of protoplasts was obtained after 24 h incubation with Glucanex™ compared to 8 h 

incubation (data not shown). Growth of mycelia and regeneration of protoplasts of untransformed  

C. minus (no DNA control) were completely inhibited by 100 µg/mL hygromycin B. Transformation 

efficiency was very low with only four putative transformant colonies observed on selective medium. 

GFP was present in one colony (out of four) when observed under UV light, indicating that the gfp 

gene was expressed in one transformant. GFP expression was absent in the C. minus wild-type strain. 

The GFP expression was determined to be stable in the transformant by successive sub-culturing, on 

non-selective medium, without loss of GFP. The C. minus gfp transformant was designated FJT95. 

3.2. Molecular Characterization of FJT95 

DNA yields were high (average 0.7 μg DNA mg−1 dry weight of mycelium) from C. minus FJT95, 

C. minus wild-type (untransformed) and D. septosporum FJT20. PCR was performed to determine the 

presence of the gfp gene using rtGFPfwd1 and rtGFPrev1 primers with DNA from C. minus FJT95. 

PCR products of the expected size (approximately 450 bp) were obtained with DNA from C. minus 

FJT95 and the positive control strain D. septosporum FJT20, but no products were obtained with DNA 

from C. minus wild-type or in the no-template control (Figure 1). 

Figure 1. Detection of gfp gene by PCR in C. minus transformant strain FJT95.  

Lane 1, 1 kb+ ladder; Lane 2, C. minus FJT95; Lane 3, C. minus wild-type; Lane 4,  

D. septosporum strain FJT20; Lane 5, no-template control. 
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The presence of the gfp gene in strain FJT95 was verified by Southern hybridization. The gfp probe 

hybridized to DNA fragments of approximately 7.5 kb in the C. minus FJT95 transformant and a DNA 

fragments of approximately 8.0 kb in D. septosporum FJT20 (positive control), but no hybridization 

was observed to DNA from C. minus wild-type (data not shown). 

3.3. Growth of FJT95 Compared to C. minus Wild Type 

To determine whether transformation of C. minus with pCT74 had an effect on the growth of 

FJT95, strains were grown on PDA and PMMG medium and growth rates were determined over time. 

No significant difference (p > 0.05) was observed in the growth rates of the FJT95 transformant 

compared to C. minus wild-type on PDA or PMMG medium: FJT95 exhibited a growth rate of  

1.4 ± 0.1 mm·day−1 on PDA and 1.6 ± 0.0 mm·day−1 on PMMG medium, whereas the C. minus  

wild-type strain had a growth rate of 1.5 ± 0.1 mm·day−1 on PDA and 1.5 ± 0.2 mm·day−1 on PMMG.  

3.4. Screening Fungal Strains for Antagonistic Activity towards C. minus FJT95 

Strains of Trichoderma were screened against C. minus gfp transformant FJT95 in an in vitro 

screening assay that utilizes GFP expression by the pathogen as an indicator of metabolic activity. The 

strains tested included some of those previously shown to exhibit antagonistic activity toward  

D. septosporum such as FBC2, FBC4 and FBC6 [35]. It has been observed that C. minus produces a 

yellow-colored metabolite (uncharacterized) that is secreted into the medium during growth. The 

toxicity of this metabolite to other fungi is not known. Therefore, as with D. septosporum, growth 

measurements of the biocontrol strains were recorded to determine if their growth was inhibited in the 

presence of C. minus FJT95. The levels of inhibition ranged from 6.3% to 44.2%, with an average of 

17.8%. The strain showing the lowest level of inhibition was FBC4 (Table 1).  

Loss of GFP expression by the C. minus FJT95 strain when grown in dual culture was used as an 

indication of antagonistic activity by potential biocontrol strains as previously described with  

D. septosporum [35]. FJT95 did not show any loss of GFP fluorescence after growth with FBC11 on 

PDA medium (Figure 2a,b), suggesting no antagonistic effect of FBC11. Loss of GFP from strain 

FJT95 was observed when grown with FBC4 on both PDA (Figure 2c,d) and PMMG media (data not 

shown), suggesting antagonistic activity of FBC4 towards C. minus. While other strains also showed 

some ability to cause a loss of GFP fluorescence, their antagonist effects appeared to be inconsistent 

and influenced by the type of media used (summarized in Table 1).  

To determine if FJT95 was viable in regions where GFP fluorescence was lost, a small region of the 

interaction zone containing both the FJT95 and FBC4 mycelia were sub-cultured onto selective media 

in which only strain FJT95 would grow, as previously described with D. septosporum [35]. No growth 

was observed from the FJT95 plugs taken from colonies overgrown by FBC4 strains, whereas the 

FJT95 positive control grew on the selective plates, and the C. minus (wild-type) negative control did 

not grow (data not shown). The results indicated that FBC4 had a fungicidal effect on strain FJT95.  
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Table 1. Inhibition of FBC strains by C. minus FJT95 and post-competition green 

fluorescent protein (GFP) fluorescence of FJT95. 

Trichoderma 
species and strain 

% Inhibition of Trichoderma 
by C. minus 1 

Loss of GFP fluorescence in 
C. minus 2 

PDA 3 PMMG 4 PDA PMMG 

T. atroviride FBC2 11.9 ± 7.7 12.3 ± 8.4 + +/− 
T. atroviride FBC4 13.9 ± 3.9 6.3 ± 5.0 - - 
T. hamatum FBC6 33.4 ± 10.4 44.2 ± 3.5 - +/− 
T. atroviride FBC9 10.5 ± 7.0 13.5 ± 4.0 - +/− 
T. atroviride FBC10 13.0 ± 0.0 15.5 ± 4.2 + - 
T. atroviride FBC11 15.8 ± 5.6 26.8 ± 2.2 ++ - 
T. atroviride FBC12 14.7 ± 4.3 16.8 ± 4.9 + - 

1 % Inhibition of growth of FBC strains by C. minus (produces uncharacterized metabolites), calculated from 

radial growth measurements toward and away from C. minus (data not shown). Values are the mean of four 

replicate assays ± standard deviation. Text in bold indicates no significant difference (p ≤ 0.05) between 

growth towards and away from C. minus. 2 ++: no loss of GFP fluorescence (indicates no antagonistic 

activity); +: partial loss GFP fluorescence; -: complete loss of GFP fluorescence (indicates antagonistic 

activity); +/−: equal number of + and – assays observed. Typical results from four replicate assays. 3 PDA: 

Potato dextrose agar (see Section 2.1). 4 PMMG: Pine minimal medium with glucose (see Section 2.1). 

Figure 2. GFP fluorescence of C. minus FJT95 after in vitro interaction with Trichoderma 

atroviride strains FBC4 and FBC11. (a) FJT95 with FBC11 under visible light; (b) FJT95 

with FBC11 under UV light; (c) FJT95 with FBC4 under visible light; (d) FJT95 with 

FBC4 under UV light; note loss of fluorescence on the left. FBC4 and FBC11 grew 

towards FJT95 from left hand side of the photographs. 
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4. Discussion 

The ability to perform genetic manipulation with plant pathogenic fungi paves the way for studies 

of complex host-pathogen or pathogen-biocontrol agent interactions. In this study we have shown that 

C. minus is amenable to transformation, although the transformation efficiency was poor despite 

obtaining good numbers of protoplasts. Further studies are required to optimize the transformation 

efficiency. Nevertheless, transformation was achieved and the C. minus GFP-transformant, strain 

FJT95, did not exhibit any differences to the wild-type strain with respect to growth rate on the two 

media tested. The GFP-labeled C. minus strain FJT95 was used for further studies to investigate the 

biocontrol potential of Trichoderma strains. 

The use of a previously published method for screening potential biocontrol agents of  

D. septosporum [35] was applied to C. minus strain FJT95 in this study. This method was previously 

shown to be effective for D. septosporum, a slow-growing fungus that secretes metabolites into the 

growth medium. These are also characteristics of C. minus and the method proved very effective with 

this organism. The colony morphologies of D. septosporum and C. minus are quite different, the 

former having raised, dense colonies and the latter more flat and filamentous. Despite this the GFP 

based-method still provided clear results indicating that the Trichoderma strain that showed greatest 

antagonistic activity against C. minus was also antagonistic toward D. septosporum [35], and suggests 

that this method could be used to test the biocontrol potential of other fungi. 

The results of the screening method, utilizing GFP expression and data from colony measurements, 

were used to determine which Trichoderma strains showed potential for biocontrol of C. minus. For 

simplicity, we present data for six strains of T. atroviride and one strain of T. hamatum, although the 

method was tested using a total of 20 strains including Trichoderma spp (belonging to four species) as 

well as one strain each of Clonostachys rosea and one strain of Ulocladium sp. Of all the strains tested 

T. atroviride strain FBC4 had the greatest antagonistic activity against C. minus in vitro, as evidenced 

by consistent loss of GFP from strain FJT95 on both media. Strain FBC4 also grew well in the 

presence of C. minus as shown by low growth inhibition levels, whilst other strains such as  

T. hamatum FBC6 were inhibited, leading us to speculate that C. minus produces antifungal 

metabolites. Interestingly, T. atroviride strain FBC4 also showed a high level of antagonism toward  

D. septosporum, whereas FBC2 was less effective at reducing GFP expression from C. minus 

compared to D. septosporum [35]. In addition, loss of GFP expression also correlated with fungicidal 

activity of the biocontrol strains, as determined by sub-culturing on medium containing hygromycin. 

Lack of growth on hygromycin by FBC4-challenged C. minus FJT95 (that contained a hygromycin 

resistance selectable marker gene as well as the gfp gene), indicated that it had lost viability.  

Nursery and forest trials are required to determine if the biocontrol candidates identified in this  

in vitro study have potential for control of CNC. Because C. minus generally only causes disease on  

P. radiata from an age of approximately three years [2], it would be difficult to perform in planta 

biocontrol trials with seedlings. However, it may be possible to perform nursery trials with small plants 

grown from cuttings of trees that are older than three years.  

GFP-labeling of plant pathogens opens the door to many techniques for studying their pathogenicity. 

For example further characterization of the infection process, or elucidating the mechanism involved in 

its endophytic or latent pathogen lifestyle will be facilitated by use of the GFP-labeled C. minus strain. 
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To the best of our knowledge, this is the first time genetic transformation of C. minus has been 

achieved, thus providing a GFP-labeled strain and ability to use this strain to further validate a recently 

published method for biocontrol screening. In planta testing of potential biocontrol strains identified 

using this type of approach will provide further screening to elucidate the most promising strains  

for biocontrol. 
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