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Abstract: The infestation of pine shoot beetles (Tomicus spp.) in the forests of Southwestern China
has inflicted serious ecological damages to the environment, causing significant economic losses.
Therefore, accurate and practical approaches to detect pest infestation have become an urgent
necessity to mitigate these harmful consequences. In this study, we explored the efficiency of thermal
infrared (TIR) technology in capturing changes in canopy surface temperature (CST) and monitoring
forest health at the scale of individual tree crowns. We combined data collected from TIR imagery
and light detection and ranging (LiDAR) using unmanned airborne vehicles (UAVs) to estimate the
shoot damage ratio (SDR), which is a representative parameter of the damage degree caused by forest
infestation. We compared multiple machine learning methods for data analysis, including random
forest (RF), partial least squares regression (PLSR), and support vector machine (SVM), to determine
the optimal regression model for assessing SDR at the crown scale. Our findings showed that a
combination of LiDAR metrics and CST presents the highest accuracy in estimating SDR using the
RF model (R2 = 0.7914, RMSE = 15.5685). Our method enables the accurate remote monitoring of
forest health and is expected to provide a novel approach for controlling pest infestation, minimizing
the associated damages caused.

Keywords: pine shoot beetle; shoot damage ratio; canopy temperature; thermal infrared imagery;
LiDAR

1. Introduction

Over the past twenty years, pest infestation by Tomicus spp. has caused significant
economic and ecological damages in over 1.5 million hectares of Yunnan pine forests in
Southwestern China [1,2]. Additionally, forest pests can heavily impact forest carbon
sequestration and sustainable forest management [3,4]. The fast-spread characteristic of
pest infestation severely threatens forest health status, thereby decreasing their vitality
and carbon sequestration over large areas. Moreover, changes in climatic conditions,
which have decreased forest resistance, have intensified outbreak opportunities for pest
infestation [5,6]. The commonly used artificial ground survey exhibits great limitations
and high costs for detecting pest infestation in a large region [7]. Therefore, the rapid and
accurate assessment of pest stress in forests should be optimized to minimize and control
the subsequent damage.
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High-resolution remote sensing technologies, such as satellites and unmanned air-
borne vehicle (UAV)-based imagery, provide researchers with data that reflect the appear-
ance and spread of forest pests quickly and objectively [8]. Several parameters have been
used so far to monitor the degree of pest infestation using optical remote sensors, such as
vegetation indices [9,10], spectral characteristics [11,12], and time series approaches [13,14].
However, these methods have limited application at the early stages for “green attack”
due to invisible color changes of the needles. The Tomicus spp. pest infestation can be
divided into two stages depending on the beetles’ life cycle, i.e., the shoot attack and trunk
attack [9,10]. During the shoot attack that occurs from May to November, adult beetles feed
the healthy shoots until they become sexually mature. The foliage color has an invisible
change (green attack) during the first weeks. As time passes, the discoloration of the foliage
occurs due to the decrease in water and nutrients, of which transportation was hindered
by infestation, rendering them inaccessible [15]. The trunk attack starts from November,
where the beetles lay thousands of eggs under the bark, and larva burrow into phloem
for nutrients. At this stage, the destruction of phloem disrupts the transport of water and
nutrients from the roots to canopy, ultimately resulting in tree death with red and gray
crowns [16,17]. In the following May, a large number of adult beetles move on to the shoots
of another host trees, which poses a great challenge for controlling pest infestation [18].
Because of the complexity of woodborers’ life cycles, the uncertainty and accuracy for
detecting pest infestation has increased [19]. Therefore, timely detection of pest infestation
during green attacks in a large area can provide effective pest management strategies for
forest managers.

Although the red and gray crowns can be identified distinctly using spectral informa-
tion acquired from optical imagery, it is too late by then to remove the infested trees for
controlling the infestation spread [20]. However, due to the disruption of water transport
tissues caused by pest boring, the water content of needles undergoes significant change
during the green attack. The disturbance of water content affects the temperature through
leaf evapotranspiration, which induces small but detectable changes probed by thermal
infrared (TIR) remote sensing. Consequently, it is necessary to mine new remote sensing
sources like TIR imagery for detecting pest infestation at the early stages [21,22].

TIR imagery is also sensitive to changes in the canopy surface temperature (CST),
resulting from the energy transfer and exchange between the leaves and the atmosphere.
Monitoring CST changes helps unveil the stress response of vegetation to environmental
factors, such as drought [23], disease [24], and pest infestation [25–27]. UAVs equipped
with thermal cameras enable the acquisition of high-resolution TIR images and subse-
quently describe the relationship between CST and evaporation in plant Eco physiological
research [28]. Therefore, researchers can quantify the connection between CST and tree
health and elucidate the response mechanism of the canopy water cycle to pest stress [24,29].
Woodborers destroy the water budget by boring into the trunk and shoots, heavily impact-
ing the water cycle by temporarily or permanently decreasing the canopy’s water content.
CST fluctuations associated with water content and evaporation changes can be detected
by TIR imagery during green attack [30,31]. However, due to the complex structure and
irregular shape of forest canopies, the CST is heavily affected by environmental factors
and the physiological parameters of vegetation, degrading the appropriate accuracy of
CST acquisition from TIR images [23]. Furthermore, the coarser resolution of TIR imagery
compared to that of multispectral and hyperspectral imagery can result in mixed radiation
from tree crowns and the ground. This aspect adds additional difficulties for accessing CST
using the TIR method and reduces its accuracy relative to multispectral and hyperspectral
methods [32].

Light detection and ranging (LiDAR) data provide detailed structural traits of tree
canopies with dense cloud points to obtain the spatial distribution of needles [1,33,34].
The laser return intensity is useful for measuring the near infrared reflection trait of needles
in a canopy, which is closely related to its water content [35], presenting a novel method
for monitoring and mapping forest infestation [36,37]. Despite its high detection potential,
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only a few studies have explored the potential of LiDAR for measuring pest infestation of
coniferous forests at the crown scale [38,39]. Although the three-dimensional (3D) structures
of forest crowns can be accurately measured by LiDAR to map crown traits, such as leaf
area index and crown shape, it remains challenging to use LiDAR intensity for measuring
the biochemical parameters of leaves [40]. Therefore, a combination of LiDAR and TIR
data is an interesting route to explore in terms of assessing forest pest infestation at the
crown scale.

Several studies have used multi-source remote sensing data for extracting crown traits
and quantifying damage degree caused by forest infestation [30,41]. Mostly, random forest
(RF), partial least squares regression (PLSR), support vector machine (SVM), and deep
learning algorithms have been used to study the relationship between damage degrees
and spectral characteristics from UAV-based high-resolution multispectral or hyperspectral
images for evaluating infestation in large areas [42–44]. However, the current literature
has scarcely explored the efficiency of combining UAV-based TIR imaging data with other
sensors to analyze infestation in the Yunnan pine forests.

In this study, we investigated the potential of integrating UAV-based TIR and LiDAR
data to detect the shoot damage ratio (SDR) for the Yunnan pine forest at the individual
tree level. We used SDR to assess the proportion of damaged shoot and the severity
of canopy damage caused by beetle attacks at the crown level [1,27]. We generated the
characteristic traits of crowns from LiDAR, TIR, and field measurements data. Furthermore,
we used machine learning algorithms, such as RF, SVM, and PLSR, to assess the severity of
crown damage. Our approach aims to improve the monitoring accuracy of beetle attack to
individual Yunnan pine crowns.

2. Materials and Methods
2.1. Study Sites and Field Measurements

The study sites are located at the Tianfeng Mountain in Yunnan Province, China,
at an altitude between 1720 m and 2570 m. The annual average temperature in this area
is 14.2 ◦C, and the annual precipitation is 783.7 mm. The area is dominantly covered
by Yunnan pines (approximately 1000 ha); however, continuous drought has favored
Tomicus spp. Infestations, causing death to a large numbers of Yunnan pine trees [2,27]. We
designated two field plots (size: 50 m × 50 m) to represent the average damage severity of
the surrounding forest (Figure 1).
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We measured tree parameters for each tree in the plots, including height (H), diameter
at breast height (DBH), crown diameter (CD), and SDR (DBH > 4 cm). We used SDR, which
corresponds to the number of damaged shoots divided by the total shoots for each crown,
as an indicator of the damage degree caused by infestation in the Yunnan pine trees [9].
We manually counted the number of dead shoots for each tree crown and estimated the
total number of shoots of each crown from the selected branches (approximately 3–6) at the
lower, middle, and upper layers of the canopy. Table 1 summarizes the tree parameters
collected from the two plots.

Table 1. Tree variables collected from the two plots (n = 409).

Variables Mean Standard Deviation Maximum Minimum

DBH (m) 8.9 4.0 25 2.5
H (m) 4.5 1.6 9.8 1.2

CD (m) 2.2 1.0 7.3 0.5
SDR (%) 26 35 100 0

2.2. UAV-Based Images Acquisition and Processing
2.2.1. Thermal Imagery and Correction

We used a thermal sensor (TAU2, FLIR, Wilsonville, OR, USA) implemented into a
fixed-wing UAV for thermal imagery, and wavelengths ranged from 7.5 µm to 13.5 µm. We
set the UAV flight altitude for imaging to 280 m, with 60% side overlap and 80% forward
overlap, resulting in an image resolution equal to 0.23 m (Figure 2). To calibrate the thermal
radiation values measured with the FLIR TAU2 sensor, we measured the temperature of
four ground features (tile, polyvinyl chloride board, wood, and asphalt road) with known
emissivity using a thermal infrared imager (T-420, FLIR, USA). Furthermore, the locations
of the features were measured using a real-time kinematic (RTK) device (HI-TARGET A8
GNSS) with an accuracy of ±2.5 mm. The temperature and digital number (DN) of the
four features whose positions matched each other were used to establish a linear regression
equation that we used to convert the digital number (DN) values of the whole TIR image
into brightness temperature, as described in our previous study [27].

2.2.2. LiDAR Data Acquisition

We used a LiAir 200 UAV-mounted system (GreenVlley Inc., Beijing, China) equipped
with a 40-channel Pandar40 laser sensor, operating at a 10 Hz scan frequency and 10◦

scan angle. The sensors were flown at an altitude of 70 m, and the overall point density
ranged between 200 and 1000 points per m2. The projection and geographical coordinate
systems of the point cloud were established by World Geodetic System (WGS) 84 and
Universal Transverse Mercator (UTM) 50 N, respectively. We preprocessed the LiDAR data
to distinguish between ground and above-ground points, using the Lidar360 5.2.2 software
package (GreenVlley Inc., Beijing, China). Consequently, we generated two models, namely
the digital elevation model (DEM) and the canopy height model (CHM), from the classified
cloud with a 0.5 m resolution. These models were used to register TIR images together
with ground control points measured by the RTK device.

2.2.3. Individual Tree Crown Segmentation from LiDAR Point Clouds

Due to the coarse resolution (0.23 m) of the TIR image, it was difficult to define
distinguishable crown boundaries. Therefore, we used the LiDAR point clouds to extract
the individual tree crowns separated by the point cloud segmentation (PCS) algorithm
embedded in the Lidar360 software with default parameters (Figure 3). Before point
cloud segmentation, the LiDAR data were processed by denoising, filtering, ground point
classification, DEM, and digital surface model (DSM) in Lidar360 software. The elevation of
point cloud data were normalized by DEM. The CHM was generated from DEM and DSM,
which was used to derive seed points with a watershed algorithm. Subsequently, the seed
points and the normalized LiDAR point data were imported into Lidar360 software for
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individual tree segmentation used by PCS algorithm. In Lidar360 software, the seed points
could be edited manually to improve the accuracy of tree segmentation. Following the
segmentation of all trees, the crown boundary, height, and crown volume were generated
from individual tree point clouds. The LiDAR segmentation results are shown in Table A1.
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the individual tree segmentation of the two plots (right).

2.3. Features Extraction
2.3.1. Canopy Temperature Extraction

Following the correspondence between CHM and TIR data with high-resolution UAV-
based RGB images, we extracted the canopy temperature through the seed points from
the LiDAR data segmentation results. We treated seed points as the central points of
the canopies and considered the values of adjacent pixels using bilinear interpolation.
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Moreover, we also used the canopy boundaries produced from LiDAR data to extract
another temperature. After comparing the temperature accuracy of the two methods, we
selected the canopy temperature dataset with the lowest error or external influence for
the subsequent SDR analysis. We used a Phantom4 RTK UAV (DJI, Shenzhen, China) to
capture high-resolution RGB images, which were then used to identify the coordinates of
TIR and LiDAR data (Figure 4).
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LiDAR data.

2.3.2. LiDAR Metrics Extraction

LiDAR metrics contain geometric (height, crown shape, and gap fraction) and ra-
diometric (laser return intensity) data [1]. Following individual tree segmentation, we
filtered the segmentation with tree height above 4 m; then, we divided the crown into
eight directions and gridded its vertical profiles of each direction with 1 m resolution.
The 30 LiDAR metrics (Table A2) containing the structure and intensity information of tree
canopies were generated from point cloud data using the MATLAB 2016b software (Math-
Works Inc., Natick, MA, USA). The 8-segmenting method and formulas of those metrics
were thoroughly described in a previous report [45]. The information metrics contained
crown volume, crown density, gap fraction, and the mean coefficient of variation, standard
deviation of first return intensity, nth (25th, 50th, and 75th) percentile, and cumulative
percentile of laser return intensity of tree crowns with a height above 0.5 m. Then, we
applied machine learning algorithms to select characteristic variables, as described below.

2.4. Features Selection and Prediction Model for SDR
2.4.1. Important Features Selection

To establish an efficient regression model for predicting the SDR of the trees,
the 30 variables in LiDAR metrics needed to be filtered so as to extract their important
features. Consequently, we jointly applied the RF and PLSR regression models to select im-
portant variables, while ensuring variable importance measures (VIM). In the RF algorithm,
the mean decrease accuracy (MDA) index of each predictor variable was calculated during
the out-of-bag (OOB) error calculation [46] (Figure A2). In the PLSR algorithm, the variable
importance scores (VIPs) were produced to provide insights into the usefulness of each
individual variable in predicting SDR [47] (Figure A1). Subsequently, by intersecting the
common predictor variables with the higher contribution on SDR estimation both in RF
and PLSR algorithms (more than 90% cumulative explanation), we determined 14 LiDAR
metrics as important features for SDR prediction, shown in Table A3.

2.4.2. Prediction Model

To select the most efficient regression model in our case, we compared the predictive
capabilities of commonly used machine learning algorithms for predicting SDR at the indi-
vidual tree level, such as RF, PLSR, and SVM models. The RF model is an ensemble learning
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algorithm that involves the bagging of regression trees [48]. The SVM regression model is a
typical branch of generalized linear regression model, which was adopted with a linear
kernel in the present study [49]. Since both models have low susceptibility to over-fitting,
it is preferable to reduce the dimension of features in the case of a high predictor variable
to sample ratio. In contrast, the PLSR model reduces collinear variables associated with
remote sensing metrics to a few non-correlated latent variables or factors [50]. These latent
variables contain maximum LiDAR information in the dataset, increasing the explanatory
power of the prediction. We applied the aforementioned three regression models using a
Python-based machine learning method encapsulated in the Scikit-learn module.

We randomly divided the dataset into 70% training data (n = 217) and 30% test data
(n = 94), which were then used for validating the performance of the model. The 70/30
training to test data proportion is recommended in the literature as it provides more weight
to model building [51]. Finally, we inputted the important variables (selected by the RF
and PLSR models) into the three regression models (RF, SVM, and PLSR) to derive the
determination coefficient (R2) and root mean squared error (RMSE). These parameters were
used to assess the highest prediction performance of the models.

3. Results
3.1. Canopy Temperature Extraction and Statistics with Different SDR Ranges

The canopy temperature of the individual tree crown was extracted to analyze the
characteristic with different damage degrees. The seed points and canopy boundaries
generated from LiDAR data were used to extract CST. Figure 5a shows that both approaches
exhibited the same level of accuracy. Therefore, we selected the CST extraction using seed
points as the canopy temperature data for the SDR analysis.
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Figure 5. (a) A comparison of extracting CST using the seed points and canopy boundaries approaches.
(b) Boxplot of canopy temperature with different degrees of shoot damage ratio (SDR), the red squares
represent the mean and the black rhombuses are outlier. (c) Measured vs. predicted SDR using the
canopy temperature data; each point represents the mean of SDR (the five nearest measured values
of the individual tree crowns) with ±1 standard deviation bar.

The SDR dataset was classified into five levels: healthy (0%–10%), slightly (10%–30%),
moderate (30%–50%), severely (50%–80%), and dead (80%–100%). The results showed that
CST increased with SDR. Healthy trees had the lowest CST owing to the normal evapotran-
spiration of healthy needles, whereas dead trees had the highest CST values. Due to the
fact that the slightly and moderate trees still had healthy shoots with evapotranspiration,
the CST of these crowns was lower than severely damaged and dead trees. The severely
trees had a higher SDR with a higher proportion of dead shoots in the tree crown, induc-
ing a higher canopy temperature. The simple use of canopy temperature for all samples
revealed a relatively weak relationship between SDR and CST, with an underestimated
tree crown SDR (R2 = 0.2338, RMSE = 30.6096, n = 311). These observations indicate the
challenging difficulties in using TIR remote sensing alone to monitor SDR in coniferous
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forests. Moreover, the CST of tree crowns extracted from TIR shows high uncertainty levels
due to the relative coarse resolution of TIR images.

3.2. Statistics of Important Features from LiDAR Metrics with Different SDR Ranges

The significant characteristic variables (14 LiDAR metrics) were selected from LiDAR
data to analyze their relationship with SDR, depending on its classification, as shown in
Figure 6. The results showed that the crown return intensity at different heights (Int_P25,
Int_P50, and Int_P75) decreased with increasing SDR. Similarly, the mean of crown return
intensity (Int_mean) and first return intensity (Int_mean_first) decreased with increasing
SDR. However, the gap fraction (GF) and the coefficient of variation of crown return
intensity (Int_CV) and first return intensity (Int_cv_first) demonstrated an increasing trend
with SDR. The intensity value recorded by the LiDAR sensor is a function of the reflectance
in the near infrared band, which is insensitive to biochemical characteristics, such as
chlorophyll and leaf water content [52]. The decrease in the canopy intensity is associated
with the death of a large number of needles, resulting in an increase in the canopy’s SDR
and a decrease in its water content. Similarly, the structural parameters of the tree canopy
(i.e., leaf index area and GF) decreased with increasing degrees of damage, causing a
large number of needles to fall from the canopy. As a result, the coefficient of variation of
intensity increased as the number of needles decreased in the canopy.
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3.3. Prediction Models to Estimate SDR with LiDAR Metrics

Figure 7 shows a comparison of estimating SDR from LiDAR data using different meth-
ods at the individual tree crown level, including the SVM, PLSR, and RF models. To train
these models, 70% of the LiDAR data (n = 217) containing 14 parameters were used, while
the remaining 30% were used as test data (n = 94) to validate the accuracy of the models.
The results showed that the RF model (R2 = 0.6805, RMSE = 19.5404) performed better than
the PLSR (R2 = 0.5074, RMSE = 23.3678) and SVM models (R2 = 0.4783, RMSE = 25.0471)
in terms of predicting the crown SDR. The RF model demonstrated the best performance
of SDR estimation from LiDAR data, with an accuracy of 70% in identifying infested tree
crowns in the coniferous forest. Nevertheless, this approach still underestimated the SDR
values by 30%, which is considerably large compared to the standard deviation of SDR
estimations for the damaged tree crowns (SDR > 40%).
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3.4. Estimating SDR Using LiDAR Metrics and Canopy Temperature

Here, we estimated SDR by combining LiDAR metrics with the canopy surface tem-
perature (CST) using different regression models for 311 samples, as shown in Figure 8.
The RF model (R2 = 0.7914, RMSE = 15.5685) exhibited a higher prediction performance
compared to the SVM (R2 = 0.5116, RMSE = 24.2354) and PLSR (R2 = 0.513, RMSE = 23.2353)
models for estimating SDR at the individual tree crown scale. A comparison with the
results shown in Figure 7 shows that the accuracy of each regression method was improved
due to the contribution of the CST data. For the RF model, R2 was increased from 0.6805
to 0.7914, with a lower standard deviation of SDR estimation. These results confirm that
the combination of multi-source remote sensing data, such as LiDAR and TIR data, could
enhance the ability for monitoring damaged tree crowns caused by pest infestation.
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Figure 9 shows the importance values of 15 variables from the canopy temperature data
and LiDAR metrics in the RF regression model. LiDAR metrics play a greater importance
than the canopy temperature, especially in the mean of canopy return intensity (Int_mean).
Despite its low importance value, CST was shown to greatly improve the accuracy of SDR
estimation.
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4. Discussion
4.1. The Effect of Canopy Temperature Uncertainty

The canopy temperature has been used in the previous literature for monitoring
disease or pest infestation. Furthermore, it is a good indicator for moderate and severe
stages due to a decrease in transpiration and a rise in temperature with the chlorotic and
necrotic foliage [24,53]. However, the CST with insignificant increase at the early stage is
insufficient for pest infestation monitoring. This result, shown in Figure 5b, is in agreement
with a previous report [24]. This may be caused by high uncertainties in TIR-based canopy
temperature values [54]. The CST is liable to influence directly by various environmental
factors, such as ground surface radiation, especially when the canopy volume or leaf area
index (LAI) is low [27,55]. This particular condition aggravates the mixed radiation of tree
crowns measured by TIR sensors, weakening the correlation between SDR and CST [27].
Since the canopy structure of coniferous forests is sparser compared to that of broad-leaved
forests, the effect of mixed crown/soil radiation on the canopy temperature undermines
the accuracy of SDR calculations. However, few studies have focused on the effect of LAI
on the relationship between CST and SDR.

In this study, we filtered out the low LAI (LAI < 1) and observed a decrease in the
mean CST value and standard deviation, as shown in Figure 10a, which is particularly
pronounced in the severely damaged stage. Compared with the results shown in Figure 8c,
the RMSE of SDR estimation was decreased significantly (∆RMSE = 3.0427), despite the
small change in R2 (Figure 10b). These observations indicate that the measured param-
eters with LAI < 1, including CST, increase the uncertainty of the simulation. Therefore,
to obtain accurate values of CST, either the resolution of TIR imagery should be improved
or more accurate separation methods of mixed canopy/soil radiation should be promoted.
In addition, adding higher resolution hyperspectral or multi-spectral data and providing
more accurate vegetation indexes to evaluate the health status of vegetation may be con-
ducive to time-efficient and accurate estimation of the forest pest infestation in a large
area [56].
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4.2. The Accuracy Contribution of LiDAR Data

LiDAR data have provided the accurate tree crown structure parameters (e.g., tree
crown segmentation) and return intensity, which can be used as supplementary infor-
mation for estimating the reflectance of the canopy in the NIR band [9]. The structural
characteristics of crowns were helpful for extracting the individual tree shape and vertical
information [57]. The intensity of the LiDAR metrics generated from first or all returns
of crowns has been used to reverse the biochemical parameters of the tree crown, such as
water content, chlorophyll, and nitrogen content [38,40]. Despite the LiDAR metrics being
difficult to effectively distinguish the damaged degrees from slightly to severely, they were
still able to separate the damaged degrees between healthy, infested, and dead tree crowns
(Figure 6). Some studies have also indicated that LiDAR metrics only distinguished moder-
ate infestation with a classification accuracy of 66% [38]. However, the researchers pointed
out that LiDAR intensity still had the potential in assessments of infestation severity [10,38].

During the SDR estimation with the RF model, we found that the LiDAR metrics
have a great contribution in detecting SDR in combination with TIR data. Especially,
the Int_mean variables had a higher importance value than the other variables (Figure 9).
Therefore, LiDAR data are great additional data to estimate SDR and also for improving
the accuracy of forest pest detection with the combination of other remote sensing data
sources. Nonetheless, the lower contribution of TIR data than that of LiDAR data still
warrants attention, which indicates that using TIR data in monitoring pest infestation of
coniferous forest remains challenging when thermal infrared sensors lack a high enough
resolution [58].

5. Conclusions

Due to the limitation of spectral characteristics for detecting beetle infestation at an
early stage, developing an additional remote sensing data source, such as TIR and LiDAR
data, holds great potential. In this study, the UAV-based TIR and LiDAR data were used
to detect crown damage at the individual tree level in a Yunnan pine forest. Fourteen
important LiDAR metrics derived from LiDAR data using PLSR and RF models had more
contribution in predicting SDR than CST. The combination of LiDAR and TIR data enhanced
the accuracy of SDR estimation using an RF model, with R2 increasing from 0.6805 to 0.7914
and RMSE decreasing from 15.5685 to 19.5404. This approach exploits the advantages
of LiDAR and TIR data to evaluate the health status of a pine forest accurately at the
crown scale. In future works, we aim to explore the approach using the multiple indicators
derived from multi-source remote sensing data fusion for improving the detection accuracy
of forest infestation.
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Appendix A

Table A1. Segmentation accuracy of individual trees in the two plots based on LiDAR data.

ID Measured Trees Detected Trees False Detected Trees Detected Accuracy

plot 1 243 234 9 0.96
plot 2 166 161 5 0.97

Table A2. Thirty LiDAR metrics derived from point cloud data.

Variables Definition

V Crown volume
GF Gap fraction
CD Crown density

Int_mean_first Mean value of crown first return intensity
Int_mean Mean value of crown return intensity

Int_CV_first Coefficient of variation of crown first return intensity
Int_CV Coefficient of variation of crown return intensity

Int_SD_first Standard deviation of crown first return intensity
Int_SD Standard deviation of crown return intensity

Int_sc_first Mean absolute deviation of crown first return intensity
Int_sc Mean absolute deviation of crown return intensity

Int_vbs_first Median of the absolute deviations of crown first return intensity
Int_var_first Variance of crown first return intensity

Int_var Variance of crown return intensity
Int_P25 25th percentile of crown return intensity
Int_P50 50th percentile of crown return intensity
Int_P75 75th percentile of crown return intensity
Int_C25 25th cumulative percentile of crown return intensity
Int_C50 50th cumulative percentile of crown return intensity
Int_C75 75th cumulative percentile of crown return intensity

num The number of all laser points representing a tree
num_first The number of the laser points in first return

rcl Ratio between the centers height for the grids within each profile and the crown length

rcr Ratio between the centers radius for the grids within 8 profiles and the crown radius
(average for 8 profiles)

Dmax Maximum density of the laser points within all of 1 m grids for a crown.

PD20 Ratio between the number of points in 0th–20th tree height and the number of all tree
height (from tree bottom)

PD40 Ratio between the number of points in 20th–40th tree height and the number of all tree
height (from tree bottom)

PD60 Ratio between the number of points in 40th–60th tree height and the number of all tree
height (from tree bottom)

PD80 Ratio between the number of points in 60th–80th tree height and the number of all tree
height (from tree bottom)

PD100 Ratio between the number of points in 80th–100th tree height and the number of all tree
height (from tree bottom)
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Appendix B

(1) Calculated VIPs of LiDAR metrics using PLSR model.
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(3) Important variables selected with VIPs and MDA index.
To ensure that the selected variables have the same importance in PLSR and RF models,

the 14 variables of highest scores in VIPs and MDA index were chosen as the final variables
for SDR prediction.

Table A3. Important variables selection from LiDAR metrics for SDR prediction.

Variables Definition

V Crown volume
GF Gap fraction
CD Crown density

Int_mean_first Mean value of crown first return intensity
Int_CV_first Coefficient of variation of crown first return intensity

Int_mean Mean value of crown return intensity
Int_P25 25th height percentile of crown return intensity
Int_P50 50th height percentile of crown return intensity
Int_P75 75th height percentile of crown return intensity
Int_C25 25 h cumulative percentile of crown return intensity
Int_C50 50 h cumulative percentile of crown return intensity
Int_C75 75 h cumulative percentile of crown return intensity
Int_SD Standard deviation of crown return intensity
Int_CV Coefficient of variation of crown return intensity
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