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Abstract: Light plays a crucial role in the growth of fruit trees, influencing not only nutrient absorption
but also fruit appearance. Therefore, understanding fruit tree canopy light transmittance is essential
for agricultural and forestry practices. However, traditional measurement methods, such as using a
canopy analyzer, are time-consuming, labor-intensive, and susceptible to external influences, lacking
convenience and automation. To address this issue, we propose a novel method based on point
clouds to estimate light transmittance, with the Leaf Area Index (LAI) serving as the central link.
Focusing on apple trees, we utilized handheld LiDAR for three-dimensional scanning of the canopy,
acquiring point cloud data. Determining the optimal voxel size at 0.015 m via standardized point
cloud mean spacing, we applied the Voxel-based Canopy Profile method (VCP) to estimate LAI.
Subsequently, we established a function model between LAI and canopy light transmittance using a
deep neural network (DNN), achieving an overall correlation coefficient R2 of 0.94. This model was
then employed to estimate canopy light transmittance in dwarfed and densely planted apple trees.
This approach not only provides an evaluation standard for pruning effects in apple trees but also
represents a critical step towards visualizing and intelligentizing light transmittance.

Keywords: 3D point cloud; Leaf Area Index; light transmittance; voxel

1. Introduction

China is a major producer of apples, accounting for approximately 50% of the world’s
supply. The canopy has a significant impact on fruit parameters and quality. Canopy
lighting is the most important factor. Light transmittance is a measure of the amount of
light that penetrates the leaves, which reflects the intensity of photosynthetic radiation
absorbed by the plant canopy and the distribution of nutrients in the leaves [1]. Light
transmittance has a direct impact on plant growth, development, and photosynthesis in the
canopy. It is also crucial for understanding the structure and function of plant leaves and
the ecological and physiological processes in plant ecosystems [2]. Measurement of light
transmission is primarily instrumental, involving considerable time, labor, and subjectivity.

In the study of canopy light transmittance, many findings indicate that light transmit-
tance is related to the Leaf Area Index (LAI). This applies to related research on various
agricultural and forestry crops such as corn [3], pine, beech [4], fir [5], and birch [6]. How-
ever, at present, a specific functional model between light transmittance and the Leaf Area
Index (LAI) has not been established, and understanding the mechanism of how LAI
impacts light transmittance remains crucial for enhancing the intensity of photosynthetic ra-
diation received by the canopy. The advancement of photosynthetic radiation measurement
methods and 3D reconstruction technology has provided technical support for establishing
the functional relationship between light transmittance and LAI. In general, orchard point
cloud information can be obtained not only through LiDAR but also through imagery. The
advantage of image methods lies in the simplicity of the shooting process. However, there
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are several limitations to consider, including perspective constraints, shadow interference,
and reflection issues. Furthermore, extracting in-depth information during data processing
adds to the workload. In contrast, LiDAR is unaffected by lighting conditions during point
cloud data collection, making it a more direct and accurate method of data collection.

The spatiotemporal variability of light is significant, making it difficult to measure
the light environment of the canopy. To date, researchers have proposed many methods
to measure canopy light transmittance, mainly including methods based on measuring
photosynthetic radiation with instruments, methods based on ray tracing, and methods
that combine LiDAR scanning with the Beer–Lambert law.

Many researchers have used instrument-based measurements of photosynthetic ra-
diation. For instance, Hale et al. [7] utilized DHP to gauge canopy light transmittance in
Scots pine forests and modeled it with their stand parameters. Hossain et al. [8] estimated
canopy light transmittance in cedar hemlock using DHP and LAI-2200, respectively, while
taking into account the effects of stand characteristics and weather conditions. Similarly,
PAEKER et al. [9] measured light transmittance in forests of different ages and canopy types
using quantum sensors. The method based on measuring photosynthetic radiation with
instruments is relatively quick and convenient, but it requires a high-quality surrounding
environment. For instance, when using digital hemispherical photography (DHP), external
environmental factors (such as the presence of shadows, instrument parameter selection,
and dust in the air) can introduce noise into the images [10]. When using LAI-2200 under
poor lighting conditions, there may be issues with light obstruction, and it is necessary to
use a view cap to eliminate the adverse factors of unequal sky conditions (clouds, open
spaces, or branches), which leads to increased operational complexity and the introduction
of subjective selection variability [11]. Moreover, systematic errors produced by instru-
ments like light meters and quantum sensors occur due to the deviations in specific spectral
sensitivity and efficiency of embedded multifunction sensors, and they also depend on
various types of radiation [12]. Additionally, experimental work requires a large amount of
sampling data and numerous readings, which is both time-consuming and labor-intensive.

The ray-tracing approach models the transmission, reflection, and incidence of solar
beams within the canopy. Bittner et al. [13] conducted light simulation of beech seedling
canopies by combining a three-dimensional canopy structure with a fast ray-tracing algo-
rithm. However, this method necessitates sampling a substantial amount of light to capture
the impact of each individual in the canopy. Studies have indicated that the computational
complexity of this approach increases exponentially with the level of geometric detail in the
reconstructed canopy model and the number of simulated emitted solar rays in the target
scene [14]. Therefore, ray-tracing-based approaches can be computationally intensive when
addressing complex lighting scenarios within the tree canopy. It is essential to recognize
that this method may not always offer the most efficient solution [15].

The method based on LiDAR scanning combined with the Beer–Lambert law utilizes
laser beams instead of sunlight to estimate light transmittance. This is achieved by simulat-
ing the penetration ratio of the laser through the canopy. Musselman et al. [16] developed
a light transmittance model based on Beer’s law using LiDAR and canopy indicators.
However, this type of model fails to account for detailed factors, leading to occlusion issues
and difficulty in describing canopy structure intricately. Consequently, it lacks precision in
depicting structural variables of vertical multi-layer forests and falls short in adequately
addressing incident and transmitted solar radiation at the scale of individual forest stands.
Moreover, the incidence angle of these beams remains static and cannot be dynamically
adjusted over time [17].

The Leaf Area Index (LAI) is a crucial metric representing the density of plant canopies,
defined as the ratio of total leaf surface area to the ground area it covers. This parameter
plays a pivotal role in characterizing vegetation structure and is closely associated with
fundamental processes like photosynthesis, transpiration, and respiration. LAI has emerged
as a fundamental biophysical variable in disciplines such as agriculture, forestry, ecology,
and meteorology. Its significance lies in its relationship with crop growth, canopy light
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absorption, and its frequent application in the development of plant growth models, energy
balance models, and canopy reflectance models.

The acquisition of Leaf Area Index (LAI) involves both experimental measurement
and numerical calculation methods. Experimental methods for measuring LAI values
can be categorized as direct and indirect measurements. Direct measurement techniques
include collecting fallen leaves [18] or employing destructive sampling methods, where
LAI is determined manually. However, these methods are highly destructive, irreversible
to the plants, labor-intensive, and often yield relatively low accuracy. In contrast, indi-
rect measurement methods rely on optical instruments. Currently, commonly used LAI
measuring instruments include digital hemispherical photography, the Plant Canopy Ana-
lyzer LAI-2200, and the AccuPAR light interception device. These instruments offer high
measurement accuracy and do not cause damage to the canopy.

Numerical calculation primarily involves obtaining point cloud information through
LiDAR and deriving the canopy Leaf Area Index from the point cloud data. Currently,
available LiDAR-based methods for estimating the Leaf Area Index include the regression
model method, gap fraction method, and voxel method. In the regression model method,
LiDAR is utilized to capture vegetation parameters such as the tree height and diameter
at breast height, which are then used to derive regression equations for the Leaf Area
Index [19]. The gap fraction method characterizes the probability that laser beams pass
through the crop canopy without interception, effectively distinguishing between non-
intercepted and intercepted laser pulses. This method has been applied to calculate the Leaf
Area Index (LAI) for various tree species, including birch, eucalyptus [20], and larch [21].

The voxel method, utilized for calculating the leaf area density, primarily relies on the
contact frequency of lasers within the point cloud. By integrating the leaf area density, the
Leaf Area Index (LAI) can be derived. Hosoi and Omasa introduced the profile analysis
method, which incorporates corrections for leaf inclination and non-photosynthetic tissue,
effectively reducing estimation errors. Their research suggested that for unknown actual
leaf inclination angles, a laser beam incidence zenith angle close to 57.5◦ yields better
correction effects. This methodology has been applied across various plant species, in-
cluding camellia [22], beech [23], wheat [24], and rapeseed [25], to explore the relationship
between canopy indicators and yield. Van et al. [26] employed this method to calculate LAI
values for tree species like beech, London plane, and pre-grass. Based on their studies, they
proposed a light interception model to estimate average light distribution throughout the
season. Li et al. [27] employed a Gaussian mixture model to segment point cloud leaves of
magnolia trees and calculated the vertical leaf area density (LAD) profile and LAI values of
the canopy.

Studies have focused on the relationship between the Leaf Area Index (LAI) and light
transmittance (LT). It is important to note that while LAI has been extensively studied,
other factors also affect light transmittance. For instance, factors such as the size, shape,
and inclination angle [28] of leaves can significantly influence canopy light transmittance.
While the size and shape of leaves tend to be consistent within the same tree species, the
leaf inclination angle remains a key factor affecting light transmittance. Moreover, the
physiological condition of vegetation, including factors like the water status and chlorophyll
content, along with atmospheric conditions and seasonal variations, can also impact canopy
light transmittance [29]. However, among these influencing parameters, the Leaf Area
Index (LAI), which reflects canopy density, stands out as the most significant determinant
of light transmittance. Despite its importance, the specific mechanism underlying the
influence of LAI on light transmittance remains unclear, warranting further exploration
and development of a theoretical model to elucidate their relationship.

In summary, this study aimed to utilize LiDAR point cloud data and a voxel-based
canopy contour (VCP) modeling approach to invert the canopy Leaf Area Index. The
optimal voxel size for calculating the canopy Leaf Area Index was determined to be the
standard Euclidean distance. Additionally, canopy light transmittance was measured using
a canopy analyzer, and the Leaf Area Index was modeled as a function of this measurement.
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While this method can be time-consuming and labor-intensive, it provides an objective
evaluation of canopy light transmittance, circumventing subjective factors. It allows for
scanning a larger area of an orchard without being constrained by external conditions,
thereby reducing the time and labor needed for accurate assessments. This enhances
efficiency for precise orchard research and simplifies measurements of light transmittance.

2. Materials and Methods
2.1. Selection of Test Site

The study site is located in Zangjiazhuang Town, Fushan District, Yantai City, Shan-
dong Province (Latitude: 37◦46′, Longitude: 120◦99′). This area is one of the most represen-
tative apple production bases in China, covering an area of 2000 square meters. The region
has a temperate continental monsoon climate, with an average altitude of approximately
65 m, an average annual temperature of 12.6 ◦C, an average annual precipitation of 529 mm,
and an average annual sunshine duration of 2489 h.

The orchards in the region predominantly feature dwarf and dense planting patterns
of Fuji apple varieties. The trees are spaced 2.0 m apart with a row spacing of 4.0 m. The
breast height diameter of the trees is approximately 0.15 m, with a canopy width of 3.5 m
by 4.0 m and a tree height of approximately 3.0 m. For this study, 35 twelve-year-old apple
trees were selected as research subjects. Figure 1 shows the specific location and growth
conditions of the orchard.
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situation.

2.2. Collection Equipment
2.2.1. Point Cloud Data Acquisition Equipment

In this study, a handheld LiDAR system (3D-BOX) was used to obtain 3D point cloud
data on trees. The device, as depicted in Figure 2, comprises a 3D laser scanner, an IMU
inertial measurement unit, and a microcomputer [30]. A VLP-16 LiDAR 3D laser scanner,
manufactured by Velodyne Lidar Co., San Jose, CA, USA, and an Mti-30-2A8G4 IMU,
manufactured by Xsens Co., Enschede, Holland, were used in this study. The specific
parameters of the VLP-16 LiDAR are listed in Table 1.

The equipment connections are represented by dashed lines, while solid lines indicate
connections to the power supply system.



Forests 2024, 15, 823 5 of 20

Forests 2024, 15, x FOR PEER REVIEW 5 of 20 
 

 

The equipment connections are represented by dashed lines, while solid lines indi-

cate connections to the power supply system. 

 

Figure 2. Handheld LiDAR system. 

Table 1. LiDAR parameter table. 

Feature Parameter Feature Parameter 

Scanning range 0.1~100 m measurement accuracy ±3 cm 

Horizontal field of view angle 360° Vertical field of view angle 30° 

Horizontal angle resolution 0.1°~0.4° Vertical angle resolution 2° 

Laser level 1905 nm Scanning frequency 5~20 Hz 

Number of laser lines 0.1~100 m Working voltage 9~32 V 

2.2.2. Canopy Light Transmittance Acquisition Equipment 

In this study, a canopy analyzer (LD-G20H, Shandong Lainde Intelligent Technology 

Co., Ltd., Liaocheng, China) was used for the determination of the light transmittance of 

the canopy. The device comprises a fish-eye image capture probe and a measuring rod 

with 25 built-in standard rod count sensors, as shown in Figure 3. The fish-eye image cap-

ture probe includes a fisheye lens and a CCD image sensor, with specific parameters de-

tailed in Table 2. The power supply system consists of an 8.4 V lithium battery. Data anal-

ysis was conducted using image analysis software and image acquisition software. 

 

Figure 3. Canopy analyzer system. 

Table 2. Canopy analyzer parameter table. 

Feature Parameter Feature Parameter 

Lens angle 150° Resolving power 768 × 494 pix 

PAR sensing range 400 nm~700 nm Measuring range 0~2000 μmol/m2·S 

Working voltage 8.4 V Working temperature 0~55 °C 

  

Figure 2. Handheld LiDAR system.

Table 1. LiDAR parameter table.

Feature Parameter Feature Parameter

Scanning range 0.1~100 m measurement accuracy ±3 cm
Horizontal field of view angle 360◦ Vertical field of view angle 30◦

Horizontal angle resolution 0.1◦~0.4◦ Vertical angle resolution 2◦

Laser level 1905 nm Scanning frequency 5~20 Hz
Number of laser lines 0.1~100 m Working voltage 9~32 V

2.2.2. Canopy Light Transmittance Acquisition Equipment

In this study, a canopy analyzer (LD-G20H, Shandong Lainde Intelligent Technology
Co., Ltd., Liaocheng, China) was used for the determination of the light transmittance of
the canopy. The device comprises a fish-eye image capture probe and a measuring rod with
25 built-in standard rod count sensors, as shown in Figure 3. The fish-eye image capture
probe includes a fisheye lens and a CCD image sensor, with specific parameters detailed in
Table 2. The power supply system consists of an 8.4 V lithium battery. Data analysis was
conducted using image analysis software and image acquisition software.
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Figure 3. Canopy analyzer system.

Table 2. Canopy analyzer parameter table.

Feature Parameter Feature Parameter

Lens angle 150◦ Resolving power 768 × 494 pix
PAR sensing range 400 nm~700 nm Measuring range 0~2000 µmol/m2·S
Working voltage 8.4 V Working temperature 0~55 ◦C

2.3. Experimental Scheme
2.3.1. Point Cloud Data Acquisition Experimental Scheme

In this experiment, point cloud data were collected from 35 fruit trees in an orchard.
The experimental fruit trees in the orchard were arranged in two rows, and the data were
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collected by sequentially scanning from the midpoint placement of the experimental area
(black dot) along the direction indicated by the blue and red arrows. The experimental
route is shown in Figure 4. Considering the growth of fruit trees, the equipment was placed
at a height of about 2.5 m above the ground. Data acquisition was performed at a rate of
0.6 m/s.
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2.3.2. Light Transmittance Data Collection Experimental Scheme

To minimize measurement errors, experiments measuring light transmission should be
conducted at the same time every day to ensure uniform light intensity, angle, temperature,
and wind conditions. Figure 5 depicts a top view of the collection process, with observation
points (red dots) established in four directions at the base of the canopy. The instrument
was positioned 0.2 m from the trunk to provide a top-down view of the experimental
collection process. It was ensured that the camera lens was positioned vertically and close
to the ground while filming. Data collection was conducted five times at each observation
point. After completing data collection, the data obtained from four directions were merged
to eliminate the influence of tree trunks on light transmittance data.
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2.4. Data Processing
2.4.1. Preprocessing of Point Cloud Data

To reduce computational costs and ensure post-study accuracy, the collected point
cloud data were pre-processed. This included denoising, filtering, and alignment. The
preprocessing process for the canopy point cloud in this paper involved segmenting the
overall test area and individual fruit trees using the open-source software CloudCompare
(vers. 2.9.1, General Public License software). Due to the uneven ground in the apple
orchard, the Cloth Simulation Filter (CSF) [31] was then applied to filter out the ground.
Since the main trunk of dwarf apple trees tends to be relatively thick, it is necessary to
remove it. This can be achieved using a density-based clustering algorithm to separate the
main trunk from the canopy.

2.4.2. Construction of Voxel Model

The voxel algorithm [32] is a method that discretizes continuous point cloud data into
a three-dimensional voxel representation. This algorithm maps the point cloud data onto a
discrete three-dimensional grid, dividing the space into regular cubic units, where each
cubic unit is a voxel.

To establish the VCP (Voxel Canopy Profile) model, it is first necessary to determine
the boundary region of the canopy point cloud. The minimum (Xmin, Ymin, and Zmin) and
maximum (Xmax, Ymax, and Zmax) values in the X, Y, and Z dimensions of the coordinate
system are set as the starting and ending points, respectively. The voxel size is set as the
step length v, and the entire fruit tree canopy is divided into Nx × Ny × Nz voxels. The
calculation formula is as follows. 

Nx = (Xmax−Xmin)
v

Ny = (Ymax−Ymin)
v

Nz =
(Zmax−Zmin)

v

(1)

After establishing the VCP model, each small cube is evaluated to determine whether
it contains point cloud data. Different characteristic values are then assigned accordingly.
If the number of laser points within a voxel is greater than or equal to 1, the voxel charac-
teristic is marked as 1, indicating that the laser beam is intercepted. Otherwise, the voxel
characteristic is marked as 0.

2.4.3. Leaf Area Index Inversion Model

The Leaf Area Index (LAI) is calculated using a voxel-based canopy profile method,
and the basic formula is as follows [22]:

LAD(h, ∆H) = α(θ)· 1
∆H

mh+∆H

∑
∆H

N(k) (2)

In the formula, θ represents the average laser incident angle, α(θ) represents the
correction coefficient for the leaf inclination angle, ∆H represents the thickness of the
horizontal layer, mh and mh + ∆H are the voxel coordinates on the vertical axis of the
canopy, and N(k) represents the contact frequency of the laser beams within the k-th layer.

There is a quantitative relationship between the Leaf Area Index (LAI) and leaf area
density (LAD) [33]:

LAI =
H∫

0

LADdz (3)

Leaf inclination angle correction essentially refers to the correction coefficient for the
angle between the leaf inclination and the direction of the laser beam, which is determined
by the laser zenith angle of incidence and the leaf inclination angle. The leaf inclination



Forests 2024, 15, 823 8 of 20

angle refers to the angle between the normal to the leaf surface and the zenith, ranging from
0◦ to 90◦.The distribution of leaf inclination angles can affect the interception of laser beams
by the canopy. The zenith angle of incidence is the angle between the incident laser beam
and the direction perpendicular to the ground, obtained through the conversion between
Cartesian coordinates and polar coordinates. The conversion formula [34] is as follows:

γ =
√

x2 + y2 + z2

β = tan−1 z√
x2+y2

α = tan−1 x
y

(4)

x, y, and z are the Cartesian coordinates of the point, and γ, β, and α are the polar
coordinates of the point, with β being the angle between the instrument’s scanning direction
and the horizontal line.

To calculate the leaf inclination angle, plane fitting based on eigenvalues is employed.
The process involves several steps: first, collecting point cloud data to represent the shape
of the plane to be fitted; next, calculating the covariance matrix of the data to describe the
distribution of the data in each direction; finally, performing eigenvalue decomposition
of the covariance matrix to obtain the eigenvalues and corresponding eigenvectors. The
eigenvectors represent the main directions of the data distribution, while the eigenvalues
represent the degree of dispersion of the data in the direction of the eigenvectors. Among
the eigenvalues, only the smallest few and their corresponding eigenvectors are selected
to determine the normal vector of the plane. These selected eigenvectors are then used
to create the plane equation, typically expressed as a point normal. The fitting effect is
evaluated based on the fitted plane parameters, such as calculating the fitting error or
verifying that the fitting results meet expectations. Finally, the original point cloud data are
utilized to visualize the fitted planes and assess the fitting effect in an intuitive manner.

α(θ) represents the correction factor affecting the leaf inclination angle when the laser
zenith angle is θ, and G(θ) represents the average projection on the plane perpendicular to
the direction of the laser beam for a unit leaf area.

α(θ) =
cos θ

G(θ)
(5)

Assuming that the leaf orientation is symmetrical, the determined G(θ) is as fol-
lows [35]:

G(θ) =
1

2π

2π∫
0

π
2∫

0

g(ψ)|cos(nB, nL)|dψdζ =

π
2∫

0

g(ψ)S(θ, ψ)dψ (6)

where

S(θ, ψ) =

 cos θ cos ψ, θ ≥ π
2 − ψ

cos θ cos ψ
[
1 + 2(tan x−x)

π

]
, θ ≥ π

2 − ψ
(7)

x = cos−1 θ(cot θ cos ψ) (8)

In the formula, θ represents the zenith angle of incidence of the laser beam, ψ repre-
sents the leaf inclination angle, and φ and ζ represent the azimuth angles of the laser beam
and the normal vector of the leaf surface, respectively. |cos(nB,nL)| denotes the absolute
value of the cosine of the angle between the unit vectors of the corresponding laser beam
incidence direction and the leaf surface normal vector. S(θ,ψ) represents the average value
relative to the azimuth angle of the leaf surface normal vector. g(ψ) is the distribution
function of the leaf inclination angle, which, under the assumption of azimuth symmetry,
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is independent of the azimuth angle of the leaf surface normal vector. Based on the actual
measured leaf inclination angle [36] is represented as

G(θ) =
Tq

∑
q=1

g(q)S(θ, ψ) (9)

In the formula, q represents the category of different leaf inclination angles, Tq is
the total number of leaf inclination angle categories, and g(q) represents the probability
distribution of the leaf inclination angle for category q, which is the ratio of the leaf area for
category q to the total leaf area.

The contact frequency N(k) refers to the frequency at which the laser beam is inter-
cepted while passing through the fruit tree canopy when collecting data with LiDAR. The
formula for contact frequency is as follows:

N(k) =
nl(k)

nl(k) + np(k)
(10)

nl(k) represents the number of voxels capturing the laser beam at the k-th horizontal
height layer (with the feature value marked as 1), nP(k) represents the number of voxels
penetrated by the laser beam at the kth horizontal height layer (with the feature value
marked as 0), and nl(k) + nP(k) refers to the total number of incident laser beams reaching
the kth height layer.

Determining the canopy boundary and excluding null elements are crucial steps in
calculating the contact frequency using the voxel-based approach, owing to the regularity
of the cube. Prior to computing the contact frequency, the outer contour of the crown is
identified for each horizontal layer using a 2D convex hull algorithm [37]. The algorithm
description is as follows:

(1) To find the starting point, p0, locate the point with the smallest Y-axis value. If there
are multiple points with the same smallest Y-axis value, choose the one with the
smallest X-axis value as the reference point.

(2) Next, sort the remaining points based on their polar angle from the origin p0. If two
points form the same angle with p0, prioritize the one closer to p0. Finally, proceed
with a sequential scan of the sorted points starting from p0. If these points are on
the convex polygon, then the three consecutively obtained points pi − 1, pi, pi + 1
should satisfy the following property: pi + 1 is on the left side of the vector <pi − 1,
pi>. If this property is not satisfied, then pi must not be a vertex on the convex hull
and is deleted.

(3) When pi = p0, the figure is closed, and the convex polygon is complete. Use the
two-dimensional convex hull algorithm to obtain the projection of the canopy point
cloud’s exterior outline. The laser beams are intercepted by the leaves at the thickness
of the horizontal layer, forming a closed convex polygon by connecting the vertices of
the convex hull.

Figure 6 illustrates a schematic of the outer contour of tree No. 21, with the bound-
ary depicted by the red line and the black points positioned along the boundary in the
point cloud.
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2.4.4. Selection of Voxel Size

The size of the voxel can influence the detail of the extracted canopy structure and the
accuracy of the contact frequency calculation in the model, making it a key parameter for
obtaining canopy structural information. A more optimal voxel model can be obtained
by utilizing the average distance between point clouds [27]. There are numerous methods
to compute this distance, with the measurement of Euclidean distance being the most
prevalent in spatial structure problems. However, the basic Euclidean distance treats
variations in dimensions or variables equally, potentially leading to errors in application.
Therefore, it is essential to standardize each component.

X∗ =
X − m

s
(11)

m is the mean of different components and s is the standard deviation of different
components, reflecting the degree of dispersion of data in each dimension, X* is the
standardized point cloud data, with a mean of 0 and a variance of 1.

The formula for the standardized Euclidean distance between two points in three-
dimensional point cloud data A(x1, y2, z3) and B(x1′, x2′, x3′) is as follows:

d∗ =

√√√√ 3

∑
k=1

(
xk − x′k

sk
)

2

(12)

where d* is the standardized Euclidean distance.
The determination of voxel size in this section is closely tied to the type of plant being

studied. As the plant type varies, so does the distribution of the corresponding point cloud,
leading to variations in the optimal voxel size.

2.4.5. Leaf Area Index–Light Transmittance Fitting

This paper utilizes a fully connected deep neural network (DNN) to model light
transmittance in the canopy. The fully connected DNN model follows a typical multi-layer
perceptron (MLP) network structure. In this model, each layer of neurons establishes
connections with all neurons in the previous layer, forming a fully connected topology.
This architecture aids in extracting deeper features from input data, thereby enhancing the
model’s representation and generalization capabilities.

The input variables consist of the Leaf Area Index for 35 apple trees, while the output
is the light transmittance. In neural networks, the input layer serves as the initial layer of
the network, responsible for receiving external input data and passing it to the subsequent
layer. Nodes in the input layer correspond to features of the input data. Hidden layers,
positioned between the input layer and the output layer, perform nonlinear transformations
and extract features from the input data. Each node in the hidden layers receives inputs
from the preceding layer, computes them with weights and activation functions, and
forwards the results to the subsequent layer. The primary function of the hidden layer is to
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learn higher-order features of the input data, enabling the neural network to better adapt
to complex data patterns and relationships. The output layer, serving as the final layer of
the neural network, produces the network’s output. The number of nodes in the output
layer typically varies based on the task type, whether it is a classification or regression task.
Each output node maps the output of the hidden layer to the final output using weights
and activation functions.

The essence of the DNN lies in determining the appropriate number of hidden layers
and nodes within each layer. The selection of the number of hidden layers is typically
guided by empirical formulas [38,39]:

hl = a +
√

bi + bp (13)

a is an adjustment variable between 1 and 10, bi is the number of input variables, and
bp is the number of output variables.

Deep neural networks were employed to model both the Leaf Area Index and canopy
transmittance. The final function model is illustrated in Figure 7:

(1) There are three hidden layers situated between the input layer and the output layer,
with 4, 12, and 8 nodes, respectively.

(2) Logsig, Tansig, and Purelin are utilized as transfer functions from input to output for
the three hidden layers.
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Figure 7. Schematic diagram of DNN.

The average sample size for training is 140, with a ratio of 0.8:0.1:0.1 for the training
set, validation set, and test set, respectively.

The relationship between the Leaf Area Index and photosynthetically active radiation
light transmittance is negatively exponential [40]:

PARRatio = A · e−K×cLAI (14)

A is the correlation coefficient and K represents the extinction coefficient, which
represents the light interception capacity.

3. Results
3.1. Point Cloud Preprocessing

By preprocessing the point cloud data collected from 35 fruit trees, we obtain the
canopy point cloud information of the fruit trees, facilitating subsequent voxel processing
and Leaf Area Index calculations. Using tree No. 21 in the orchard as an illustration, the
effect of point cloud preprocessing is demonstrated in Figure 8.
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Figure 8. Renders from point cloud preprocessing. (a) Original image of tree No. 21. (b) Single 
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Applying the standard Euclidean distance formula, we calculate the average canopy 

point cloud spacing for each fruit tree and the mean of these average point cloud spacings, 

Figure 8. Renders from point cloud preprocessing. (a) Original image of tree No. 21. (b) Single wood
segmentation. (c) Ground filtering. (d) Backbone removal.

In Figure 8a, the original image of tree No. 21 is displayed, chosen for its distinct main
trunk, abundant branches and leaves, and well-defined crown outline, rendering it more
representative than other trees. Figure 8b showcases the point cloud image of a single fruit
tree, while Figure 8c exhibits the point cloud image of the fruit tree after ground filtering.
Finally, Figure 8d presents the point cloud image with the branches removed.

3.2. Determination of Voxel Size

Applying the standard Euclidean distance formula, we calculate the average canopy
point cloud spacing for each fruit tree and the mean of these average point cloud spacings,
as depicted in Figure 9a. The red dashed line in the figure represents the mean value line
of the average point cloud spacing (y = 0.015 m). Concurrently, a statistical analysis is
conducted on the average point cloud spacing of each fruit tree; the distribution histogram
is presented in Figure 9b. From Figure 9b, it is evident that among all the scanned fruit
trees, 15 trees have an average point cloud spacing ranging from 0.015 to 0.0165 m. This
indicates that the mean value of the average point cloud spacing effectively represents the
distance of the canopy point clouds of the fruit trees. Therefore, for subsequent Leaf Area
Index calculations, a voxel size of 0.015 m is selected.
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Figure 9. The average distance between point clouds of all tree data. (a) Point cloud average spacing
value and Y-axis mean line. (b) Distribution histogram.

3.3. Calculation of Leaf Area Index

Thirty sets of leaf point clouds were randomly selected, with each set comprising
650 points. These points were used to fit the plane of the leaf using the Eigenvector method,
allowing for estimation of the average orientation of the leaf. The angle between this
average orientation and the zenith direction determined the leaf inclination angle. The
distribution of these leaf inclination angles is illustrated in Figure 10. From Figure 10, it can
be observed that the distribution of leaf inclination angles for apple trees ranges from 0 to
50 degrees, with the highest concentration falling within the 15–20-degree interval. The
average leaf inclination angle is measured at 25.14 degrees.
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Figure 10. Frequency distribution diagram of blade inclination angle.

Formula (4) is employed to derive the zenith angle through coordinate transformation.
The distribution of zenith angles spans from 3.6◦ to 33.8◦, covering a range of approximately
30 degrees. The average zenith angle is calculated to be 19.24◦. Since the LiDAR used
is handheld, it operates relatively close to the target tree. The correction coefficient is
determined using a specific formula. For zenith angles θ less than or equal to 90◦, the
correction factor remains constant at 0.91. However, when the zenith angle θ exceeds 90◦,
the correction factor varies with x.
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The model’s voxel size is set to 0.015 m, and a fixed horizontal layer thickness
(∆H = 0.5 m) is utilized to calculate the canopy contact frequency. Figure 11 illustrates
that the contact frequency reaches its maximum value at a tree height of 1.5 m. This peak
suggests that the leaves are most densely packed at this height, resulting in the highest
contact frequency.
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Figure 11. Contact frequency of canopy at different heights.

A fruit tree VCP (Voxel Crown Profile) model with a voxel size of 0.015 m was estab-
lished. The majority of measured Leaf Area Index (LAI) values range from 0.9 to 1.2 m2/m3,
with a maximum measured value of 1.89 m2/m3 and a minimum value of 0.75 m2/m3.
Most reverse estimated LAI values fall within the range of 0.95 to 1.3 m2/m3. The maxi-
mum inverse estimate is 2.2 m2/m3, while the minimum value is 0.75 m2/m3. Figure 12
presents a comparison between the measured and inverse estimated values of Leaf Area
Index. Explanation of the figure: the pink box on the left displays the distribution of
measured LAI values for 35 apple tree canopies, while the corresponding scatter plot on
the right shows the specific values. The light blue box on the right displays the distribution
of reverse LAI values, with the corresponding scatter plot showing the specific values of
the same 35 apple tree crowns.
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Figure 11 indicates that the measured LAI values are generally lower than the inverted
LAI values. To accurately assess the discrepancy, we utilize the root-mean-square-error
(RSME) statistical index, which is a common measure of the error magnitude between
predicted and actual values. The smaller the RSME, the closer the predicted value is to the
actual value, indicating a more accurate prediction model. After precise calculation, the
measured LAI and inverted LAI both have an RSME of 0.14.

3.4. Calculation of Light Transmittance

The assessment of fruit tree canopy light transmittance is primarily conducted using
a canopy analyzer. Figure 13 displays the light transmittance results of 35 selected fruit
trees. These trees are arranged based on their Leaf Area Index (LAI), with LAI depicted
in blue-green and light transmittance in pink. It is noteworthy that there exists a negative
correlation between the Leaf Area Index and canopy light transmittance. Specifically,
among the apple trees in the orchard, tree No. 21 exhibits the highest Leaf Area Index
concurrent with the lowest light transmittance. Tree No. 31, on the other hand, has the
lowest Leaf Area Index and the highest light transmittance.
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3.5. Fitting Based on DNN Leaf Area Index and Light Transmittance

As shown in Figure 14a, it is an intuitive representation of the model convergence
process.After 18 runs, the best results were obtained in round 12, yielding a mean square
error (MSE) of 0.005. The model’s overall mean absolute error (MAE) is 0.014, and the root
mean squared error (RMSE) is 0.024. As shown in Figure 14b, a visual representation of the
model results, with the training set represented by a blue line, the validation set by a green
line, and the test set by a red line. The intersection line, denoted by a dashed line, marks
the optimal training point, achieving an overall correlation coefficient (R2) of 0.94.
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4. Discussion

(1) Factors Affecting Light Transmission Analysis

As depicted in Figure 13, the Leaf Area Index (LAI) exerts a considerable influence
on canopy light transmittance. Exploring the mechanism through which LAI affects
canopy light transmittance is imperative for enhancing canopy nutrient accumulation
and enhancing fruit quality. To delve deeper into the relationship between LAI and light
transmittance, a scatter plot of LAI against the corresponding light transmittance for all
fruit trees is generated to observe the trend. This scatter plot is illustrated in Figure 15.
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The correlation between the Leaf Area Index (LAI) in the apple tree canopy and
light transmittance is highly significant and exponential in nature, as indicated by the
following equation:

LT = 2.94e−2.78LAI (15)

The trend in light transmittance within the apple tree canopy is observed to decrease
as the Leaf Area Index increases. The larger the Leaf Area Index, the lower the light
transmittance, and the higher the light utilization efficiency; the smaller the Leaf Area Index,
the higher the light transmittance, and the lower the light utilization efficiency. Typically,
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the Leaf Area Index of apple trees ranges from approximately 1.1 to 1.7 [41], ensuring an
even distribution of canopy leaves and maintaining consistent levels of light transmittance.

The incident angle of light, extinction coefficient, and leaf distribution position also
impact light transmittance, ultimately influencing yield. The Leaf Area Index serves as
a general indicator of photosynthetic yield, making leaf distribution a crucial factor in
determining light transmission rates. Trees exhibit varying angles of growth for their
shapes, branches, and leaves. Leaves growing at more oblique angles have smaller leaf
inclination angles, resulting in a higher Leaf Area Index and light interception. Conversely,
when leaves grow closer to a flat orientation, the leaf inclination angle increases, leading
to a lower Leaf Area Index. An optimized leaf structure enhances canopy ventilation and
light transmission, thereby increasing the photosynthetic area. Further research is needed
to delve into the issue of leaf growth positioning.

(2) Comparison of Methods for Acquiring Light Transmittance

In this paper, the Leaf Area Index (LAI) was inverted using a point cloud, and canopy
light transmittance was collected using a canopy analyzer. A model was then established
as a function of LAI and canopy light transmittance. The correlation coefficient (R2) of
the model was 0.94, indicating a strong correlation between canopy light transmittance
and LAI.

As depicted in Figure 16, the comparison between two methods of collecting light
transmittance time is presented. The purple bar on the left represents the time required
for light transmittance collection using the point cloud approach, while the red bar on
the right represents the time taken for light transmittance collection using the canopy
analyzer approach. The upper bar indicates the time needed for data analysis, whereas
the lower bar denotes the time needed for data collection. To compare the duration of
data collection, the average time required for light transmittance collection using the point
cloud method was 3 min, whereas for light transmittance collection using the canopy
analyzer, which involves collecting data from a single tree, it took 15 min. Regarding the
duration of data analysis, it took 12 min for data preprocessing based on the point cloud
method of light transmittance collection, and 20 min for data processing based on the
canopy analyzer method of light transmittance collection. Experimental work involving
canopy light transmittance measurement demands a significant amount of sample data
and numerous readings, rendering it both time-consuming and labor-intensive. The point
cloud data collection method based on LiDAR involves scanning a large area, thus proving
more efficient when dealing with a larger number of fruit trees. Given that most apple
orchards in China are planted in medium- to large-sized orchards, the efficiency of point
cloud-based acquisition surpasses that of using canopy analyzers.

Forests 2024, 15, x FOR PEER REVIEW 18 of 20 
 

 

which involves collecting data from a single tree, it took 15 min. Regarding the duration 

of data analysis, it took 12 min for data preprocessing based on the point cloud method of 

light transmittance collection, and 20 min for data processing based on the canopy ana-

lyzer method of light transmittance collection. Experimental work involving canopy light 

transmittance measurement demands a significant amount of sample data and numerous 

readings, rendering it both time-consuming and labor-intensive. The point cloud data col-

lection method based on LiDAR involves scanning a large area, thus proving more effi-

cient when dealing with a larger number of fruit trees. Given that most apple orchards in 

China are planted in medium- to large-sized orchards, the efficiency of point cloud-based 

acquisition surpasses that of using canopy analyzers. 

 

Figure 16. Comparison of the duration of various acquisition methods. 

Canopy analyzers can pose challenges due to lighting issues and anthropogenic in-

fluences, leading to variability in subjective selection and reduced data accuracy. To ad-

dress this, we conducted experimental data collection under controlled lighting condi-

tions for specific time periods. This eliminated subjective factors such as the light angle, 

intensity, and anthropogenic influences in modeling light transmission and Leaf Area In-

dex functions. This paper utilizes the Leaf Area Index to estimate light transmittance, en-

hancing objectivity by avoiding subjective errors in the measurement process. 

In conclusion, the point cloud method offers a more efficient and objective way to 

measure light transmission compared to the two acquisition methods. 

5. Conclusions 

In this paper, a three-dimensional model of apple trees was constructed through can-

opy contour analysis (VCP). The canopy voxel size was determined based on the standard 

Euclidean distance, and the Leaf Area Index (LAI) was derived. Subsequently, an estima-

tion model for LAI and canopy light transmittance was established. This model provides 

a theoretical basis for pruning fruit trees in orchards. Under certain light conditions, alter-

ing the canopy structure can modify the canopy Leaf Area Index, thereby increasing the 

light intensity received by the canopy and enhancing nutrient accumulation. However, it 

should be noted that this study focuses on flat fruit tree canopy research. If there are 

changes in tree species or canopy structure, the theoretical model may need to be adjusted 

accordingly. 

Author Contributions: Conceptualization, L.Z. and F.K.; methodology, L.Z.; software, L.Z.; valida-

tion, S.T., C.C. and L.Z.; formal analysis, L.Z.; investigation, Y.W.; resources, F.K.; data curation, 

Figure 16. Comparison of the duration of various acquisition methods.



Forests 2024, 15, 823 18 of 20

Canopy analyzers can pose challenges due to lighting issues and anthropogenic influ-
ences, leading to variability in subjective selection and reduced data accuracy. To address
this, we conducted experimental data collection under controlled lighting conditions for
specific time periods. This eliminated subjective factors such as the light angle, intensity,
and anthropogenic influences in modeling light transmission and Leaf Area Index func-
tions. This paper utilizes the Leaf Area Index to estimate light transmittance, enhancing
objectivity by avoiding subjective errors in the measurement process.

In conclusion, the point cloud method offers a more efficient and objective way to
measure light transmission compared to the two acquisition methods.

5. Conclusions

In this paper, a three-dimensional model of apple trees was constructed through
canopy contour analysis (VCP). The canopy voxel size was determined based on the stan-
dard Euclidean distance, and the Leaf Area Index (LAI) was derived. Subsequently, an
estimation model for LAI and canopy light transmittance was established. This model
provides a theoretical basis for pruning fruit trees in orchards. Under certain light con-
ditions, altering the canopy structure can modify the canopy Leaf Area Index, thereby
increasing the light intensity received by the canopy and enhancing nutrient accumulation.
However, it should be noted that this study focuses on flat fruit tree canopy research. If
there are changes in tree species or canopy structure, the theoretical model may need to be
adjusted accordingly.
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S.T., C.C. and L.Z.; formal analysis, L.Z.; investigation, Y.W.; resources, F.K.; data curation, Y.W.;
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