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Abstract: The eruption of Mount St. Helens in 1980 resulted in a cataclysmic restructuring of its
surrounding landscapes. The Pumice Plain is one of these landscapes, where tree species such as Sitka
willow (Salix sitchensis) and their dependent communities have been established along newly-formed
streams. Thus, the study of these dependent communities provides a unique and rare opportunity
to investigate factors influencing metacommunity assembly during true primary succession. We
analyzed the influence of landscape connectivity on metacommunity assembly through a novel
application of circuit theory, alongside the effects of other factors such as stream locations, willow leaf
chemistry, and leaf area. We found that landscape connectivity structures community composition
on willows across the Pumice Plain, where the least connected willows favored active flyers such
as the western tent caterpillar (Malacosoma fragilis) or the Pacific willow leaf beetle (Pyrrhalta decora
carbo). We also found that multiple levels of spatial habitat structure linked via landscape connectivity
can predict the presence of organisms lacking high rates of dispersal, such as the invasive stem-
boring poplar weevil (Cryptorhynchus lapathi). This is critical for management as we show that
the maintenance of a heterogeneous mixture of landscape connectivity and resource locations can
facilitate metacommunity dynamics to promote ecosystem function and mitigate the influences of
invasive species.

Keywords: major disturbance; primary succession; landscape connectivity; plant-insect interactions;
community assembly; metacommunity; invasive species

1. Introduction

Major disturbances such as hurricanes, wildfires, and human activity can fundamen-
tally alter ecosystems through the removal of organisms from the landscape [1–4]. Some
disturbances can have even more pronounced effects on organisms through the modifica-
tion of abiotic factors such as topography and soil chemistry (e.g., landslides and volcanic
eruptions) [5,6]. Ecological consequences of disturbances include the severance of land-
scape connectivity [7,8], population bottlenecks that reduce genetic diversity [9], and the
disruption of nestedness within ecological communities (i.e., metacommunities) [10–12].
These consequences can have both positive and negative effects on post-disturbance com-
munities depending on their prior compositions, such as the degree of invasibility versus
more “natural” compositions [13,14], resulting in a context-specific understanding of how
major disturbance processes shape the world’s landscapes [15–17]. The biological assembly
of a landscape after major disturbance events is often referred to as primary succession,
wherein the re-establishment of organismal populations and communities over time is

Forests 2023, 14, 322. https://doi.org/10.3390/f14020322 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f14020322
https://doi.org/10.3390/f14020322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-6775-9810
https://orcid.org/0000-0002-1728-9723
https://orcid.org/0000-0003-3839-1871
https://orcid.org/0000-0002-6255-109X
https://orcid.org/0000-0002-1185-4437
https://doi.org/10.3390/f14020322
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f14020322?type=check_update&version=2


Forests 2023, 14, 322 2 of 22

governed by environmental conditions and resource availability [8,18,19]. The regeneration
of metacommunity dynamics is an important component of primary succession that can
often take many years [20], yet it is critical to understanding current and future trends for
the function of ecosystems post-disturbance [10,21,22].

Landscape connectivity, measured as how easily organisms can disperse across a land-
scape, structures the geospatial arrangement of plant species and can aid in the regeneration
of metacommunities following disturbance [19,23,24]. The resulting distributions of host
plants, a nested degree of biological landscape connectivity, often have direct influences on
dependent communities of arthropods and microbes [25–27]. Landscape connectivity as
a result of host plant location can thus assemble plant-associated communities based on
dispersal ability and proximity of habitat corridors [28–30]. In many landscapes, topogra-
phy, established vegetation patches, and the presence of water interact to influence where
plant communities can establish themselves [31–33]. Specifically, water availability limits
where plants establish, especially for many tree species in the western US [34], as decreased
water availability results in decreased recruitment of trees and greater early-age mortal-
ity [35,36]. Furthermore, tree community regeneration can be determined based on the
accessibility of water following many major disturbances (e.g., fire or volcanic eruptions),
given that light, through the removal of competitors, and nutrient accessibility, through
the deposition of organic material, are not typically limiting [37–40]. Thus, the ability of
primary successional tree communities to influence connectivity in the western US is reliant
on where water is found on the landscape, how much water is available, and how these
characteristics change over time [41–44]. The connectivity of these tree communities, and
by proxy water availability, should then be directly related to associated arthropod and
microbial communities that establish on trees post-disturbance [45,46].

Many attempts have been made to model landscape connectivity [47–49] across dif-
ferent regions of the world and for markedly different ecosystem types [50–52]. The most
powerful methods currently used, such as circuit theory [53], rely on the stochastic dis-
persal of a target population or community over space and time directed by some set of
structuring parameters [54]. While circuit theory can require substantial computational
resources [55], it has been consistently found to outperform other techniques for modeling
landscape connectivity for both plants and animals [53,56,57]. However, circuit theory has
almost exclusively been used to model gene flow across populations or metapopulations of
one species rather than modeling the establishment of multiple community members in pri-
mary successional landscapes [58,59]. Furthermore, applications of circuit theory typically
focus on instantaneous connectivity between known individuals on a landscape and how
movements are facilitated among them [53,58–60] rather than on possible pathways for a
new individual to find habitat in a novel landscape [61]. Despite limited use by community
ecologists, circuit theory may be useful for understanding landscape patterns of species
establishment, especially in primary successional landscapes, as it relies on simple yet
robust assumptions of what geographical, chemical, or spatial parameters resist or facilitate
the movement of certain species [48,54,60,61].

Primary successional riparian habitats in the western US tend to follow a sequence
whereby willow species (Salix spp.) establish first, reaching maximum productivity at
approximately 10 years, followed by replacement by alder (Alnus spp.) until around
40 years [62]. The establishment of these pioneer trees creates corridors on the landscape
and may allow for increased habitat connectivity, especially across otherwise harsh environ-
ments. As riparian plants establish, they create a landscape mosaic of patches that may vary
based on within-species genetic variation [63–65] and other plant traits, such as plant sex in
dioecious species like willow [66]. Genetic variation, in addition to species-level differences,
may create a landscape that varies in terms of plant biomass, leaf chemistry, leaf shape,
leaf size, and individual susceptibility to herbivory [67–69]. Additionally, interactions
between these riparian host plants and leaf-modifiers, herbivores, and endophytes can
further alter the chemical and structural landscapes of these developing riparian forest
ecosystems [70–73]. As a result, other species which depend upon certain plants for their
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habitat may disproportionately utilize different plant species or even individuals of the
same plant species which exhibit varying chemical characteristics, fundamentally altering
communities and metacommunity compositions across the landscape [74–76].

Extreme volcanic eruptions, alongside the creation of new lava fields and massive
landslide events, can result in the complete removal of all biotic material from a landscape
and thus are an example of true primary succession [77–80]. During the eruption of Mount
St. Helens (Lawetlat’la in the Cowlitz language; Washington State, USA) in 1980, all three
of these disturbance types occurred simultaneously, and their interaction transformed
vast areas by incinerating pre-existing forests and depositing up to 100 m of mostly inert
material onto the landscape. These disturbances generated a unique primary successional
landscape feature called the Pumice Plain, a relatively flat area where springs and seeps
created several streams along which Sitka willow (Salix sitchensis) and green alder (Alnus
viridis (Chaix) DC) have begun to establish. Here, stream sources appear to contribute
greatly to the presence of trees and shrubs and their dependent communities, whether
driven by the simple availability of water or other processes such as the facilitation of
propagules. Previous research has demonstrated an overall 2:1 female:male ratio of willows
across the Pumice Plain [81] and that female willows establish closer to stream edges [82].
Additionally, it has been demonstrated that female willows are more susceptible to attack
by the stem-boring poplar weevil, Cryptorhynchus lapathi (Curculionidae, Coleoptera) [83].
Attack by the weevil causes premature branch death and alters leaf litter chemistry [84–86],
possibly influencing other plant-associated species. In addition, plant sex in S. sitchensis
has been shown to alter leaf chemistry [82,86] and potentially plant size and leaf size,
which may both influence plant-associated organisms [87,88]. While the willow-dependent
communities found across the Pumice Plain are relatively species-poor [83,86–88], their
interactions with factors such as landscape connectivity, leaf chemistry, and leaf area can
provide critical insights into patterns of community and metacommunity assembly.

Few studies have used a connectivity perspective to understand patterns of true pri-
mary succession or the assembly of plant-associated communities across landscapes. By
examining these patterns alongside other community-structuring parameters, we will pro-
duce a better understanding of the metacommunity dynamics across the Pumice Plain and
provide valuable insights into future landscape development. This understanding will con-
tribute direction for further scientific study and help inform management across the Pumice
Plain’s unique ecosystems. Here we propose two specific hypotheses: (1) Total species
richness of all willow-dependent organisms across the Pumice Plain will be influenced
broadly by landscape connectivity, followed by effects of stream location, differences in
willow chemistry, willow sex, and leaf size. Based on findings from previous work [82–88],
we predict that greater connectivity, leaf size, nitrogen content, and lower tannins will lead
to greater species richness. Furthermore, we predicted that willows of different sexes sam-
pled from different streams across the Pumice Plain would host different levels of species
richness. (2) Given that simple species richness may not fully capture metacommunity
dynamics and responses to tested parameters [89], we predict that organisms with different
life histories will depend differentially upon landscape connectivity, stream identity, willow
chemistry, sex, and leaf size across the Pumice Plain. We predict that organisms with
limited ability to disperse, such as weevils, galling mites, and fungal rust, will require
more connected landscapes. We predict that organisms with more symbiotic relationships
will be more influenced by female willows, given the noted higher rate of attack above
(e.g., stem-boring weevils vs. generalist chewers). Finally, we predict that intrinsic plant
characteristics such as leaf chemistry and leaf size will differentially influence the presence
and absence of willow-dependent organisms.
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2. Materials and Methods
2.1. Site Description

Mount St. Helens erupted in 1980 in a massive lateral blast that transformed over
600 km2 of forests, lakes, and streams. A 15-km2 area in the main blast zone, called the
Pumice Plain, was first buried by over 100 m of sterile pumice, ash, and sand in a 2.8 km3

debris avalanche [90]. It was then hit with a hot lateral blast of flying rock debris, covered
in 0.3 km3 of lava, which was as much as 40 m thick in places, and subjected to ash and
tephra fall [91]. In the years following the 1980 eruption, springs, seeps, and run-off from
snowmelt across the Pumice Plain created five new watersheds (Figure 1), which are slowly
seeing the establishment of riparian vegetation. Dominant riparian species include green
alder (Alnus viridis) and Sitka willow (Salix sitchensis; hereafter simply willow), the latter
of which has been regularly attacked by a stem-boring weevil (Cryptorhynchus lapathi,
Curculionidae, Coleoptera) since its introduction in 1989 [83].
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Figure 1. Site and study descriptions for the Pumice Plain of Mount St. Helens. (A) Location of Mount
St. Helens in Washington State, USA, represented by the black star. (B) Dominant geomorphological
processes structure landscape processes post-eruption [92]. Blue lines are stream features on the
Pumice Plain, near which willow shrubs were sampled. (C) Sampling locations of willow shrubs
across the Pumice Plain. The sampling of female v. male willows was uneven due to uneven field
access and sampling of the most available shrubs. The nearest streams to sampling locations are
labeled (Goose, Camp, Geo-W, Clear, Willow, Forsyth, and Redrock). For analyses, Forsyth and
Redrock Creeks were separate from Willow Creek, even though they are tributaries. The Circles
in Pane C are relative locations with sizes based on the number of samples collected near each
stream. The sampling depiction is intentionally simplified here to avoid overlapping objects, whereas
the reality of our sampling methods included sampling discrete willow shrubs in upland locations
associated with their nearest streams rather than in clusters to capture variability based on the Pumice
Plain’s heterogeneous landscape. Projection: WGS 84/UTM Zone 10N. Figure created in ArcGIS Pro
(version 3.0.0) [93].
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2.2. Field Data Collection

Between May–June of 2018, we haphazardly tagged 348 individual and relatively
isolated willows across the Pumice Plain and identified each as either male or female based
on the presence of reproductive structures [94]. Individual shrubs (a common life history
variant of Sitka willow trees based on youth or resource limitation) were tagged with
unique identification numbers and colored beads to represent sex, and their locations were
recorded by GPS. We also recorded the identity of the nearest stream (Camp, Clear, Forsyth,
Geo-West (Geo-W), Goose, Redrock, and Willow Creeks). In the summer of 2019 (26 June
to 11 July), we surveyed all willows once for a suite of willow-dependent organisms. These
species are varied in their life histories and plant-usage strategies, yet all leave identifiable
markings on their willow hosts. Thus, the resulting data, despite a potential temporal
mismatch of sampling and organism presence, are not skewed as these markings were
maintained by willows at the time of sampling. We surveyed for the presence of attack
by the stem-boring poplar weevil, Cryptorhynchus lapathi, based on evidence of frass at
the base of stems, dead branches, and/or the presence of adult weevils. We surveyed for
the presence of western tent caterpillars, Malacosoma fragilis (Lasiocampidae, Lepidoptera),
through evidence of webs, caterpillars, and/or cocoons. We surveyed for evidence of
the Pacific willow leaf beetle, Pyrrhalta decora carbo (Chrysomelidae, Coleoptera), based
on the presence of skeletonized leaves or larvae. We noted other types of leaf chewing
(chewed edges) caused by generalist herbivores, as well as the presence of ants, aphids, and
other unidentified caterpillars. We surveyed for the presence of the willow leaf gall sawfly,
Pontania pacifica (Tenthredinidae, Hymenoptera), based on the presence of round, red galls.
We also noted the presence of a second type of gall, most likely mites of the Eriophyidae
family, that presented a range of colors (red, orange, and yellow) on the top surface of
the leaf with white spindle-like growths on the underside. We noted the presence of
Melampsora spp. rust (an orange fungus common on members of the Salicaceae family), and
unidentified endophytes based on the presence of discrete black stromata. Species richness
for each tagged willow was determined based on their unique dependent community.

2.3. Leaf Litter Chemistry

Leaf litter was collected from a random subset of the tagged willows (n = 36) from
across the Pumice Plain to support related leaf litter decomposition studies. Weevil-induced
male and female willow litter was collected in July 2019, as damage due to weevils was
more obvious during the growing season, and naturally abscised male and female willow
litter was collected in August 2019 [86]. All litter was stored in individual paper sacks and
air-dried in the laboratory. Subsamples (0.50 g) were freeze-dried (Millrock Technology,
Kingston, NY, USA), ground to a homogeneous consistency (KRUPS Type F203), and used to
measure a variety of litter chemical traits (condensed tannins, carbon [C], nitrogen [N], and
C:N). First, subsamples of ground material (25 mg) were extracted for soluble condensed
tannins with 70% acetone and 10 mM ascorbic acid. We used the butanol–HCl method
to determine soluble condensed tannin concentrations [95], with standards purified from
local S. sitchensis [96]. Condensed tannin concentrations were determined by measuring
absorbance at 550 nm on a spectrophotometer (Spectramax 384, Molecular Devices, San
Jose, CA, USA) and comparing samples to a standard curve before being converted to
% condensed tannins (%CT). Second, ground subsamples (2 mg) were weighed into tin
capsules (5 × 8 mm) to determine %C and %N on an elemental analyzer (2400 CHNS/O
Series II System, Perkin Elmer, Waltham, MA, USA). The molar element ratio of C:N was
calculated as the ratio of %C divided by the atomic mass of C over %N divided by the
atomic mass of N.
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2.4. Leaf Area Measurements

Leaf area can influence associated insect and microbial community members [97,98];
thus, fresh leaves were collected from a subset of the tagged willows (n = 122). Roughly
five to ten leaves (depending on size) were collected from each willow and either preserved
in silica gel or laid onto individual paper sheets in a plant press. Both sample types were
dried for several months, weighed to the nearest mg, then scanned on a flatbed scanner.
Images were converted to black and white, and leaf area was calculated in ImageJ [99]
using a batch process. Specific leaf area (SLA) was calculated by dividing the total leaf area
by the mass of the leaves, then by the number of leaves in each sample.

2.5. Landscape Connectivity

Landscape connectivity often determines plant arrangements on a landscape as well
as dependent communities [23,61]. Thus, we used the Circuitscape connectivity package in
Julia [56] with a high-performance computing cluster to generate continuous landscape
connectivity measures for the Pumice Plain based on resistance maps produced in ArcGIS
Pro (version 3.0.0) [93]. Primary stream channels were mapped in-field using GPS. Updated
and ground-truthed geospatial data was required due to the dynamic nature of our study
streams. In this analysis, the greater distance from stream features resulted in greater resis-
tance on the landscape, given that water availability is often the most important limiting
factor in post-disturbance community regeneration in the western US [37–40]. We tested a
combination of stream locations and physical parameters such as slope and elevation to
predict landscape resistance [100], but landscape resistance changed little compared to only
using stream locations. Given similar performance with more complex models, we used
the simplest resistance maps created by linearly extrapolating resistance from mapped
stream locations to aid in understanding landscape connectivity for the Pumice Plain. Cir-
cuitscape runs were based on randomized node locations that produced pairwise electrical
current walks through our resistance maps rather than simply producing instantaneous
connectivity for known individuals (n = 20 to reduce the computing time and capture
within-run variability). We then recreated the Circuitscape output with 20 randomized
node repetitions to ensure that sufficient variation based on different arrangements of focal
nodes was captured. From each model output, we sampled electrical current for all of our
tagged willows as a proxy for an organism’s ability to move through the landscape, thus
producing a mean and variance of connectivity at each location.

2.6. Statistical Analyses

All statistical analyses were performed in R version 4.2.0 [101]. We specified three
suites of predictor parameters for use in different analytical methods, which test our
hypotheses individually based on varying sample sizes. Willow sex was included in
all 3 suites, given its influence on ecological communities at each scale and potential
interactions with other parameters. The first suite contained the following landscape-level
parameters: stream identity, landscape connectivity, and willow sex (n = 335). Stream
identity served as both a measure of unique hydrological inputs as well as a proxy for
the relative geographical location, given that willow shrubs sampled in this study were
growing within 15 m of streams. The second suite contained leaf litter chemistry variables:
%C, %N, the C:N molar ratio, %CT, willow sex, and weevil-induction (n = 31). The third and
final suite contained SLA and willow sex (n = 109). We then used each of these parameter
suites in generalized linear models (GLMs) versus willow community species richness to
address our first hypothesis (‘gls’ function in the ‘nlme’ package) [102] and in permutational
MANOVAs (PERMANOVAs) versus willow community dissimilarity to address our second
hypothesis (999 permutations, ‘adonis2’ function in the ‘vegan’ package) [103]. Community
dissimilarities for our PERMANOVAs were determined using the Bray-Curtis dissimilarity
index for the leaf-dependent communities found on each tagged willow [104]. To determine
the GLMs and PERMANOVAs with the greatest predictive power, we performed Akaike’s
Information Criterion (AIC) model selection for all parameter suites [105]. In this method,
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model parameters were reduced from the full suite of parameters and their most likely
interactions to the simplest two-term models to maximize simplicity and ensure effects
were adequately captured. We did not consider models with only one term, given that
these tests produced similar results to other simple models with added individual terms
but no interactions. We also investigated different combinations of parameters with both
interactive and non-interactive terms, and the final models we present illustrate a tradeoff
between overfitting and an explanation of variance. The AICs of each combination of
parameters for each parameter suite were then ranked, and the best overall GLMs and
PERMANOVAs were selected.

We analyzed pairwise posthoc stream comparisons for our species richness GLMs
using estimated marginal means (‘emmeans’ function in the ‘emmeans’ package) [106]
and Tukey’s HSD letters (‘cld’ function in the ‘lsmeans’ package) [107]. We performed
NMDS analyses (‘metaMDS’ function in the ‘vegan’ package) [103] to understand commu-
nity dissimilarity in the parameter space for differences observed in our PERMANOVAs
(stress < 0.1, 999 iterations, and 200 random starts). We then used a pairwise PERMANOVA
for stream differences based on landscape community dissimilarities (‘pairwise.adonis2’
function in the ‘pairwiseAdonis’ package) [108] and similarity percentage (SIMPER) analy-
ses to understand which community members contributed the most to differences found
between streams as well as between male and female willows (‘simper’ function in the
‘vegan’ package) [103]. Using the results of our SIMPER analyses, we generated a heatmap
to highlight the most important community members that drove observed differences
(‘heatmap’ function in base R).

3. Results

The below are descriptive statistics and visual comparisons intended to provide an
illustration of the overarching data structure used in subsequent statistical analyses and are
provided in full in Table S1. All of these data are presented in the format of mean ± 1 sd.
Overall taxa richness for willow-associated organisms (willow communities) ranged from
1 to 7, with a slightly higher average of 3.27 ± 0.08 taxa on female willows and 3.08 ± 0.09
taxa on male willows. Additionally, taxa richness was highest on willows growing near
Forsyth Creek, followed by Camp, Clear, Willow, and Goose, respectively, with the lowest
taxa richness on willows growing near Redrock and Geo-W. A mosaic of outputs for all
randomized Circuitscape runs can be found in Figure 2. Connectivity values ranged from
0.05 to 1.25 across the Pumice Plain, with average values slightly higher for female willows
(0.30 ± 0.02) compared to male willows (0.22 ± 0.02). Connectivity was highest for willows
sampled near Willow, followed by Clear, Forsyth, and Geo-W, while the lowest connectivity
values were found near Camp, Goose, and Redrock Creeks. Litter %C ranged from 44.80 to
48.80, %N ranged from 0.41 to 2.79, the C:N molar ratio ranged from 19.80 to 134.50, %CT
ranged from 1.10 to 28.60, and specific leaf area (SLA) ranged from 2.15 to 25.57 mm2 mg−1

across the Pumice Plain. Litter %C, %N, %CT, and SLA were similar between willow
males and females, while the C:N ratio was slightly higher for male willows (71.69 ± 10.27)
compared to female willows (61.91 ± 8.89). Litter %C was highly similar across willows
from all streams, while %N was highest for Forsyth and Willow and lowest for Geo-W and
Goose. The C:N molar ratio was highest for willows from Geo-W and Goose, both nearly
three times higher than Camp, Forsyth, and Willow Creek. Litter %CT was also highest for
willows from Geo-W and Goose, moderately low for Willow and Forsyth, and lowest for
Camp Creek. Finally, SLA was highest for willows from Goose and moderately high for
Geo-W, which were over four times higher than for Willow Creek.
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Figure 2. Electrical current outputs from 20 randomized start locations using Circuitscape in Julia [56].
Panes depict relative landscape connectivity based on landscape resistance dictated by the distance
from the nearest water source. Elevation and slope were tested as potential modifiers of resistance
but added little to understanding landscape resistance across the Pumice Plain versus the simpler
landscape resistance with distance from water. The size and extent of the geospatial area in this figure
are the same as those for Figure 1, Pane C. Projection: WGS 84/UTM Zone 10N. Figure created in
ArcGIS Pro (version 3.0.0) [92].

3.1. Landscape-Level Models

We found that landscape connectivity and stream identity with no interaction pro-
duced the best landscape-level GLM through model selection (L = −498.826, AIC = 1015.653;
Table S2). With this model (Table 1), connectivity (β̂ = −0.718, σ = 0.263, t327 = −2.731,
p = 0.007) explained differences in willow community species richness where less connected
shrubs were associated with higher species richness. The effects of stream identity were,
however, varied given that each stream was only tested, in turn, against the first level of the
stream factor (Camp), where only Geo-W (β̂ = −0.808, σ = 0.264, t327 = −3.059, p = 0.002)
and Redrock (β̂ = −0.936, σ = 0.294, t327 = −3.187, p = 0.002) produced differences in species
richness. Thus, from our pairwise posthoc investigation (Table S3), we found three stream
groupings for willows in terms of richness that differed from each other: (a) Redrock, Geo-
W, Goose, and Clear; (b) Goose, Clear, Willow, and Camp; and (c) Clear, Willow, Camp, and
Forsyth. Overlaps of stream identity for these groupings can be considered not different
from any other stream in either grouping while the absolute differences between groupings
are maintained.
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Table 1. Results of three generalized linear models for community richness as a response to changes
in landscape, chemistry, and leaf area factors (AIC model selection in Table S2). Factors not present in
this table were not part of the best model. Three separate models were used due to differences in the
number of observations. The stream factor was categorical and thus tested against its respective first
level. A pairwise estimated marginal means analysis can be found for the stream factor in Table S3.
Bolded rows indicate significant effects at α = 0.05. Abbreviations: SLA is specific leaf area, df is
degrees of freedom, β̂ is the effect estimate, σ is the standard error of the effect estimate, t is the test
statistic, and p is the null model probability parameter.

Factor df ^
β σ t p

Landscape Model (n = 335)

Connectivity 1 −0.718 0.263 −2.731 0.007
Stream-Clear 1 −0.188 0.394 −0.477 0.633

Stream-Forsyth 1 0.423 0.301 1.406 0.161
Stream-Geo-W 1 −0.808 0.264 −3.059 0.002

Stream-Goose 1 −0.488 0.304 −1.608 0.109
Stream-Redrock 1 −0.936 0.294 −3.187 0.002

Stream-Willow 1 −0.025 0.293 −0.086 0.931
Residuals 327 0.114 1.065 - -

Litter Chemistry Model (n = 31)

%N 1 1.492 0.657 2.269 0.031
%CT 1 0.150 0.053 2.842 0.008

Weevils 1 0.985 0.996 0.988 0.332
Residuals 28 0.095 0.867 - -

Leaf Area Model (n = 109)

SLA 1 >−0.001 <0.001 −5.417 <0.001
Willow Sex 1 −0.289 0.186 −1.555 0.123

Residuals 107 0.054 0.969 - -

We found that connectivity, stream identity, and willow sex with no interaction pro-
duced the best landscape-level PERMANOVA through model selection (L = −909.464,
AIC = 1046.270; Table S4). All three parameters predicted differences in community dissim-
ilarity on willow shrubs in the final model (Table 2; connectivity: SS = 0.361, F1,326 = 5.298,
p = 0.003; stream identity: SS = 0.386, F6,326 = 13.716, p = 0.003; and willow sex: SS = 5.600,
F1,326 = 5.670, p = 0.001). Our landscape-level NMDS analysis (Figure 3) revealed that
weevils, fungal rust, and galling mites were strongly associated with both female willows
and landscape connectivity. On the other hand, we found that sawflies and endophytes
were negatively associated with female willows (i.e., associated with males) and landscape
connectivity. Chrysomelid beetles and tent caterpillars were weakly negatively associated
with female willows and landscape connectivity, while all other community members
(aphids, other caterpillars, and other chewers) were not associated with either factor. Our
pairwise stream analysis indicated that willow-dependent community compositions for
Redrock and Clear were different from all other streams and each other (Table S5). Further-
more, the compositions for Geo-W were different from all other streams, with the exception
of Forsyth.
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Table 2. Results of three permutational MANOVA (PERMANOVA) tests for community dissimilarity
as a response to changes in the overall landscape, chemistry, and leaf area factors (AIC model selection
in Table S4). Factors not present in this table were not part of the best model. Three separate models
were used due to differences in the number of observations for each subset of data. Differences
found for continuous variables were analyzed using NMDS analyses in Figures 3 and S1. Bolded
rows indicate significant effects at α = 0.05. Abbreviations: df is degrees of freedom, SS is the sum
of squares, R2 is the correlation coefficient, F is a pseudo-F test statistic, and p is the null model
probability parameter.

Factor df SS R2 F p

Landscape Model (n = 335)

Connectivity 1 0.361 0.013 5.298 0.003
Willow Sex 1 0.386 0.014 5.670 0.003

Stream 6 5.600 0.196 13.716 0.001
Residual 326 22.183 0.778 - -

Litter Chemistry Model (n = 31)

%N 1 0.097 0.056 1.748 0.166
%CT 1 0.080 0.046 1.444 0.237

Residual 28 1.559 0.898 - -

Leaf Area Model (n = 109)

SLA 1 0.353 0.041 4.575 0.015
Willow Sex 1 0.064 0.007 0.825 0.501

Residual 107 8.179 0.952 - -
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Figure 3. NMDS analysis (four-dimensional) examining dependent-community dissimilarity on
tagged willow shrubs for our landscape-level parameters. Points omitted to focus on community
member differences versus parameters of assembly. Blue words are centroids for the 10 observed
community members. Stream ellipses are 95% confidence intervals. The relative length of connectivity
and female willow vectors indicate the strength of the effect of that parameter on related community
members. To find the best NMDS outputs, we sequentially increased the number of dimensions until
stress was reduced to <0.1, based on 999 iterations and 200 random starts. Abbreviations: CHEW
represents unidentified chewing guild arthropods, CHRYS represents chrysomelid beetles, ENDO
represents endosymbiont organisms on willows, GOTH represents unidentified caterpillars, RUST
represents fungi creating leaf rust on willow leaves, and TENT represents tent caterpillars.
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Our SIMPER analysis (Figure 4 and Table S6) revealed that all stream-based differences
in the willow communities above were driven in some way by tent caterpillars (15/15 com-
parisons) and nearly all by weevils (14/15 comparisons; only Redrock v. Camp was not).
In general, community differences among streams that were closer together as well as
farther away tended to be driven mostly by tent caterpillars, while those at intermediate
distances from one another were driven primarily by weevils, chrysomelid beetles, and
other chewers. Additionally, sawflies and chewers were important drivers for the majority
of observed differences (12/15 and 11/15, respectively) but were not as important as tent
caterpillars or weevils overall. Chrysomelid beetles were very important drivers for all
differences found between Clear and other streams despite driving differences in fewer
than half of the stream comparisons (6/15). The presence of endophytes, rust, aphids, and
other caterpillars did not drive any community differences, and the presence of galling
mites only drove differences in two comparisons (Redrock vs. Forsyth and Willow vs.
Geo-W). Finally, we found that community differences between female and male willows
were driven primarily by tent caterpillars and weevils but also, in some manner, by sawflies,
mites, and other chewers.
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Figure 4. Heatmap highlighting the most important willow-dependent community members that
drove observed differences for willow sex (contrast above) and stream comparisons from our SIMPER
analyses (Table S6). Darker red colors represent more important community members for a given
comparison. “+Stream Proximity” indicates stream comparisons that are geographically closer
together, while “−Stream Proximity” indicates those farther apart. Abbreviations: CHEW represents
unidentified chewing guild arthropods, CHRYS represents chrysomelid beetles, and TENT represents
tent caterpillars.
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3.2. Leaf Litter Chemistry Models

We found that %N, %CT, and weevil presence with no interaction produced the best
leaf litter chemistry GLM through model selection (L = −40.386, AIC = 90.771; Table S2).
In this model (Table 1), both %N (β̂ = 1.492, σ = 0.657, t28 = 2.269, p = 0.031) and %CT
(β̂ = 0.150, σ = 0.053, t28 = 2.842, p = 0.008) explained differences in willow-dependent
community species richness, where species richness was positively associated with %N
and %CT. Weevil presence did not drive differences in species richness (β̂ = 0.985, σ = 0.996,
t28 = 0.988, p = 0.332). We also found that %N and %CT with no interaction produced the
best leaf litter chemistry PERMANOVA through model selection (L = −92.689, AIC = 19.765;
Table S4). However, neither %N (SS = 0.097, F1,28 = 1.748, p = 0.166) nor %CT (SS = 0.080,
F1,28 = 1.444, p = 0.237) explained differences in willow community dissimilarity in the final
model (Table 2).

3.3. Leaf Area Models

We found that SLA and willow sex with no interaction produced the best leaf area
GLM through model selection (L = −162.167, AIC = 332.333; Table S2). In this model
(Table 1), only SLA (β̂ = >−0.001, σ = <0.001, t107 = −5.417, p = <0.001) explained dif-
ferences in willow community species richness, where species richness was negatively
associated with SLA. Willow sex did not drive differences in species richness in this context
(β̂ = −0.289, σ = 0.186, t107 = −1.555, p = 0.123). We also found that SLA and willow sex
with no interaction produced the best leaf area PERMANOVA through model selection
(L = −282.286, AIC = 235.071; Table S4). Only SLA (SS = 0.353, F1,107 = 4.575, p = 0.015) and
not willow sex in this model (SS = 0.064, F1,107 = 0.825, p = 0.501) explained differences
found in willow-dependent community dissimilarity (Table 2). Our leaf area NMDS analy-
sis (Figure S1) revealed that only endophytes were positively associated with SLA. Weevils
and galling mites were strongly negatively associated with SLA, while fungal rust and
chewers were weakly negatively associated. Tent caterpillars, sawflies, and chrysomelid
beetles were not associated with SLA.

4. Discussion

Given its relative simplicity, species richness is often a fundamental yet coarse first
investigation into how geospatial, structural, or chemical parameters influence ecological
communities [109,110]. Contrary to our expectations, landscape connectivity and specific
leaf area (SLA) were negatively related to species richness such that less-connected willow
shrubs and those with smaller leaves housed more species-rich communities. Landscape
connectivity, as well as SLA, typically facilitate the establishment of plant-dependent
species given that higher connectivity makes target plants more accessible across the
landscape and greater SLA presents as a larger food source. However, our results indicate
that connectivity and SLA may have unintended consequences for a species-poor primary
successional community. Mechanistically, larger willow leaves could produce a tradeoff
with palatability in which certain species may avoid leaves with unfavorable chemical
traits [87,88], be that tradeoff created by willow age or sex [82,86]. In addition, larger
willow leaves could facilitate competition, which leads to an imbalance of species present
or alters microbial establishment, which would further influence leaf palatability [111–113].
For connectivity, species that require greater connectivity of willows to establish across a
landscape may possess the ability to outcompete others, resulting in the reduced species
richness we observe. Furthermore, species that can utilize less-connected willows farther
from stream edges may simply avoid over-utilized shrubs with higher connectivity. In
conjunction with sex-ratio dynamics, where willows farther from streams are more likely
to be male [82], community compositions are likely to be different on willows experiencing
different levels of connectivity. We also found that species richness was differentially
related to the identity of streams nearest willow samples and that those streams were
organized into three separate groupings. Interestingly, species richness appeared to be
randomly distributed across the Pumice Plain, as none of the three groupings shared
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distinct geospatial placements. This potentially indicates that the proximity of streams does
not facilitate mutual levels of species richness. For the chemistry of willow leaf litter, we
found that %N and %CT positively influenced species richness, while no other parameters
explained differences or improved model power. The positive influence of nitrogen is not
unexpected as nitrogen is often limiting in many plant-dependent communities, and higher
nitrogen often results in more energetically favorable food sources [114,115]. However,
tannins are typically astringent and bitter components of plant chemistry, with the unique
ability to deter many types of herbivores [70]. Their positive influence on species richness
could be the result of a food-limited environment where willow shrubs are often simply
the best food source available to the species found on the Pumice Plain. Willow sex and
interactions with other parameters did not influence species richness for the leaf area
model and did not add to the explanatory power of our landscape and litter chemistry
models. This result is contrary to previous findings that female willows typically facilitate
species presence, particularly stem-boring weevils [83]. However, for such a species-poor
community, the effects of willow sex on richness may not be as prominent as sex effects on
community structure.

While species richness can provide a broad-scale view into the assembly of ecological
communities, understanding influences on community composition can provide critical
deeper insights into the life history and dispersal characteristics that could affect establish-
ment across the landscape [116,117]. Parallel to species richness, we found that landscape
connectivity, SLA, and stream identity drove differences in community structures among
individual willow shrubs. Furthermore, willow sex predicted community dissimilarity
despite no overall influence on species richness. Landscape connectivity was positively
associated with weevils, fungal rust, and galling mites, meaning that willows that were
more connected experienced higher rates of attack from these community members. These
organisms share a common life history based on passive physical dispersal ability in which
they utilize more connected habitats to move from host to host. For example, fungal rust is
notably spread through spores and potentially spreads more easily in denser shrub commu-
nities with higher water availability [118], while galling mites disperse after adult eclosure
through ballooning into the air and passively transferring to nearby plants [119,120]. Weevil
adults seldom fly and often lay eggs on the same individual from which they emerged
as larvae [83]. Directional flyers, which exhibit the ability to disperse actively across the
Pumice Plain and select hosts [121], such as tent caterpillars and chrysomelid beetles, were
less associated with landscape connectivity alongside aphids, which have been noted to
travel large distances along the ground in search of living plant material [122]. Thus, our
findings indicate that passive host use is directly related to increased landscape connectivity,
while the ability to actively select hosts mitigates the necessity of more connected habitats.
We also observed that endophytes were negatively related to connectivity, which is contrary
to expectations of low dispersal ability for symbiotic microbes. Upon further investiga-
tion, however, endophytes were present on nearly every willow, and their ubiquitous life
history in communities of the Pumice Plain is a finding mirrored in other studies [123].
Results for willow sex were similar to the above results for landscape connectivity, where
female willows were associated with the same species as increased landscape connectivity.
These results indicate that certain willow-dependent organisms differentially utilize willow
shrubs of different sexes, meaning that the placement of willow sexes on the landscape
can be a fundamental predictor of dependent community assembly. However, we found
no association between leaf chemistry and community dissimilarity, suggesting that the
influence of willow sex is more complex than potential differences in leaf chemistry. We
also predicted that endophytic symbionts would prefer female willows, yet their ubiquity
on all willows indicates that there may be no mechanism for endophytes to preferentially
utilize females. We did not explicitly test the landscape connectivity of female versus male
willows, but our results suggest that female willows were associated with higher overall
connectivity. However, it is important to note that we did not sample all willow individuals
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across the Pumice Plain and that this distinction could simply be caused by the locations
where certain willows were sampled (i.e., distances from the nearest stream).

Landscape connectivity is a broad-scale metric of habitat structure that is essential in
understanding how certain organisms can disperse between habitat locations [124], but
it is also important to understand how nested levels of habitat structure can assemble
communities and predict dissimilarity. Stream identity represents habitat structure at a
finer scale than connectivity as a proxy for physical landscape location and allows us
to investigate how stream heterogeneity influences community identity. Stream identity
also allowed us to test geographic location in a clearer way than with 2-dimensional
geographic coordinates, given that individual sampling coordinates for willows near
different streams overlapped and that differences in willow-dependent communities should
be more associated with proximity to the same stream (given proximity and connectivity to
each other) than with absolute coordinate locations. Furthermore, a single categorical value
for each willow location was critical for testing our hypotheses with a suite of assembly
characteristics (landscape, chemistry, and leaf area) rather than with more complex pairwise
distances across the Pumice Plain. Overall, we observed differences in 14/21 comparisons
of willow-dependent community dissimilarity between varying stream locations. These
differences were driven mostly by comparisons of other streams to Redrock, Clear, and
Geo-W, as well as comparisons to each other. These streams are spread across the Pumice
Plain and are not part of an interconnected network like Forsyth, Redrock, and Willow; thus,
the relative geographic location appears not to influence dependent community assembly.
However, willows from each stream alone harbored unique subsets of the overall dependent
community (e.g., Redrock willows with aphids, Clear with chrysomelid beetles, Camp
with sawflies, etc.), suggesting that specific locations of willows near individual streams
(i.e., independent geographic locations) do drive community assembly. We found that the
presence of tent caterpillars and weevils drove the majority of comparisons, where weevils
were more important in stream comparisons of moderate distance and tent caterpillars
were more important in all others. Thus, tent caterpillars may avoid connected willows
that have more weevils since the outer comparisons in both directions of our heat map are
between streams with higher landscape connectivity overall. Tent caterpillars may also not
expend energy in finding connected willows given their lack of mobility constraints, or
they may simply avoid willow branches attacked by weevils, as those branches are more
likely to die and collapse. These findings expand on our previous species richness results as
the absences of other community members, such as chrysomelid beetles and chewing guild
herbivores, also drive comparisons in which weevils are dominant, meaning that these
community members are disassociated with the presence of weevils. In a species-poor
community such as this, the lack of certain community members can have a powerful
effect on the services and resilience of the resulting ecosystem [125–128]. Leaf area is a
much finer metric of habitat structure, given its role in potential food availability, but it can
also be important in a willow’s ability to house different types of species. We found that
SLA was not positively associated with any community member, while it was negatively
associated with several organisms, such as weevils, galling mites, and rust. This finding
provides a potential mechanism for lower species richness associated with higher SLA, in
that the presence of no one organism led to a lower presence of others on larger leaves.
Rather, all community members either preferred smaller leaves or indifferently utilized
willows regardless of leaf size, indicating that some composition (e.g., energy density or
secondary chemicals) within larger leaves was less preferable than smaller leaves [129,130].
As a habitat metric, this finding has important implications for landscape management
as leaf size can be a proxy for leaf health and thus habitat carrying capacity [131,132],
and targeting certain habitat structures (e.g., willow ages or sexes) in this population can
facilitate willow-dependent community establishment.

Our findings indicate that community assembly on the Pumice Plain may be directed
by a variety of different factors. However, the scales at which each of these factors produced
an effect were markedly different. For example, we deliberately tested willow sex within
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each suite of model parameters to understand parameter interactions (landscape, chem-
ical, and leaf area) but found that willow sex variably contributed to model explanatory
power and only produced differences for richness via the leaf area dataset and community
structure via the landscape-level model. This finding implies that scale of effect, in which
a parameter may produce an effect at one scale but not at others, could be a crucial con-
sideration for the analysis of metacommunity dynamics across the Pumice Plain and is a
possible avenue for future research [133]. Additionally, all chemistry and leaf area param-
eters were performed for smaller subsets of the overall data due to sampling limitations.
Considering the varied effect of willow sex, it is possible that an expanded set of data, or
even for the full set of surveyed willows for this research, could elucidate heterogeneous
patterns of community response to different factors. Despite this, we have illustrated that
the metacommunity across willows on the Pumice Plain is regenerating based on this
array of community-structuring parameters. Specifically, we found that willows distinct by
different stream locations, leaf area, leaf chemistry, sex, and connectivity at the landscape-
scale are habitats for different subsets of the full community. This heterogeneity of use
by different community members is essential for facilitating metacommunity interactions
among different species [10,134], promoting ecosystem resilience [135], and establishing
a diversity of ecosystem services [136]. Thus, our findings are critical for understanding
community regeneration as a function of primary succession following a major disturbance
that effectively reset landscape processes and dynamics. Furthermore, our work is impor-
tant to direct future research focused over longer periods of time to understand the true
trajectory of metacommunity regeneration, given this study was conducted at one point in
time. This is especially important when considering the dynamics of newly developing
streams, of which our target streams are, in that different streams may be present year-in
and year-out [137]. The establishment of new willows on the landscape could be highly
dependent on the seasonal availability of water [138,139], and landscape connectivity will
be dependent on future stream locations and their variability. Furthermore, landscape
connectivity for currently established willows, such as those sampled for this study, will
change based on shifting hydrodynamics. Thus, mapping the same suites of parameters
over time will allow us to understand how the community changes over time based on
these parameters and how the landscape may change in the future.

Landscape connectivity and habitat structure, in association with dispersal ability,
often dictate how organisms will spread throughout a landscape [23,24]. However, effec-
tively capturing a measure of landscape connectivity and, thus, dispersal potential for
organisms requiring high connectivity is difficult. In this study, we utilize circuit theory in
Circuitscape, a modeling method that measures landscape connectivity not simply based
on the absolute distribution of a species but as a process of varying resistance inherent
to the landscape itself. The majority of other studies utilizing circuit theory analyze the
connectivity between specific individuals of the same species [58,59], while we treat the
connectivity produced as a community assembly process independent of willow sampling
locations (i.e., using randomized starts). In this manner, we tested hypotheses of commu-
nity assembly versus potential landscape connectivity and were able to make judgments
about what level of connectivity was influential for specific community members. Classic
measures of landscape connectivity simply do not capture these dynamics as they typ-
ically produce one output for a given pairwise comparison rather than a range of data
and a testable central tendency [47–49,53]. In our method, we effectively simulated how
an organism might experience the landscape: randomness and variance are much more
important given that migrants rarely enter or disperse from the same places, especially for
a primary successional landscape. To our knowledge, this application of circuit theory is
novel and could present new opportunities for other habitats experiencing rapid change or
those which are critically understudied, given that the production of resistance maps could
be readily achieved with adequate remote-sensing data.
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5. Conclusions

Landscape connectivity can be a powerful tool for the management of primary suc-
cessional landscapes; in our study, we found that variations in landscape connectivity can
sustain variations in organismal life histories such that patchy mosaics of connectivity
can support a wider range of potential community members. Furthermore, simply tar-
geting more connected landscapes has the potential to facilitate the expansion of invasive
species. If maintenance and further regeneration of metacommunity dynamics is a target
for restoration and management, understanding the potential pathways of invasibility
is vital given the influences that species like the stem-boring poplar weevil can have on
the communities to which they are introduced [84–86]. Studies in ecology often experi-
ence difficulty in extrapolating results from areas too fine-scaled to larger landscapes but
also with broader parameters such as physical location applied to more fine-scale pro-
cesses. We successfully capture dynamics across three separate resolutions of community
structure: leaf area, physical location via nearest streams, and overall landscape connec-
tivity. Utilizing these dynamics, in conjunction with the maintenance of heterogeneity
in community-structuring parameters (e.g., physical and chemical factors), will be key
in facilitating further development and regeneration of willow-dependent communities
across the Pumice Plain.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/f14020322/s1, Table S1: Descriptive data across willow sexes and streams
on the Pumice Plain of Mount St. Helens; Table S2: Results of Akaike’s Information Criteria (AIC)
model selection for our taxa richness generalized linear models (GLMs); Table S3: EM (estimated
marginal) means analysis for the stream factor of our taxa richness vs. landscape generalized linear
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