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Abstract: Accurately quantifying individual tree parameters is a critical step for assessing carbon
sequestration in forest ecosystems. However, it is challenging to gather comprehensive tree point
cloud data when using either unmanned aerial vehicle light detection and ranging (UAV-LiDAR)
or terrestrial laser scanning (TLS) alone. Moreover, there is still limited research on the effect of
point cloud filtering algorithms on the extraction of individual tree parameters from multiplatform
LiDAR data. Here, we employed a multifiltering algorithm to increase the accuracy of individual tree
parameter (tree height and diameter at breast height (DBH)) extraction with the fusion of TLS and
UAV-LiDAR (TLS-UAV-LiDAR) data. The results showed that compared to a single filtering algorithm
(improved progressive triangulated irregular network densification, IPTD, or a cloth simulation filter,
CSF), the multifiltering algorithm (IPTD + CSF) improves the accuracy of tree height extraction with
TLS, UAV-LiDAR, and TLS-UAV-LiDAR data (with R2 improvements from 1% to 7%). IPTD + CSF
also enhances the accuracy of DBH extraction with TLS and TLS-UAV-LiDAR. In comparison to
single-platform LiDAR (TLS or UAV-LiDAR), TLS-UAV-LiDAR can compensate for the missing
crown and stem information, enabling a more detailed depiction of the tree structure. The highest
accuracy of individual tree parameter extraction was achieved using the multifiltering algorithm
combined with TLS-UAV-LiDAR data. The multifiltering algorithm can facilitate the application of
multiplatform LiDAR data and offers an accurate way to quantify individual tree parameters.

Keywords: individual tree parameter; point cloud filtering algorithm; LiDAR; terrestrial laser
scanning (TLS); unmanned aerial vehicles (UAV)

1. Introduction

Vegetation structural parameters, as the most crucial explanatory variables for investi-
gating the dynamic changes in forest ecosystems, play a critical role in predicting carbon
and water cycles in terrestrial ecosystems [1]. The accurate quantification of individual
tree parameters can support the development of high-quality forest ecological environ-
ments [2]. It is also essential to understand how forest ecosystems respond to climatic and
environmental variations. Rapid progress in remote sensing technology has effectively
mitigated the constraints associated with traditional manual surveys, enabling the swift
and convenient monitoring of large-scale forest dynamics [3,4]. Light detection and rang-
ing (LiDAR) technology uses laser pulses to obtain three-dimensional information about
target objects, providing the advantage of rapidly acquiring vertical vegetation structure
parameters, benefits that cannot be matched by optical remote sensing [5–7].

LiDAR can be further classified into two categories: airborne LiDAR and ground-
based LiDAR, depending on the platform and operation mode [8]. The use of unmanned
aerial vehicles (UAVs) has further promoted its application in forestry research, owing
to flexible route planning, operational simplicity, and the ability to provide high-spatial-
resolution data [9]. Remotely Piloted Aircraft Systems (RPASs) [10] equipped with LiDAR
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sensors offer advanced and reliable tools for forest resource management and ecosystem
research, advancing the understanding of forest vegetation conditions. In recent years,
UAV-LiDAR and terrestrial laser scanning (TLS) have been widely applied to extract
vegetation structural parameters [11–13]. The top–down scanning approach of UAV-LiDAR
easily gathers information about forest canopies and has been applied in extensive forest
inventories [14]. However, UAV-LiDAR struggles to accurately capture stem information
beneath the canopy. In contrast, TLS can be used to nondestructively measure understory
vegetation [15]. Nevertheless, TLS encounters issues with occlusion when measuring
canopy and subcanopy structures. To overcome this problem, multistation scanning or
dynamic scanning can be employed to collect TLS data. Liu et al. [16] noted that multistation
terrestrial point clouds could yield more accurate results than single-station point clouds.

The individual tree parameters of tree height and diameter at breast height (DBH)
are critical growth metrics for trees. UAV-LiDAR can accurately measure tree height,
while TLS relies on its higher scanning density to obtain an accurate DBH. The distinct
characteristics of multiplatform LiDAR data underscore the necessity for a comparative
analysis of individual tree parameter estimates [17]. While UAV-LiDAR tends to depict
the upper canopy structure, TLS focuses on the lower portion of the canopy. However,
it is evident that the fusion of UAV-LiDAR and TLS has the potential to reduce shading
and improve the accuracy of quantifying forest structure metrics [18]. Many scholars
have strived to fuse multiplatform LiDAR to overcome the limitations of single-platform
LiDAR in parameter estimation. Fekry et al. [19] fused UAV-LiDAR and TLS data for
quantitative structural modelling and tree parameter inversion in subtropical plantation
forests. Dimitrios et al. [20] fused UAV-LiDAR and TLS data to evaluate the managed
temperate forest structure.

Many efforts have been devoted to developing tree segmentation algorithms for
improving the accuracy of individual tree parameter extraction [21,22]. Point cloud filtering
is performed as an essential step in the postprocessing of LiDAR data [23,24]. This process
can separate ground points from nonground points, which can also improve the accuracy
of individual tree parameter extraction. However, there is connectivity between ground
points and tree structure point clouds [25], making it impossible to extract tree information
directly with segmentation algorithms.

Many algorithms have been proposed to automatically filter ground points [26–28].
Compared to traditional progressive triangulated irregular network (TIN) algorithms,
the improved progressive TIN densification (IPTD) overcomes the issue of uneven seed
point distribution by employing morphological windowing [29]. This provides a more
accurate point cloud of the terrain. However, it is time consuming to obtain a large
number of uniformly distributed ground points with IPTD. The cloth simulation filter
(CSF) algorithm has been gradually gaining attention due to its easy-to-set parameters and
adaptive strength [30]. Compared with IPTD, the CSF has higher computational efficiency.
However, the CSF heavily relies on fixed position points and may not be able to produce
ideal ground points in complex terrain. Therefore, combining the IPTD and CSF algorithms
may significantly increase the ground point separation accuracy.

Eucalyptus spp. are among the most widely planted species due to their fast growth
rate [31]. In China, especially in Guangxi Zhuang Autonomous Region, the planted area of
Eucalyptus plantations has expanded to over 1.8 million hectares in the past decade [32].
Effectively utilizing LiDAR data from different platforms to obtain accurate individual
tree parameters is crucial for the efficiency of monitoring and managing forest resources at
plantations [33]. This study focuses on individual tree parameter extraction from different-
aged Eucalyptus plantations based on TLS, UAV-LiDAR, and TLS-UAV-LiDAR data in the
subtropical region of southern China. The objectives were (1) to explore the potential of
extracting individual tree parameters with TLS, UAV-LiDAR, and TLS-UAV-LiDAR data;
and (2) to combine IPTD and the CSF (IPTD + CSF) and compare the performance of this
approach in individual tree parameter extraction with that of the IPTD and CSF algorithms
alone using multiplatform LiDAR data.
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2. Materials and Methods
2.1. Study Area

The study area was located in the transitional region from the South Asian tropical zone
to the Central Asian tropical zone, specifically within the state-owned Huangmian Forest
Farm, Guangxi Zhuang Autonomous Region, China. This area is mainly characterized by
hilly terrain, with a general trend of higher elevation in the northeast and lower elevation
in the southwest. The soil is predominantly yellowish-red soil with a high clay content.
The annual average temperature is approximately 20 ◦C and the annual average rainfall
ranges from 1750 to 2000 mm. The vegetation is mainly composed of Eucalyptus spp. and
Cunninghamia lanceolata (Lamb.) Hook, with interspersed species such as Schima superba
Gardn. et Champ, Michelia macclurei Dandy, and Phyllostachys heterocycla (Carr.) Mitford
cv. Pubescens.

2.2. Data Collection

Field measurements were obtained in November 2022. Standard plots of 20 m × 20 m
were established in six different ages of Eucalyptus plantations, which were planted annually
from 2016 to 2021. Information such as the slope, aspect, elevation, and stand density
of each plot was recorded. Each tree within the plots was measured, and data from a
total of 307 trees were collected. A TruPulse200 laser rangefinder (Laser Technology Inc.,
Centennial, CO, USA) was used to measure the tree height. Each tree was measured three
times, and the average value was used as the final tree height. All trees with a DBH greater
than 5 cm were measured. When setting up plots, careful consideration was given to signal
reception from the Real-Time Kinematic (RTK) system. Measurements were conducted
under clear weather conditions with minimal ionospheric disturbance. Tree and plot corner
coordinates were obtained using the Hi-Target D8pro (Satellite Navigation Technology Co.,
Ltd., Guangzhou, China), with a horizontal positioning accuracy of ±8 mm. To ensure
precision, the pole was positioned as close to the base of the tree as possible, maintaining
a fixed solution state (horizontal tolerance of ±0.02 m and vertical tolerance of ±0.05 m).
For plots with weak signals, an alternative approach involved using a 1 + 1 mode. In this
mode, a base station was placed in an open area around the sample plot to receive signals,
while another station served as a mobile station for point positioning.

TLS data were collected with a Faro Focus 3D device (Faro Technologies Inc., Lake
Mary, FL, USA) within one selected 20 m × 20 m plot of a Eucalyptus plantation of each age.
To ensure that all trees in the plot were scanned, a multistation scanning mode was adopted,
encompassing four stations near the corners, four stations located at the middle of each
boundary, and one station at the center of the plot (Figure 1c). The horizontal and vertical
scanning angles of the stations were set to 0~360◦ and −60~90◦, respectively. Reference
spheres with a diameter of 14.5 cm were placed evenly in the plot for data registration. A
minimum of three common spheres were needed between two adjacent stations.

UAV-LiDAR data were collected with the DJ-Innovations (DJI) Matrice M300 RTK
(Shenzhen Dajiang Innovation Technology Co., Ltd., Shenzhen, China) equipped with the
Zenmuse L1 laser scanning system (Figure 1a). The Zenmuse L1 integrates Livox LiDAR
modules, a high-precision IMU, and a 50 inch CMOS camera on a three-axis stabilized
gimbal. The flight mode was set to terrain-following mode, with a flight altitude set at 100 m
above the ground surface and a speed of 10 m/s. The payload was set to triple waveform
mode with a 160 kHz laser pulse emission frequency and a nonrepetitive scanning mode.
The scanner was set to a ground-facing orientation of 90◦. This configuration maximized
the penetration of laser pulses through the canopy to the ground, resulting in high-density
point cloud data.
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Figure 1. LiDAR data acquisition and processing. (a) UAV-LiDAR data collection process;
(b) UAV-LiDAR data; (c) TLS data station setup; (d) TLS data; (e) TLS-UAV-LiDAR data.

2.3. Preprocessing of LiDAR Data

Following the acquisition of UAV-LiDAR data, a critical step involves performing dif-
ferential processing using ground-synchronized global navigation satellite system (GNSS)
base station data. The processed data were then imported into DJI Terra software V3.7.0
(Shenzhen Dajiang Innovation Technology Co., Ltd, Shenzhen, China) for stitching. TLS
data from nine stations in each plot were stitched together using FARO SCENE software
V2019.2.1 (Faro Technologies Inc., Lake Mary, FL, USA). Due to the terrestrial laser scanner
using a Cartesian coordinate system, conversion was necessary based on the measured tree
coordinates. UAV-LiDAR and TLS data were uniformly output in WGS-1984 coordinates
and UTM projection (WGS_1984_UTM_Zone_49N). The stitched point clouds underwent
further processing using LiDAR360 software V7.0 (GreenValley International Inc., Beijing,
China), a robust tool for processing and analyzing LiDAR data. Potential noise at low
or high altitudes in the original point cloud can be removed using algorithms based on
spatial distribution.

We employed a registration approach from coarse to fine to fuse UAV-LiDAR and
TLS data. Initially, point clouds sized 20 m × 20 m were cropped from UAV-LiDAR and
TLS data, respectively, using the coordinates of corner points measured in the field. The
difference in the digital elevation model (DEM) generated from UAV-LiDAR and TLS point
clouds was calculated to assess whether significant differences existed. The DEM difference
was calculated as follows:

DEMdiff = DEMUAV−LiDAR − DEMTLS (1)

In Equation (1), DEMUAV−LiDAR is the DEM generated from UAV-LiDAR data, and
DEMTLS is the DEM generated from TLS data. If a significant difference (DEMdiff) exists,
adjustments can be made in LiDAR360 based on this value. This step completes the coarse
registration of the point clouds between UAV-LiDAR and TLS.

We then applied the iterative closest point (ICP) algorithm [34] for fine registration of
point clouds. The basic principle of ICP is based on the least-squares method, representing
an optimal registration technique. It achieves this by iteratively selecting corresponding
point pairs between the target point cloud (UAV-LiDAR) and the reference point cloud
(TLS). The optimal iterative transformation matrix was computed through this process, and
the matrix was then applied to the target point cloud. Finally, the DEMdiff was calculated,
yielding an average DEMdiff of 0.008 m across all plots. The registration error root mean
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square (RMS) between point clouds was 0.02 m. Given that the average point spacing in
TLS was 0.08 m, this fine registration outcome met the usage requirements [35]. The point
cloud fused from UAV-LiDAR and TLS is shown in Figure 1e.

2.4. Pont Cloud Filtering Algorithm
2.4.1. The IPTD Algorithm

The progressive TIN densification (PTD) algorithm proposed by Axelsson [36] was
initially one of the most commonly used filtering algorithms. This algorithm constructs an
initial TIN model based on the initial ground points and iteratively densifies these ground
points. As shown in Figure 2a, the classification of point O into ground or nonground
point was determined based on two factors. The first was the perpendicular distance of
the unclassified point O to the triangle ABC of the TIN. The second was the angle between
point O and the vertices of triangle ABC. If point O was classified as a ground point, it was
then added to the TIN. This process was repeated until all ground points were classified.
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However, the PTD algorithm tends to flatten the terrain in steep slope areas [37]. To
better preserve terrain features, the IPTD algorithm proposed by Zhao et al. [29] improves
the PTD algorithm in aspects such as seed point selection, TIN quality, and iteration order.
This algorithm first uses morphological opening to obtain uniformly distributed ground
seed points, overcoming the problem of uneven or insufficient seed point distribution in
traditional methods, and accelerating the overall filtering speed. After constructing the ini-
tial TIN model, the PTD algorithm directly performs upward densification. In contrast, the
IPTD algorithm performs downward densification before upward densification, allowing
for a more detailed preservation of the characteristics of steep terrain in forested areas.

As shown in Figure 2b, points P1 and P2, near the TIN facet, will be added to densify
the TIN. However, points P3, P4, and P5 on the terrain surface, due to their greater distance,
will not be identified as ground points. Following downward densification, point P3, with
the maximum perpendicular distance to the TIN triangle facet, is classified as a ground
point and added to update the TIN. In the process of upward densification, points P4 and
P5 are highly likely to be identified as ground points.

2.4.2. The CSF Algorithm

The principle of CSF is to invert the initial point clouds and cover them with a
simulated cloth [38]. The simulated cloth gradually descends due to gravity. During
the descent of the simulated cloth, an iterative analysis is performed to find the best
corresponding points, and determine the simulated shape of the cloth that best fits the
terrain (Figure 3a).
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A cloth is a grid composed of particles with constant mass interconnected by virtual
springs, as illustrated in Figure 3b. This form is known as the mass-spring model [39]. In
this model, the position of cloth particles in three-dimensional space determines the cloth’s
position and shape. To simulate the shape of the cloth at a specific time, it is necessary to
calculate the positions of cloth particles in three-dimensional space. According to Newton’s
Second Law, the relationship between the position of cloth particles and the applied forces
follows the formula below [38]:

X(t + ∆t) = 2X(t)− X(t − ∆t) +
G
m

∆t2 (2)

In Equation (2), m is the mass of cloth particles, typically set to 1; G is gravity, a known
constant; X is the node position at time t; ∆t is the time step; X(t + ∆t) and X(t − ∆t) are
the positions of the next and previous nodes, respectively. Given the time step and initial
positions, the current position of cloth particles can be calculated.

In the cloth simulation process, the first step involves calculating the position of
cloth particles after experiencing displacement due to the gravitational force, as given by
Equation (2). To restrict the movement of cloth particles in the gaps of an inverted surface,
it is necessary to adjust the elevation values, moving two cloth particles with different
elevations to the same height. If two adjacent cloth particles are both movable points with
different elevations, they move in opposite directions by the same distance. If one of the
two cloth particles is immovable, the other will be moved. If these two cloth particles are at
the same height, neither of them moves. The corrected displacement of cloth particles is
calculated according to the following formula [38]:

→
d =

1
2

b
(→

p i −
→
p0

)
·→n (3)

In Equation (3),
→
d is the displacement vector of the cloth particle;

→
p0 is the current

position of the designated moving cloth particle;
→
p i is the position of the adjacent particle to

→
p0;

→
n is the normalized vector in the vertical direction,

→
n =

(
0, 0, 1)T ; b is a variable used

to determine whether the cloth particle is movable, where b = 1 when the cloth particle is
movable and b = 0 when it is immovable.

In the traditional ground point classification process, only a single filtering algorithm
(IPTD or CSF) is utilized. As shown in Figure 4, The multifiltering algorithm employed in
this study included the initial application of IPTD for the classification of ground points that
closely resemble the actual terrain but are relatively sparse. Then, a 0.3 m grid-sized DEM
was generated through Kriging interpolation, followed by the normalization of ground
points. Next, a CSF was applied for secondary filtering to densify the ground points. Upon
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the completion of ground point classification, three different point cloud datasets were
obtained: (1) point cloud data generated using IPTD, (2) point cloud data generated with
the CSF, and (3) point cloud data generated using IPTD + CSF. We then evaluated the
effects of these different point cloud datasets in individual tree parameter extraction for
Eucalyptus plantations.
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2.5. Algorithm for Individual Tree Parameter Extraction

The UAV-LiDAR data are firstly used the layer stacking (LS) algorithm [40] to create
seed points for individual trees positions. This algorithm divides the normalized point
cloud at intervals, forming layers parallel to the ground. It applies the K-means clustering
algorithm in each layer, merging the results to identify tree vertices with the highest stacking
degree. Next, the point cloud segmentation (PCS) algorithm [41] segments individual trees
using seed points from the LS algorithm. PCS algorithm partitions point cloud attributes
based on the Euclidean distance between tree vertices, sequentially iterating from top to
bottom to segment individual trees [42].

For TLS and UAV-LiDAR data, a continuous topological structure is constructed from
the base to the top of the trees. This method includes two main steps: trunk detection
and canopy segmentation. First, the density-based spatial clustering of applications with
noise (DBSCAN) algorithm [43] was used to automatically detect the trunks and obtain
the DBH at a height of 1.2~1.4 m for each tree. Then, the comparative shortest-path (CSP)
algorithm [44] was used to achieve the segmentation of the tree canopy point clouds.
Guided by ecological metabolic theory, the CSP algorithm determines the target tree for
each point by finding the shortest distance from the point to the trunk.

2.6. Accuracy Evaluation

We evaluated the accuracy of individual tree parameter extraction according to the
following two aspects: position detection rate and parameter extraction accuracy [35]. The
detection rate was determined by establishing a buffer zone with the true coordinates of
the trees as the center. Segmented trees falling within this buffer zone were considered
correctly matched. The setting of the buffer zone’s radius can be guided by the mean crown
width of the trees [45]. Additionally, it can be adjusted based on the distance between
the position obtained in the cloud and the equivalent position obtained on the ground.
Therefore, the radius of the UAV-LiDAR buffer zone was set to 1.3 m, and the radius for
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TLS and TLS-UAV-LiDAR buffer zones was set to 1 m. The detection rate was calculated
as follows:

P =
∑n

i=1 ni

n
× 100 (4)

where P is the detection rate of individual trees, ni is the number of correctly identified
trees, and n the total number of trees in the measured plot.

The accuracy of parameter extraction was assessed based on tenfold cross-validation,
which involves repeated random training and the validation of correctly matched trees. The
precision evaluation indicators included the coefficient of determination (R2), root mean
squared error (RMSE), mean absolute deviation (MAD), and mean absolute percentage
error (MAPE). The corresponding formulas are as follows:

R2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

MAD =
1
n

n

∑
i=1

|yi − ŷi| (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (8)

In Equations (5)–(8), ŷi represents the estimated value of an individual tree parameter
extracted from LiDAR data, yi is the measured value, y represents the mean measured
value, and n is the number of samples.

3. Results
3.1. Individual Tree Position Detection Rate

The positional matching accuracy achieved with TLS and TLS-UAV-LiDAR data was
significantly higher than that obtained with UAV-LiDAR data, with detection rates reaching
over 90% (Table 1). The detection rates of ULS were all below 60%, which is mainly
attributed to the limitations of ULS in scanning the lower portions of canopies. As shown
in Figure 5, since TLS data hold a significant advantage in terms of the position detection
rate, fusing them with UAV-LiDAR data can enhance the accuracy of tree position detection
compared to that achieved using ULS data alone. In contrast, the impact of filtering
algorithms on the accuracy of tree position detection was not particularly significant.
Therefore, the accuracy of tree detection is primarily influenced by the choice of the LiDAR
data collection platform.

Table 1. Individual tree position detection rate.

LiDAR Data
Single Filtering (IPTD) Single Filtering (CSF) Multifiltering (IPTD + CSF)

Matching Tree Detection Rate Matching Tree Detection Rate Matching Tree Detection Rate

UAV-LiDAR 178 58% 182 59% 182 59%
TLS 283 92% 283 92% 282 92%

TLS-UAV-LiDAR 274 90% 277 90% 283 92%

3.2. Individual Tree Parameter Extraction

The extraction accuracy achieved with UAV-LiDAR, TLS, and TLS-UAV-LiDAR data
generally demonstrates an upward trend (Table 2). As the point cloud information became
more detailed, the R2 values for the individual tree parameter extraction increased, and
the corresponding RMSE, MAD, and MAPE values decreased successively. This indicates
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the limitations in using single-source LiDAR data (TLS or UAV-LiDAR) for tree height and
DBH extraction. The fusion of UAV-LiDAR and TLS data can compensate for the missing
trunk and canopy information, leading to a more complete representation of tree structure
and enhanced accuracy in individual tree parameter extraction.
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Table 2. The accuracy of individual tree parameter extraction.

Filter Algorithm Structural Parameter Evaluation Index UAV-LiDAR TLS TLS-UAV-LiDAR

Single filtering
(IPTD)

Tree height

R2 0.84 0.85 0.87
RMSE 1.91 1.76 1.63
MAD 1.40 1.28 1.23
MAPE 10% 9% 8%

DBH

R2 0.81 0.80
RMSE 1.45 1.49
MAD 1.10 1.14
MAPE 10% 10%

Single filtering
(CSF)

Tree height

R2 0.82 0.82 0.84
RMSE 2.06 1.89 1.76
MAD 1.56 1.44 1.29
MAPE 11% 10% 9%

DBH

R2 0.75 0.83
RMSE 1.66 1.36
MAD 1.27 1.03
MAPE 12% 10%

Multifiltering
(IPTD + CSF)

Tree height

R2 0.85 0.89 0.89
RMSE 1.83 1.52 1.51
MAD 1.40 1.09 1.08
MAPE 10% 7% 7%

DBH

R2 0.85 0.89
RMSE 1.30 1.14
MAD 1.00 0.87
MAPE 9% 8%
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Using a multifiltering algorithm can enhance the accuracy of individual tree parameter
extraction from different types of LiDAR data. Compared to a single filtering algorithm
(IPTD, CSF), IPTD + CSF improves the accuracy of tree height extraction. As shown
in Table 2, for UAV-LiDAR data, IPTD + CSF (R2 = 0.85) exhibited a 0.01 increase in
R2 compared to IPTD (0.84) and a 0.03 increase compared to CSF (0.82). For TLS data,
IPTD + CSF (R2 = 0.89) demonstrated a 0.04 increase in R2 compared to IPTD (0.85) and a
0.07 increase compared to CSF (0.82). For TLS-UAV-LiDAR data, IPTD + CSF (R2 = 0.89)
showed a 0.02 increase in R2 compared to IPTD (0.87) and a 0.05 increase compared to
CSF (0.84). IPTD + CSF also improved the accuracy of DBH extraction with TLS and
TLS-UAV-LiDAR data.

Compared to IPTD and the CSF, IPTD + CSF yielded the best results for individual
tree parameter extraction with TLS-UAV-LiDAR data, correctly matching 283 trees. The
extraction accuracy for both tree height and DBH reached the highest R2 value of 0.89, with
the corresponding values for RMSE, MAD, and MAPE being the lowest (Figure 6).
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4. Discussion
4.1. The Impact of Multiplatform LiDAR Data on Individual Tree Parameter Extraction

TLS has a significant advantage in depicting understory vegetation information [46].
However, due to the occlusion of branches and undergrowth, the point cloud density at the
top of trees scanned using TLS is low in some cases [47]. In contrast, the UAV-LiDAR top–
down scanning approach can provide detailed information about tree canopy structures.
However, the laser penetration rate is weak for this scanning approach, which makes
it difficult to fully capture trunk information [48]. The fusion of TLS and UAV-LiDAR
data can overcome these disadvantages. Our findings indicate that TLS-UAV-LiDAR
can provide more complete tree information and increase the accuracy of individual tree
parameter extraction compared to using TLS or UAV-LiDAR data alone. Terryn et al. [49]
also suggested that fusing TLS and UAV-LiDAR effectively improved quantifications of a
tropical forest structure.

The fusion of TLS and UAV-LiDAR improves the estimation for some of the forest
parameters, but may not significantly impact individual tree detection. This is mainly
because TLS can comprehensively capture tree trunk information [50,51], enabling accurate
matching with measured tree positions. However, the process of obtaining TLS data
requires significant amounts of time and labor [52]. UAV-LiDAR supports large-scale forest
investigations [53]. The fusion of TLS and UAV-LiDAR can reduce the cost of obtaining field
data and enables more efficient forest inventories to be obtained. Therefore, we suggest
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that the fusion of a few stations of TLS data with easily obtainable large-scale UAV-LiDAR
data would improve the detection rate of individual trees and facilitate the high-precision
estimation of individual tree parameters at large scales.

4.2. The Impact of Different Filtering Algorithms on the Accuracy of Individual Tree
Parameter Extraction

The iterative densification process of IPTD from bottom to top enhances its capability
to handle changes in slope, enabling it to effectively address various terrains and complex
environments [29]. While the CSF demonstrates excellent performance in classifying
ground points in flat areas, the filtering accuracy diminishes in regions characterized
by a mixture of complex and flat terrains [54]. Our findings suggest that IPTD yields
better results in tree height and DBH extraction with TLS data than the CSF approach.
Wang et al. [55] found that filtering algorithms have different impacts on individual tree
parameter extraction in forest areas using LiDAR data. For the accurate extraction of
individual tree parameters, the combination of point cloud filtering algorithms is essential.
IPTD + CSF not only enhances the accuracy of individual tree parameter extraction for a
specific LiDAR dataset but also results in comprehensive improvements for UAV-LiDAR,
TLS, and TLS-UAV-LiDAR.

The combination of different filtering algorithms can be adapted to complex environ-
ments, thus enhancing the applicability of multifiltering algorithms. Previous research also
found that the use of a CSF to obtain an initial digital terrain model, followed by progres-
sive TIN densification (PTD) for refinement, can aid in accurately distinguishing ground
and nonground points in LiDAR data [30]. Wang [56] found that using morphological
techniques to obtain initial ground points, followed by a secondary CSF-based filtering
step, can effectively remove nonground points while retaining detailed ground features.
Therefore, we recommend employing a multifiltering algorithm to separate ground points
for individual tree parameter extraction with high-density LiDAR data.

5. Conclusions

This research focuses on how to increase the accuracy of individual tree parameter
extraction using single- and multifilter algorithms based on TLS, UAV-LiDAR, and TLS-
UAV-LiDAR data. The fusion of TLS and UAV-LiDAR can compensate for missing crown
information in TLS and absent stem information in UAV-LiDAR and improve the accuracy
of individual tree parameter extraction. However, when the complementary effects of
TLS and UAV-LiDAR are limited, the difference in accuracy of individual tree parameter
extraction before and after the fusion of TLS and UAV-LiDAR is not significant.

Our results indicate that choosing an appropriate ground point filtering algorithm is
crucial before using multiplatform LiDAR data for individual tree parameter extraction.
Compared to single-filtering algorithms, multifiltering algorithms are more adaptable and
can improve the accuracy of individual tree parameter extraction for TLS, UAV-LiDAR, and
TLS-UAV-LiDAR data, facilitating the precise quantification of the three-dimensional forest
structure. As the demand for high-quality forest vegetation surveys using LiDAR technol-
ogy continues to increase, we recommend using a multifiltering algorithm in combination
with fused LiDAR data to enhance the accuracy of individual tree parameter extraction.

Due to the expanded possibilities offered by fused LiDAR data, which extend the
capacity to capture three-dimensional forest structure characteristics, future research initia-
tives could focus on evaluating the complementarity of TLS and UAV-LiDAR. This will
increase their applicability in forest management. Furthermore, considering the limited
application of LiDAR in complex primary forests, further research could harness LiDAR
for comprehensive investigations into the structure of these intricate ecosystems.
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