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Abstract: Highly accurate urban vegetation extraction is important to supporting ecological and
management planning in urban areas. However, achieving high-precision classification of urban
vegetation is challenging due to dramatic land changes in cities, the complexity of land cover,
and hill shading. Although convolutional neural networks (CNNs) have unique advantages in
remote sensing image classification, they require a large amount of training sample data, making
it difficult to adequately train the network to improve classification accuracy. Therefore, this paper
proposed an urban vegetation classification method by combining the advantages of transfer learning,
deep learning, and ensemble learning. First, three UNet++ networks (UNet++, VGG16-UNet++,
and ResNet50-UNet++) were pre-trained using the open sample set of urban land use/land cover
(LULC), and the deep features of Sentinel-2 images were extracted using the pre-trained three UNet++
networks. Subsequently, the optimal deep feature set was then selected by Relief-F and input into
the Stacking algorithm for urban vegetation classification. The results showed that deeper features
extracted by UNet++ networks were able to easily distinguish between different vegetation types
compared to Sentinel-2 spectral features. The overall classification accuracy (OA) of UNet++ networks
and the Stacking algorithm (UNS) was 92.74%, with a Kappa coefficient of 0.8905. The classification
results of UNet++ networks and the Stacking algorithm improved by 2.34%, 1.8%, 2.29%, and 10.74%
in OA compared to a single neural network (UNet++, VGG16-UNet++, and ResNet50-UNet++)
and the Stacking algorithm, respectively. Furthermore, a comparative analysis of the method with
common vegetation classification algorithms (RF, U-Net, and DeepLab V3+) indicated that the results
of UNS were 11.31%, 9.38%, and 3.05% better in terms of OA, respectively. Generally, the method
developed in this paper could accurately obtain urban vegetation information and provide a reference
for research on urban vegetation classification.

Keywords: urban vegetation; classification; UNet++ networks; Stacking; Sentinel-2

1. Introduction

Vegetation is an important component of the urban environment, improving urban
air quality and reducing the heat island effect [1], thereby reflecting the state of the re-
gional ecological environment. However, the dramatic change in urban land use as cities
expand into the periphery leads to changes in regional ecosystems and environmental
problems [2]. Therefore, accurate urban vegetation classification studies are important for
urban ecosystem and sustainable urban development [3,4].

Early urban vegetation extraction relied on field surveys, which were demanding and
lengthy enough to support vegetation classification in areas with complex topography and
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diverse land cover types. With the development of remote sensing technology, it is now
possible to monitor complex environments with the advantages of rapid data collection
and cost savings [5]. Remote sensing data sources started with optical images at low-
to-medium spatial resolution, such as national oceanic and atmospheric administration
(NOAA)/advanced very high-resolution radiometer (VHRR), medium-resolution imaging
spectroradiometer (MODIS), Landsat, and SPOT [6,7]. In recent years, high-resolution
sensors (Sentinel-2, IKONOS, QuickBird, and GF series, etc.) have met the need for high-
precision extraction of vegetation information as the availability and spatial resolution of
historical remote sensing data has improved [8,9]. For instance, Sentinel-2 has been widely
used in vegetation extraction and land use classification studies due to its easy accessibility,
wide spatiotemporal resolution, and rich spectral bands [10,11]. However, urban vegetation
classification was susceptible to spectral clutter and shading (variations in mountainous
terrain) when using satellites such as Sentinel-2 to obtain spectral information [12], which
prevented accurate results from being obtained.

Approaches to the early vegetation classification were mostly based on mathematical
statistical principles, such as maximum likelihood in supervised classification, minimum
distance classification, and iterative self-organizing data analysis in unsupervised classifi-
cation. Nevertheless, they required random uniform and normal samples; thus, various
machine learning (ML) algorithms, such as support vector machines (SVM), decision trees,
and random forests (RF), have been proposed and employed in vegetation classification
studies [13–15]. Normally, single ML algorithms have some inherent limitations, with
potential instability across data and scenarios [16]. To solve this problem, a combination of
multiple weak classifiers using the idea of ensemble learning (bagging, boosting, and Stack-
ing) was able to obtain a better supervised result. Bagging and boosting used the simple
idea of voting and averaging, while Stacking used the idea of weighting when combining
the results of different classifiers, facilitating the extraction of vegetation information in
highly heterogeneous areas [17,18].

Compared to ML, convolutional neural networks (CNNs) are capable of analyzing the
information of adjacent pixels and better extracting image features. This has resulted in
better results in image classification researches [19,20], and convolutional neural networks
such as fully convolutional networks (FCNs), e.g., DeepLab V3+, are consequently becom-
ing increasingly popular in LULC and vegetation classification [21,22]. FCNs have replaced
the last layer in CNNs with a deconvolution [23], which has retained the advantages of
CNNs and enhanced the accuracy of image semantic segmentation independent of the
input image size. The U-Net network [24] based on encoders and decoders, along with
the U-Net++ network which improves on the U-Net network, are widely utilized in image
segmentation and classification [25]. The composite classification method combined with
different CNNs can obtain rich image information to improve vegetation classification
performance [26–28]. However, CNNs rely on large amounts of training data, so when the
training data is insufficient, the accuracy of vegetation classification will be affected. Urban
areas are heavily fragmented, making it challenging to produce sample labels, which also
poses a challenge for vegetation classification using CNNs [29]. Additionally, complex
scenarios make urban vegetation classification using a single CNN rather tedious.

Therefore, in face of inadequate training labels, we are committed to developing an
accurate method for classifying urban vegetation in this paper. The innovative aspects of
this paper are as follows: (1) we have explored whether deep-level features that are useful
for vegetation classification could be extracted under different FCNs structures; (2) in a
highly heterogeneous urban area, our research proposed a joint transfer learning, deep
learning, and ensemble learning approach to vegetation classification (UNet++ networks
and Stacking, UNS).
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2. Study Area and Datasets
2.1. Study Area

The Chang-Zhu-Tan urban agglomeration (Figure 1), which is located in the middle-
eastern part of Hunan Province (28◦04′ N, 112◦59′ E), includes Changsha City, Zhuzhou
City, and Xiangtan City. The study area comprises a humid subtropical monsoon climate
with abundant rainfall and rich vegetation types. Over the past four decades, urbanization
in Chang-Zhu-Tan has accelerated, making the land types in the urban agglomeration
relatively scattered. Based on the Classification of Current Land Use (GB/T 21010-2017),
and taking the specific status of vegetation in Chang-Zhu-Tan into account, the main
vegetation types to be extracted include grassland, farmland, and forest. Other land types
to be extracted include water bodies and built-up land.

Figure 1. Study area: (a) the green area is Hunan, China; (b) the yellow area is the Chang-Zhu-Tan
urban agglomeration; (c) DEM data (ASTER GDEM V3 data) of Chang-Zhu-Tan urban agglomeration.

2.2. Sentinel-2 Data

The image used in this study was obtained from 2020 Sentinel-2A TOC data (T49RFL,
T49RFM, T49RGL, and T49RGM), which was sourced from the Google Earth Engine (GEE).
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The Sentinel-2 satellite captured images with 13 bands and varying resolutions of 10 m,
20 m, and 60 m, respectively. Ten bands of Sentinel-2 images at 10 m and 20 m resolution
were selected, including visible, near-infrared, and shortwave infrared. The selected
images were mostly taken during April and May, when cloud cover and rainfall were
infrequent, and image quality was high. After cloud filtering of the Sentinel-2 images
with the filter function and de-clouding using the QA60 band on the GEE, the remaining
images (10 images) were resampled (nearest neighbor method) to 10 m resolution, median
composited, and cropped for further processing.

2.3. Other Ancillary Data

Other ancillary data included the administrative division SHP vector file, the DEM
data of Chang-Zhu-Tan, and the LULC dataset—i.e., Gaofen Image Dataset (GID) [30]. The
China Administrative Divisions SHP vector files were downloaded from the National Basic
Geographic Information Centre (http://www.ngcc.cn/ngcc/, accessed on 3 August 2023).
DEM data of Chang-Zhu-Tan was available for download in the GEE cloud platform. The
GID-5 contained high-quality GF-2 images from over 60 cities in China, which consisted
of built-up land, farmland, forest, meadow, water, and unmarked areas. Three full FCNs
were pre-trained using the large-scale land covering set (GID-5) from GID to reduce the
discrepancy between the migration source and target domains in transfer learning.

2.4. Production of Sample Sets

The training sample set has a significant impact on the training results of the deep
learning network. However, producing pixel-level labels for urban vegetation classification
is difficult due to the fragmentation of land types in the 10 m resolution Sentinel-2 images
of the study area. To begin with, sample points were collected from Google Earth images
and ground survey data of the same year (Figure 2), the Sentinel-2 images (spectral bands
and vegetation indices) covering the study area were classified (89.15%) based on this
sample point by the RF algorithm, and provisional labels were obtained. The spectral
bands included visible, near-infrared, and shortwave infrared, with a total of 10 bands.
The vegetation indices included NDVI, B6RedNDVI, B5TCARI, and B6TCARI, with the
following equations:

NDVI = (B8− B4)/(B8 + B4) (1)

B6RedNDVI = (B8− B6)/(B8 + B6) (2)

B5TCARI = 3× [(B5− B4)− 0.2× (B5− B3)× (B5/B4)] (3)

B6TCARI = 3× [(B6− B4)− 0.2× (B6− B3)× (B6/B4)], (4)

where B3 is green band; B4 is red band; B5 and B6 are both red edge bands; and B8
is near infrared band. Second, higher-resolution Google Earth imagery combined with
ground survey data and data from other periods (Sentinel-2’s July, August, and September
imagery) was used to manually correct and annotate the provisional labels and modify
the misclassifications of land cover types in the labels. Finally, we validated the modified
labels using sample points collected from Google Earth imagery and ground survey data
from the same year in order to objectively determine the accuracy of the training sample.

After obtaining the final labels, we cropped the labels and the Sentinel-2 image ac-
cording to a size of 256 × 256, respectively, in Python to obtain 350 sample images and
labels. The data augmentation was performed based on the sample images and labels for
the purpose of improving the generalization ability of FCNs and the final training efficiency.
The sample images and labels were enhanced to four times the original using flipping,
mirroring, etc., to compose the final sample set. Then, 70% of the sample set was randomly
selected for training, 20% for validation, and 10% for testing.

http://www.ngcc.cn/ngcc/
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Figure 2. Sample points needed to produce labels.

3. Methods

Section 3 of this paper focuses on describing methods for the classification of urban
vegetation (Figure 3). In this study, we first pre-trained the UNet++, VGG16-UNet++,
and ResNet50-UNet++ by transfer learning before extracting the features in the case of
insufficient samples. Subsequently, the Relief-F algorithm was used to rank the importance
of the extracted deep features, and the optimal feature sets were formed by filtering the top-
ranked features to prevent data redundancy. Finally, the optimal feature sets were put into
the ensemble learning training program to obtain the final urban vegetation classification
results.

Figure 3. Work flow of this study.

3.1. Feature Extraction Networks

In the phase of extracting features from images by FCNs, this study used the Tensor-
Flow deep learning framework and Python to build three UNet++ networks with different
skeletons. The specific versions of TensorFlow and Python are 2.6.0 and 3.6.6, and the
graphics card used for the environment was a NVIDIA GeForce GTX 1660. The three
different skeletons of UNet++ networks were the normal UNet++ network and the UNet++
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network with down-sampling replaced by VGG16 or ResNet50. Transfer learning was
performed prior to the training of these networks. The process of transfer learning was
intended to pre-train the network on the source domain (GID) to obtain the parameters,
and then, when training the network with the produced samples, only to fine-tune the
parameters so that the model could be adapted to the present dataset, thus saving a lot
of training time. When training the network after pre-training, after several studies to
debug the parameters in order to make the CNNs iterate faster during the training process,
the parameters were set as follows: the number of iterations was 120; the computational
batch size was 4; the optimizer was Adam; and the learning rate was 0.0001. Moreover, if
the validation loss rate still did not decrease after 3 epochs, the current learning rate was
halved.

3.1.1. UNet++

UNet++ is an extended network of the U-Net network which combines the principles
of DenseNet [31] and deep supervision [32] on the basis of U-Net, making improvements
via three aspects: jumping paths; dense jumping connections; and deep supervision. To
first bridge the semantic differences between the down-sampled and up-sampled feature
mappings, UNet++ added several convolutional layers to the jump-connected path of
each layer of the U-Net (green circles in Figure 4). The output of each convolutional layer
incorporated the corresponding up-sampled output of the lower layer. In addition, the
jump paths of UNet++ were dense jump connections (blue line in Figure 4). Dense jump
connections ensure that the convolutional layers on each jump path reach the correct
node, which increases the classification accuracy and improves the network gradient flow.
Moreover, UNet++ added deep supervision in the output. The complete UNet++ was
trained to give four outputs (L1, L2, L3, L4), each of which corresponded to a different
depth of the U-Net network training results. Therefore, each output may have validity
and independence. The study was able to adjust the network complexity and improve the
classification efficiency of the model via deep supervised pruning of the model.

Figure 4. Structures of UNet++, VGG16-UNet++, and ResNet50-UNet++ networks: (a) structure of
ResNet50; (b) structure of VGG16; (c) structure of UNet++; (d) input and output.
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The construction of UNet++ featured four down-samples and up-samples, and the
number of convolutional kernels in the convolutional layer was set to 32, 64, 128, 256, and
512. Each down-sampling layer contained a maximum pooling layer and two convolutional
layers. Each up-sampling layer had an up-sampling layer and two convolution layers. The
size of the convolutional kernels in the convolutional layer was 3 × 3, and the activation
function was rectified linear unit (ReLu). The size of the convolutional kernels in the
pooling layer was 2× 2. The magnification set in the up-sampling layer was 2. Considering
the iteration speed during training, the optimizer chose Adam [33], which converged faster
during the training process.

3.1.2. VGG16-UNet++

The VGG16-UNet++ network was designed to replace the down-sampled part of
the UNet++ network (backbone) with VGG16 (red box in Figure 4). The VGG16 network
increased the depth of the network through multiple non-linear layers when controlling the
number of network parameters, which improved the training effect of the neural network
to a certain extent. The VGG16 network model consisted of 13 convolutional layers and
3 fully connected layers. Only the first 13 convolutional layers of VGG16 were taken for the
down-sampling part of UNet++. The size of the convolutional kernel for each layer was
3 × 3, which was filled by the same style, and its structure was shown in Figure 4b.

3.1.3. ResNet50-UNet++

The ResNet50-UNet++ network was designed to replace the down-sampled part of
the UNet++ network (backbone) with ResNet50 (red box in Figure 4). The ResNet network
introduces the residual connected construction of residual cells as a means of solving
problems such as gradient disappearance and gradient explosion. The ResNet50 network
could be seen as seven parts. This study removed the pooling in the sixth part and the fully
connected layer in the seventh part and took only the first five parts of the convolutional
layer. The first part contained operations such as convolution, regularization, and activation
functions, while the last four parts of the convolution all contained blocks of residuals
(Figure 4a).

3.1.4. Activation and Loss Functions

The activation function and loss function played an important role in the optimization
phase of the network model. The convolution was followed by the addition of an activation
function, which enhanced the fit of the network by adding an element of nonlinearity. The
advantages of the ReLu function include sparse activation, efficient gradient propagation,
and low computational load [34,35]. Therefore, the common ReLu function was chosen
as the activation function for the study so as to keep the convergence rate of the model in
a steady state. The input features were set to be vectors x. The expression for ReLu was
given as follows:

f(x) = max(0, x). (5)

In each batch of network training, the loss function would calculate the difference
between the predicted and true values (the loss value), and the lower the loss value testified
to the better robustness of the network. To avoid the influence of feature area on accuracy
and to improve the stability of model training, the binary cross entropy (BCE) [36] and dice
loss [37] functions were chosen to form a hybrid loss function (dice BCE loss) [38]. The
expressions of BCE, dice loss, and dice BCE loss are as follows:

LBCE = − 1
N

N

∑
i−1

[yi × ln(pi) + (1− pi)× ln(1− pi)] (6)

LDice = 1− 2∑N
i=1 (yi × pi)

∑N
i=1 yi + ∑N

i=1 pi
(7)
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LDB = 0.5LBCE + LDice, (8)

where LBCE, LDice, and LDB are the loss rates of BCE, dice loss, and dice BCE loss, respec-
tively; n is the total number of sample pixels; yi is the actual label value of the ith pixel; and
pi is the probability that the ith pixel is predicted to be true [28].

3.2. Relief-F Filtering Features

In order to prevent data redundancy and improve classification efficiency, the study
extracted features and then selected the Relief-F algorithm for deep feature filtering. Relief-
F was proposed on the basis that it can solve multi-classification problems and is a good
filtering feature filtering algorithm at present. It transformed the multi-classification
problem into a number of binary classification problems, thus bringing samples of the
same classification category close together and dispersing samples of different classification
types. The Relief-F algorithm had the advantages of high computational efficiency and no
requirements for data type and size. The main computational procedures of the Relief-F
algorithm are as follows:

Wi = Wi −
k

∑
j=1

di f f (Ai, R, Hj)

mk
+ ∑

C 6=Class(R)

p(C)
1−p(Class(R)) ∑k

j=1 di f f (Ai, R, Mj(C))

mk
, (9)

where Wi represents the weight of the ith feature; diff(Ai, R, Hj) represents the distance
between sample R and sample Hj on feature A; p(C) represents the proportion of class C to
the total sample tree; Mj(C) represents the jth nearest neighbor sample in class C; so diff(Ai,
R, Mj(C)) then represents the distance between sample R and sample Mj(C) on feature Ai.

3.3. Ensemble Learning Classification

The optimal features set and label set filtered by the Relief-F algorithm were input to
ensemble learning for classification so as to obtain the final vegetation classification results.
The ensemble learning algorithm selected for this study was the Stacking algorithm, which
will improve the robustness and generalization of urban vegetation classification. The
Stacking algorithm is a two-level classifier consisting of multiple base classifiers in the first
layer and a meta-classifier in the second layer (Figure 5).

The performance of several base classifiers and meta-classifiers affected the final result
of the Stacking algorithm classification. SVM had advantages in the case of small samples,
non-linearities, and high-dimensional spaces. K-valued nearest neighbors (k-NN) has a
proven theoretical basis and can handle multi-classification problems simply and efficiently.
Gradient-boosting decision tree (GBDT) [39] and RF succeed in the areas of boosting
and bagging, respectively, and both ensure the effectiveness of classification via different
mechanisms. Among them, GBDT was able to handle various types of data flexibly and
increase the weight of misclassified samples, while RF had high training efficiency and
accuracy and had better resistance to interference and overfitting. Therefore, this study
selected three machine learning algorithms of SVM, GBDT, and k-NN with high learning
ability as base classifiers, considering the adequacy and diversity of base classifiers. In
addition, RF, with better generalization ability, was chosen as the meta-classifier in the
second layer. The kernel function in SVM was set to radial basis function (RBF) and cache
size was set to 1024. The learning rate in GDBT was 0.05, and the subsample was set to 0.5.
The value of k (n neighbors) in k-NN was set to 3. The number of decision trees in the RF
was set to 100, and the random state was set to 42.

The Stacking algorithm was calculated as follows: the optimal deep feature set was
freely combined and divided into a training set D1 and a test set D2. The 3 base classifiers
were used to perform k-fold cross-validation on D1 while the second training set, D1

′, was
obtained. The meta-classifier was then trained using D1

′. Afterwards, D2 was input into the
trained base classifier to obtain the second test set D′2 = {(yi, z1i, z2i, · · · , zni)}k

i=1, where ©
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is the ith training sample and n represents the nth base classifier. Finally, D2
′ was fed into

the trained meta-classifier and the final classification result was output.

Figure 5. Structure of the Stacking algorithm.

3.4. Accuracy Validation

Confusion matrices were used in this study to perform accuracy evaluation. The
specific evaluation metrics included overall accuracy (OA), Kappa coefficient, producer’s
accuracy (PA), and user’s Accuracy (UA). The different evaluation metrics reflected the
accuracy of the classification from different aspects. The overall accuracy and Kappa
coefficient were indicators of the overall classification accuracy, while the cartographic
accuracy and user accuracy were indicators of missed and wrong classifications for each
classification type. The formulae for each accuracy evaluation indicator are as follows:

OA =
Sd
n

(10)

Kappa =
OA− ∑ (Xi∗×X∗i)

n2

1− ∑ (Xi∗×X∗i)
n2

(11)

PA =
Xij

Xi∗
(12)

UA =
Xij

X∗j
, (13)

where Sd is the number of correctly classified samples; n represents the total number of
validation samples; Xij represents the number of samples of land cover type j classified as
land cover type I; and Xi* represents the number of samples classified as land cover type i
for the total number of samples. The number of samples with a total of j true land cover
types is denoted by the symbol X*j.
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4. Results
4.1. Deep Features of Network Extraction

The UNet++, VGG16-UNet++, and ResNet50-UNet++ networks were trained based
on the training and validation sets. The flops of UNet++, VGG16-UNet++, and ResNet50-
UNet++ networks were 9,040,355, 20,246,819, and 33,203,144, respectively. Four output
feature sets (L1, L2, L3, L4) were obtained for each of the three networks, and the loss value
variation curves for each output are shown in Figure 6. The loss values of the training and
validation sets of the three networks showed relatively consistent trends. The loss curves
decreased rapidly in the early training phase and converged gradually in the later phase
with increasing training batches, and none of them showed any overfitting phenomenon.
VGG16-UNet++ and ResNet50-UNet++ had faster decreasing training and validation loss
curves than the UNet++ network and leveled off first at batch 41. The results demonstrated
that VGG16 and ResNet50 replacing the down-sampling of the normal UNet++ network
would increase the training efficiency of the network. Furthermore, the L4 outputs of
the UNet++, VGG16-UNet++, and ResNet50-UNet++ networks had smaller validation
loss values than the other three outputs, all stabilizing at around −0.9. Therefore, the L4
outputs of the three networks were the best trained, and the L4 output set was taken for
classification in the subsequent classification study.

Figure 6. Loss curves of different FCNs: (a) loss curve of UNet++; (b) loss curve of VGG16-UNet++;
(c) loss curve of ResNet50-UNet++.

In this study, five deep features were selected in the L4 output set of each of the
three FCNs, and the differences between different vegetation land types (grassland, forest,
and farmland) were analyzed in FCNs via their deep features and the spectral features
(Figure 7). The spectral features were reduced by a factor of 100 due to the large difference
in the range of the different features. The near-infrared (NIR) and red edge bands of the
spectral features were better at separating the three vegetation land types compared to the
red, green, and blue bands and the short-wave infrared. However, the NIR and red edge
bands were less distinguishable with respect to grassland and forest, while grassland and
forest were significantly different in the deep features of UNet++_22, ResNet50-UNet++_16,
ResNet50-UNet++_31, and VGG16-UNet++_5, which indicated that the deep features of
the three FCNs could better distinguish grassland and forest. In addition, the deep level
features in the three FCNs also differed significantly with respect to grassland and forest in
terms of information about farmland.
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Figure 7. The differences for each vegetation land type in the spectral features and in the extraction
of deep features via different FCNs (the y-axis is the value of the different features, where the spectral
features have been scaled down by a factor of 100).

4.2. Results of Deep Features Filtering

Deep features were extracted in this paper by using UNet++ (32), VGG16-UNet++ (32),
and ResNet50-UNet++ (32). The deep features (96) extracted by all three networks were
filtered based on the Relief-F algorithm, and the feature importance ranking was derived
(Figure 8).

Figure 8. Importance ranking of deep features extracted by UNet++, VGG16-UNet++, and ResNet50-
UNet++ (top 45 deep features).
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UNet++, VGG16-UNet++, and ResNet50-UNet++ networks each had 15 features
extracted ranking in the top 45. Among the top 15 features, VGG16-UNet++ extracted
features occupied 5, and ResNet50-UNet++ extracted features occupied 7. The number of
deep features extracted by VGG16-UNet++ and ResNet50-UNet++ with importance higher
than 0.025 was more than the number of deep features extracted by UNet++, which proved
that the features extracted by VGG16-UNet++ and ResNet50-UNet++ were superior to those
extracted by UNet++ with high semanticity. Considering the computational complexity
and efficiency, the top 35 ranked features were selected to form the optimal deep feature
set for classification in the subsequent experiments of the study.

4.3. Classification Results UNet++ Networks and Stacking Algorithm (UNS)

The urban vegetation classification results by UNS are shown in Figure 9a. A compari-
son of the classification results via visual discrimination showed that the distribution of the
vegetation types (grassland, forest, and farmland) extracted via UNS corresponded to the
actual surface conditions. Grassland was scattered throughout the study area, large areas
of farmland were mainly located in the north-western part and near the rivers, and forest
was evenly distributed in areas other than the cities.

Figure 9. Classification results of the UNet++ networks and the Stacking algorithm (UNS): (a) clas-
sification image of USN; (b–d): classification image of three sub-regions; (e) classification accuracy
of USN.
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The OA of the urban vegetation classification results based on UNS was 92.74%, and
the Kappa was 0.8905. UA and PA were above 89% for forest and farmland (Figure 9e), but
only 76.06% and 84.14% for grassland. The main reasons for this were the small sample of
grassland relative to the other land types and the fact that grassland and other vegetation
types (forest and farmland) had similar spectral features during parts of the growing season,
which influenced the deeper features to some extent.

In addition, the study intercepted a total of three sub-regions from the study area
with different heterogeneity, namely, suburban (Figure 9a), urban center (Figure 9b), and
mountainous area (Figure 9c), in order to better analyze the classification results of UNS
for presentation. Area 1 (Figure 9b) contained regularly shaped farmland, and UNS was
able to distinguish well between farmland and built-up land, and between farmland and
grassland, and the boundaries of the forest land were clearly and carefully delineated.
Area 2 (Figure 9c) was located in an urban agglomeration with a high degree of land
fragmentation, and UNS extracted the fragmented forest in its entirety. However, as some
of the farmland was not planted with crops or cash crops in April and May, the features of
the farmland and the built-up bare soil were similar, making it prone to misclassification.
Area 3 (Figure 9d) was located in mountainous terrain, and the method provided accurate
mapping of both forest and farmland. In general, UNS enabled the classification of urban
vegetation from high-resolution imagery.

5. Discussion
5.1. Analysis of Transfer Learning

To verify the effectiveness of transfer learning, urban vegetation was classified by
UNet++, VGG16-UNet++, and ResNet50-UNet++ without transfer learning (a, b, and c)
and with transfer learning (d, e, and f), and accuracy evaluation results (Figure 10) were
obtained. The results showed that the transfer learning followed by retraining UNet++,
VGG16-UNet++, and ResNet50-UNet++ networks improved OA and Kappa by 4.86% and
0.0843, 5.75%, and 0.0906, and 5.85% and 0.0918, respectively, compared to the networks
without transfer training. Of these, ResNet50-UNet++ with transfer learning resulted in
the greatest improvement in OA and Kappa. The transfer learning was shown to reduce
the generalization error and improve the training efficiency of the network in the case of
insufficient samples, which is consistent with previous research findings [40].

Figure 10. Classification results of the networks after transfer learning and the without transfer
learning: (a) UNet++ without transfer learning; (b) VGG16-UNet++ without transfer learning; (c)
ResNet50-UNet++ without transfer learning; (d) UNet++ with transfer learning; (e) VGG16-UNet++
with transfer learning; (f) ResNet50-UNet++ with transfer learning.

5.2. Classification Results by Single FCNs or Stacking

Single FCNs or Stacking were also used to classify the vegetation, and the results were
compared with those of UNS. Compared to the single FCNs UNet++, VGG16-UNet++,
ResNet50-UNet++, and the Stacking algorithm, the UNS improved the OA by 2.34%, 1.8%,
2.29%, and 10.74%, respectively (Table 1). In terms of the UA and PA for forest and farmland,
the UNS were all improved to varying degrees compared to single FCNs or Stacking. For
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UA in grassland, the UNS improved by 14.78%, 6.76%, 17.31%, and 3.34% over UNet++,
VGG16-UNet++, ResNet50-UNet++ and Stacking, respectively (Figure 9 and Table 1).

Table 1. Classification accuracy of single FCNs or Stacking.

Land Types
Stacking UNet++ VGG16-UNet++ ResNet50-UNet++

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Forest 94.53 85.99 94.75 92.03 95.11 92.43 95.17 91.36
Grassland 72.63 52.82 61.28 81.86 69.30 77.75 58.15 87.16
Farmland 76.53 91.60 92.52 91.80 92.75 92.55 91.17 92.69

Built-up land 82.72 72.87 87.53 82.85 86.85 87.72 91.49 82.79
Water bodies 96.32 72.65 92.91 93.59 94.24 92.66 93.60 93.70

OA 82.02% 90.40% 90.94% 90.45%
Kappa 0.7409 0.8542 0.8628 0.8560

In addition, the classification OA and Kappa of all three FCNs were above 90%
and 0.85. Among them, the VGG16-UNet++ network had the highest urban vegetation
classification accuracy with classification OA and Kappa coefficients of 90.94% and 0.8628,
respectively (Table 1). From the above, this indicated that the deeper features extracted
by the VGG16-UNet++ network were beneficial in improving the classification results
compared to the other two FCNs. Su et al. [41] achieved better results in the semantic
segmentation of remote sensing images using a model of MFNet with VGG16 as the
backbone on the Potsdam test set, which is consistent with the results of this study. In
addition, the classification OA and Kappa of the Stacking algorithm were only 82.02%
and 0.7409, which were 8.38%, 8.43%, and 8.92% lower than those of UNet++, ResNet50-
UNet++, and VGG16-UNet++, respectively. Furthermore, the visual analysis (Figure 11)
revealed some obvious misclassifications in the results of the Stacking algorithm compared
to the results of the three FCNs. In the middle of the classification map, some built-up pixels
were misclassified as farmland by the Stacking algorithm, which did not correspond to the
actual situation. This partly indicated that the FCNs were capable of extracting features
from remote sensing images and thus of improving the results of vegetation classification
compared to the Stacking algorithm.

Figure 11. Classification results of single FCNs or Stacking: (a) classification results of Stacking;
(b) classification results of UNet++; (c) classification results of VGG16-UNet++; (d) classification
results of ResNet50-UNet++.

5.3. Classification Results by Using Different FCNs Combined with Stacking

The convolution layer has a rich feature set to improve classification. Therefore, in
order to verify the urban vegetation classification accuracy with different deep features, the
deep features extracted by each of UNet++, VGG16-UNet++, and ResNet50-UNet++, as
well as the optimal deep feature set obtain after filtering by three types of FCNs extracted
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features, were combined with the Stacking algorithm for urban vegetation classification,
respectively, and the accuracy evaluation was shown in Figure 12.

Figure 12. Classification accuracy of different FCNs combined with Stacking: (a) classification
accuracy of UNS; (b) classification accuracy of UNet++ combined with Stacking; (c) classification
accuracy of VGG16-UNet++ combined with Stacking; (d) classification accuracy of ResNet50-UNet++
combined with Stacking.

The single FCNs and the Stacking algorithm combined (b, c, and d) all had accuracies
above 91%, which proved that the features trained and extracted using the FCNs had good
separability. Among them, VGG16-UNet++ extracted deep features better than UNet++
and ResNet50-UNet++, which achieved UA and Kappa of 91.53% and 0.8717. UNS (a)
improved the OA by 1.71%, 1.21%, and 1.63%, respectively, and the kappa coefficients by
0.0262, 0.0188, and 0.0242, respectively, compared with a single FCNs combined with the
Stacking algorithm (b, c, and d). From the confusion matrix of the four methods, the deep
features extracted by methods (b), (c), and (d) performed differently for different land types.
(d) had a higher UA of forest compared to (b) and (c), and (c) had a higher UA of forest and
farmland compared to (c) and (d). However, the UA of vegetation (grassland, forest, and
farmland) obtained via the method combining deep features extracted by all three FCNs
was improved compared to the other three methods. The highest UA improvement was
obtained for grassland, with (a) being 6.74%, 9.46%, and 5.05% higher than the UA for (b),
(c), and (d), respectively. Therefore, image features extracted via a single model are often
inadequate compared to those extracted by multiple models [42], and the study was able to
effectively improve the classification accuracy by fusing features with differences.
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5.4. Classification Results by Other Vegetation Classification Methods

It has previously been shown that U-Net and DeepLab V3+ have achieved some results
in vegetation classification [43]. Therefore, to further validate the effectiveness of UNS,
RF, U-Net, and DeepLab V3+ were used to extract urban vegetation in this paper, and
the classification results were compared with those of UNS. The results showed (Table 2)
that the OA of RF, U-Net, and DeepLab V3+ were all above 81%, with the OA (89.69%)
and Kappa coefficient (0.8432) of U-Net being higher than those of RF and DeepLab V3+.
Compared to RF, U-Net, and DeepLab V3+, UNS improved in OA by 11.31%, 9.38%, and
3.05%, and in both vegetation UA and PA, respectively. The largest increases were shown
in grassland UA and PA, with UNS improving grassland UA and PA by 10.4% and 36.78%,
17.31% and 8.43%, and 12.65% and 8.8% over RF, U-Net, and DeepLab V3+, respectively.

Table 2. Classification accuracy of different image vegetation classification methods: (a) classification
accuracy of UNet++ networks and Stacking; (b) classification accuracy of U-Net; (c) classification
accuracy of DeepLab V3+; (d) classification accuracy of RF.

Land Types
(a) (b) (c) (d)

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Forest 96.80 94.10 96.73 88.35 93.74 78.09 93.89 85.18
Grassland 76.06 84.14 63.41 75.34 58.74 75.71 65.66 47.36
Farmland 94.17 93.82 90.12 93.11 81.80 89.32 76.36 91.36

Built-up land 89.32 89.97 87.26 84.87 82.77 74.47 82.53 73.13
Water bodies 94.54 95.24 94.68 91.62 88.26 92.15 96.32 72.65

OA 92.74% 89.69% 83.36% 81.43%
Kappa 0.8905 0.8452 0.7531 0.7326

Four subareas were selected from the study area—farmland, suburban, urban, and
mountainous areas—to qualitatively analyze the classification results of UNS. First, the
ungrown farmland was easily misclassified into built-up land and water bodies due to
the close proximity of the ungrown farmland and built-up bare land features. Compared
to the other methods that used convolution to extract features, RF clearly misclassified
the farmland in region (a) into built-up land and water bodies. In the three methods
that used convolution (UNS, U-Net, and DeepLab V3+), UNS reduced the built-up land
misclassification into farmland compared to the other networks (Figure 13C). Furthermore,
UNS and RF distinguished grassland more accurately than U-Net and DeepLab V3+ in
region (b). UNS reduced the loss of forest boundaries compared to the results derived by RF.
Forest was misclassified as grassland in the RF and DeepLab V3+ results (Figure 13C,D) due
to the effect of mountain shading. In contrast to U-Net, UNS showed less “salt-and-pepper”
(Figure 13D). Therefore, combining deep learning and ensemble learning, UNS was able
to enhance the generalization and robustness of the model by combining deep features
extracted by different networks and effectively extracting information on urban vegetation
over large areas [44].

5.5. Limitations and Future Work

Dong et al., combined the techniques of FCN and RF for the classification of high-
resolution remote sensing images and achieved excellent classification results, but only
a single FCN was utilized, and features may be insufficient [26]. In contrast, this study
utilized three FCNs combined with ensemble learning for urban vegetation classification
and achieved good classification results. However, as only single-time phase Sentinel-
2 images were used in this study, resulting in poor classification of the grassland type,
subsequent vegetation classification could be carried out using multi-temporal data. In
addition, the parameters and loss functions of the model could be further refined and subse-
quently adjusted to improve the classification accuracy. Alternatively, a network with better
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spatial generalization capability can be used instead of FCNs to address spatiotemporal
heterogeneity [45].

Figure 13. Results of vegetation classification with RF, U-Net, and DeepLab V3+ for four typical areas
(A–D): (a) classification results of UNet++ networks and Stacking; (b) classification results of U-Net;
(c) classification results of DeepLab V3+; (d) classification results of RF.

6. Conclusions

To address the challenge of accurately identifying vegetation in urban areas, this
study proposed a vegetation classification method (UNS) that combines the advantages of
transfer learning, FCNs, and ensemble learning. The results indicated that the deep features
extracted by UNet++, VGG16-UNet++, and ResNet50-UNet++ were more effective than the
spectral features alone for identifying vegetation. The fusion of the deep features extracted
by UNet++, VGG16-UNet++, and ResNet50-UNet++ improved the classification of urban
vegetation. In addition, the research method effectively displayed the vegetation informa-
tion of the images and provided better classification of urban vegetation than common
vegetation classification algorithms. In conclusion, the study provides a methodological
reference for the extraction of urban vegetation information in the face of accelerating
urbanization.
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