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Abstract: Based on Landsat TM/ETM/OLI images and MODIS NDVI time series remote sensing data
from 1999 to 2015, the changes of land use/cover types (including natural forests and plantations)
through NDVI trends and their relationship with meteorological factors in the middle reaches of
the Yangtze River (MRYR) were analyzed by supervised classification, coefficient of variation, trend
analysis, rescaled range analysis, and partial correlation analysis. The results showed that, in the
past 17 years, the main landscape type in the MRYR is forestland (accounting for more than 50%),
and the built-up land and plantations area increased by four fifths and one fifth, respectively. The
area of natural forests had been reduced by one fifth. Additionally, NDVI showed an upward trend
(0.37%), especially in natural forests (0.57%). Two thirds of the natural forests had NDVI values
greater than 0.80, and 89.21% of them were significantly improved. The area with an uncertain
future development trend of all vegetation was more than half of the area. At the same time, partial
correlation analysis with climate factors showed that relative humidity had an inhibitory effect on
vegetation growth (p < 0.05). Climate factors had a certain lag effect on the growth of natural forests
and plantations. Generally speaking, sunshine duration had a positive effect on forests growth, while
relative humidity had a negative effect. The results showed that if the forest land was studied as a
whole, many of the problems of natural forests and plantations would be ignored. The continuous
decrease of natural forests and possible further degradation in the future are worthy of attention. The
results could provide a reference for forest ecological protection in other areas.

Keywords: plantations; natural forests; NDVI; climate change; relationship

1. Introduction

Vegetation, as the core component of the terrestrial ecosystem, is the link between the
atmosphere, soil, water, and other natural factors in the ecosystem. It plays an important
role in soil and water conservation, climate regulation, and the stability of the ecological
environment [1–3]. Vegetation change is easily affected by climate. Under the trend of
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global warming, it has important theoretical value and there are application prospects
to study the vegetation distribution, growth status, and vegetation structure response to
meteorological factors [4–6]. With the continuous development and maturity of remote
sensing technology, vegetation remote sensing data has become a key data source for
monitoring global and regional land cover change. The Normalized Difference vegetation
index (NDVI) is the most commonly used indicator to characterize vegetation growth
status and coverage, and it is widely used in the study of vegetation change and its driving
factors [7–9].

The middle reaches of the Yangtze River (MRYR), including Hunan Province, Hubei
Province, and Jiangxi Province, is the core area of the development of the Yangtze River
economic belt, and also the key area of China’s “two screens and three belts” ecological
security strategy. The region has important ecological functions such as water conservation
and regulation, biodiversity protection, and basin ecological security. It plays an important
role in the ecological security and ecosystem stability of China and even East Asia [10]. In
recent years, due to the impact of climate change and human activities, the ecological envi-
ronment of the region has been deteriorating, and the problem of ecosystem degradation
is becoming increasingly prominent, which poses a serious threat to the water resource
conditions, ecological security, and sustainable development of the social economy of the
region and the whole Yangtze River Basin [11]. The change of vegetation ecosystem in the
MRYR has not only attracted the attention of scholars at home and abroad, but has also
been highly valued by the Chinese government [12].

In 2005, China plans to invest USD 1134.94 million to start 22 ecological protection
projects, including returning grazing land to grassland, returning farmland to forests,
and harnessing ecologically deteriorated land [13,14]. According to the results of the
Eighth National Forest Inventory (2009–2013), China’s plantation area was 69.33 million
ha, accounting for 36% of the forests area and for 17% of the national forests volume, and
the plantation scale ranks first in the world [15,16]. The results of the Ninth National
Forest Inventory (2014–2019) showed that the area of plantations (5.02 million ha) is larger
than that of natural forests (5 million ha) in some provinces of the MRYR, but the volume
was lower than that of natural forests (180.65 million m3 of plantations; 226.51 million m3

of natural forests) [17]. The community structure of plantations and natural forests was
usually different, the composition of plantations was relatively single, and the ecological
stability was fragile [18,19]. Many scholars have studied the differences of community
structure and soil components of plantations at the stand scale, but there are few studies on
the differences of landscape patterns and vegetation dynamics between plantations and
natural forests [20–22]. Analyzing the dynamic changes of land use types and vegetation
in the MRYR before and after the implementation of ecological projects, especially the
differences of dynamic changes of vegetation between plantations and natural forests and
evaluating and measuring the effect of ecological protection projects, could provide an
important scientific basis for evaluating the ecological benefits of ecological projects and
guiding the construction and layout of plantations projects.

Vegetation is very sensitive to climate change [23,24]. At present, scholars at home
and abroad have carried out a significant amount of research on the impact of climate on
vegetation change [25]. In previous studies, many researchers used correlation analysis,
multiple linear regression, and other methods to reveal that precipitation and temperature
were the main meteorological factors affecting vegetation change [3,26–28]. However, there
were also relevant studies concluding that vegetation changes were not only related to
precipitation and temperature, but also that other meteorological factors (such as sunshine
hours and relative humidity) had different effects on vegetation change [29–31]. The
slow process of vegetation growth determined that the responses of vegetation change
to meteorological factors had a certain lag and cumulative effect [32]. The responses of
vegetation to meteorological factors had spatial heterogeneity in different spatial scales
and vegetation types [26,33–35]. The results showed that NDVI was increasing year by
year. The Yangtze River Basin is rich in water and the heat condition is the limiting factor



Forests 2022, 13, 1224 3 of 20

affecting vegetation growth [36]. Yi et al. studied the responses of vegetation to climate
change in the MRYR and pointed out that vegetation had an obvious time lag to climate
change. But at present, there have been few studies comparing the dynamic characteristics
of NDVI and its responses to climate change between plantations and natural forests in the
same region [37]. Understanding and revealing the internal relationship between different
vegetation types and meteorological factors is of great significance for regional ecological
protection and management [38].

Remote sensing data can be used to identify vegetation types, mainly using the
differences of spectrum, texture, and other characteristics of different vegetation types.
Texture can be understood as the spatial change and repetition of image gray, or the
repeated local patterns (texture units) and their arrangement rules in the image. Haralick
first proposed the gray level co-occurrence moment (GLCM) [39]. This method uses a
spatial co-occurrence matrix to calculate the relationship between pixel values and uses
these values to calculate the second-order statistical properties of the matrix. GLCM is a
widely used texture statistical analysis method and texture measurement technology. In
the MRYR in China, plantations usually have single biodiversity and exist in patches of one
or two plant species, such as Masson Pine, Chinese fir, and Chinese thuja. Compared with
natural forests, this kind of plantation has more regular texture characteristics. Similarly, the
plantations in eastern Thailand also have special texture features, which makes it possible
to use texture features to identify their distribution law [40]. In southern Africa, the texture
features of vegetation are used to identify invasive species [41]. At present, the GLCM has
been widely used in image retrieval and classification, and it has greatly improved the
accuracy of image retrieval and classification [42].

In this study, Hubei Province, Hunan Province, and Jiangxi Province in the MRYR
are taken as the research objects, and four Landsat TM/ETM/OLI remote sensing images
in 1999, 2005, 2010, and 2015 are taken as the basic data source. Based on the GLCM and
spectral features, the neural network supervised classification method was used to classify
the land use types in the study area, and the forest land was further divided into artificial
forest and natural forest for analysis. Our specific objectives are: (1) to analyze the temporal
and spatial change characteristics of land use (including natural forest and plantation) in
the study area from 1999 to 2015; (2) to investigate the characteristics and evolution trends
of NDVI of different vegetation types in the MRYR; (3) to analyze the relationship between
meteorological factors and NDVI at interannual and monthly scales. This study reveals
the dynamic changes of land use/cover types and the response mechanism of vegetation
to climate change in the MRYR, especially natural forests and plantations. Our research
can provide a scientific reference for regional ecological environment construction and
protection measures.

2. Study Area

The MRYR includes Hubei Province, Jiangxi Province, and Hunan Province (24◦25’ N–
33◦16′ N, 108◦24′ E–118◦23′ E), with a total area of 564,600 km2 (Figure 1). There are
flat plains, hills, and steep mountains in this area. In the long process of development,
traditional agriculture, forestry, and fishery production and splendid cultural and artistic
landscape have formed in this area, which has had an important impact on the local land
use [43,44]. The area over the general terrain is mountainous. The terrain is high in the west
and low in the east, and the average altitude is approximately 1497 m [36]. The MRYR is
rich in forest resources. In 2018, there were 174.38 million permanent residents in the MRYR,
accounting for 12.7% of Chinese total population. The annual gross regional product (GDP)
reached USD 1479.50 billion, accounting for 10.9% of the Chinese total GDP [45].
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Figure 1. The location of MRYR in China. (a–c) plantations in the study areas; (d–f) natural forests in
the study areas.

The plantations in the study area have a simple diversity of species, often consisting
of one or two species of trees, such as Chinese fir, Masson pine, and Chinese thuja, etc.
(Figure 1a–c). The natural forest is rich in plant diversity, mainly composed of Cinnamomum,
Ligustrum, and Koelreuteria, etc. (Figure 1d–f). The vegetation under these plantations
is relatively uniform and has regular texture characteristics, which are different from
natural forests.

3. Data and Methods
3.1. Data Source and Preprocessing

The Landsat TM/ETM/OLI data used in this study are from the China geospatial
data cloud (http://www.gscloud.cn/, accessed on 15 April 2021) (Table A1). The NDVI
data product is MODIS NDVI data from 1999 to 2015, which is derived from NASA’s
MOD13A2 (https://wist.echo.nasa.gov/ap, accessed on 15 April 2021). Considering the
integrity and quality of the data, we choose to use a spatial resolution of 1 km × 1 km, and
the time resolution is 16 d. The acquired data are preprocessed by ENVI 5.3 and ArcGIS
9.3, including atmospheric correction, radiation correction, clipping, and stitching. The
monthly data (of relative humidity, sunshine hours, air temperature, precipitation) were
obtained from 272 benchmark meteorological stations near the study area for the period
from 1999 to 2015 (http://data.cma.cn, accessed on 15 April 2021).

3.2. Research Method
3.2.1. Land Use Classification

Landsat TM/OLI satellite remote sensing is used in the fourth phase (1999, 2005, 2010
and 2015), covering the MRYR (Hubei, Hunan, and Jiangxi). According to the land use
status of the research area and the classification system of China land use, the classification

http://www.gscloud.cn/
https://wist.echo.nasa.gov/ap
http://data.cma.cn
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is carried out [46,47]. Considering that the texture structure of remote sensing images is
very different between plantations and natural forests, the texture of plantations usually
presents regular texture on satellite images. Therefore, eight features (variance, contrast,
entropy, skewness, mean, homogeneity, dissimilarity, and correlation) in image texture
feature are calculated by using GLCM (Table 1), and they are combined as classification
features and spectral features [48,49]. Then, the back-propagation (BP) neural network
classifier is used to classify land use into seven categories [37]. The BP neural network
is composed of input layer, hidden layer, and output layer. The number of iterations is
1000. The target error is 0.001; the training shows that the number of intervals is 25, and
the learning rate is 0.01. According to the field survey data and the second-class survey
data of forest resources, we establish 20 training samples (polygons) of each type, a total
of 140, as the learning samples for the classifier. The classification results use ArcGIS
to generate 10 random samples (pixels) of each different type, a total of 70 points. The
classification accuracy was verified by comparing with the second-class survey data of
forest resources. These areas include grassland, cropland, built-up land, waterbodies,
wasteland, and forestland (plantations and natural forests), and the classified images can
extract the boundaries of different land use/cover types and provide the basis for NDVI
calculation of plantations and natural forests.

Table 1. Formulas of GLCM parameter.

Types Description Formula Cites

Mean Measures the average of gray level
values in an image.

N−1
∑

i,j = 0
i · Pi,j

[42]

Variance
A measure of heterogeneity; variance
increases when the gray level values

differ from their mean.

N−1
∑

i,j = 0
i · Pi,j

(
i−

N−1
∑

i,j = 0
i · Pi,j

)
[42]

Entropy

Measures the disorder of an image and
is negatively correlated with Energy.
Entropy is high when the image is

texturally complex or includes
much noise.

N−1
∑

i,j = 0
· Pi,j

(
−lnPi,j

)
[50]

Energy

Measures texture uniformity or pixel
pair repetitions. High energy occurs
when the distribution of gray level

values is constant or periodic.

√
N−1
∑

i,j = 0
Pi,j

2 [51]

Homogeneity

Measures image homogeneity. Sensitive
to the presence of near diagonal

elements in a GLCM, representing the
similarity in gray level between

adjacent pixels.

N−1
∑

i,j = 0

Pij

1 = (i − j)2
[52]

Contrast

Measures the drastic change in gray
level between contiguous pixels. High

contrast images feature high
spatial frequencies.

Y =
N−1
∑

i,j = 0
Pi,j(i− j)2 [53]

Dissimilarity
Similar to Contrast. Instead of

weighting the elements exponentially,
dissimilarity increases linearly.

N−1
∑

i,j = 0
Pi,j|i− j| [41]

Correlation

Measures the linear dependency in the
image. High correlation values imply a

linear relationship between the gray
levels of adjacent pixel pairs.

N−1
∑

i,j = 0
Pij

(i−ui)(i−uj)√
(α2

i )
(

α2
j

) [54]

Note: N is the number of gray levels, Pi,j is the entry (i,j) in the GLCM, ui and uj is the GLCM mean, α2
i and α2

j is
the GLCM variance.
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3.2.2. Theil–Sen Median Trend Analysis and Mann–Kendall Test

Theil–Sen median trend analysis is a nonparametric estimation method proposed by
Sen to analyze the trend of time series data [55]. Compared with the least square method,
the result of this method is not affected by the lack of time series data. At present, it has
been widely used in the study of long time series data trends [56]. The calculation formula
is as follows:

Slope = Median
( xj − xi

j− i

)
, 1999 ≤ i ≤ j ≤ 2015 (1)

where xj and xi represents the sequence values of time j and time i of NDVI value,
1 ≤ i ≤ j ≤ n and n is the length of the time series (n = 17). If Slope > 0, then NDVI has an
increasing trend, indicating that vegetation has been improving or recovering during the
period. If Slope < 0, NDVI shows a declining trend, indicating that vegetation shows a trend
of degradation during the period.

The Mann–Kendall (MK) test was used to test the statistical estimation of the trend
analysis results [57,58]. As a nonparametric statistical test, the MK test is not affected by a
few outliers [59]. The calculation formula is as follows:

S =
n−1

∑
j = 1

n

∑
i = j+1

VAR
(
xj − xi

)
(2)

VAR
(
xj − xi

)
=


1, xj − xi > 0

0, xj − xi = 0
−1, xj − xi < 0

(3)

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(4)

VAR(S) =
n(n− 1)(2n + 5)−∑m

i = 1 ti(ti − 1)(2ti + 5)
17

(5)

where n is the length of time series (n = 17); m is the number of repeated data groups
in time series data; and ti is the number of duplicate data in group i. The VAR is a sign
function. The statistic Z is in the range of (−∞, +∞). At a given significance level, α, when
|Z| > Z1−α/2, it indicates that the time series has significant changes at the level of α. In
this study, α = 0.05 was taken to judge the significance of regional NDVI variation trends
from 1999 to 2015 at the confidence level of 0.05, that is, |Z| > 1.96.

3.2.3. Coefficient of Variation Analysis

The coefficient of variation is obtained by calculating the ratio of the standard deviation
and the mean value. It is a mathematical index to measure the dispersion degree of each
observation value and the unit mean value [60].

CV =
1

NDVI

√
1

n− 1

n

∑
i = 1

(
NDVIi −NDVI

)2 (6)

where CV is the coefficient of variation of NDVI value; NDVIi is the NDVI of year I; and
NDVI is the annual mean NDVI of the region from 1999 to 2015. When the CV value is
larger, the data is more dispersed and the vegetation changes greatly. When the CV value
is smaller, the data is more compact and the vegetation is more stable.

3.2.4. Analysis of Future Change Trend

The Hurst index based on the rescaled range method (R/S) is an effective method to
quantitatively describe the continuity or long-term correlation of changes in time series data
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over long periods and is widely applied to climatology and hydrological sequences [61].
The procedures are:

Define time series NDVI(t), t = 1, 2, . . . , n, for any positive integer, τ, the mean
sequence is defined:

NDVI(τ) =
1
τ

τ

∑
t = 1

NDVI(t)τ = 1, 2, . . . , n (7)

Calculate the cumulative deviation:

X(t,τ) =
t

∑
t = 1

(
NDVI(t) −NDVI(τ)

)
1 ≤ t ≤ τ (8)

Calculation range:

R(τ) = max
1≤t≤τ

X(t,τ) − min
1≤t≤τ

X(t,τ)τ = 1, 2, . . . , n (9)

Calculate the standard deviation:

S(τ) =

[
1
τ

τ

∑
t = 1

(
NDVI(t) −NDVI(τ)

)2
]1/2

τ = 1, 2, . . . , n (10)

Calculation of Hurst index:
R(τ)
S(τ)

= (cτ)H (11)

According to Hurst [61] and Mandelbrot [62], the range of the Hurst index is (0, 1),
and there are three types. If 0 < Hurst < 0.5, it indicates that the NDVI time series has
anti-persistence (This means that the trend of future time series is inconsistent. The smaller
the value is, the higher the inconsistency degree is). The closer Hurst is to 0, the stronger
is the anti-persistence. If 0.5 < Hurst < 0.1, it shows that NDVI time series changes have
positive persistence (This means that the trend of future time series is consistent. The larger
the value is, the stronger the consistency is). The closer to 1, the stronger the persistence. If
Hurst = 0.5, the NDVI time series is random.

3.2.5. Meteorological Factor Data Interpolation

Using the daily meteorological data (temperature, precipitation, relative humidity,
sunshine hours) recorded by 272 national meteorological stations in and around the study
area from 1999 to 2015, the monthly mean value is synthesized and calculated. Based on the
monthly mean value, the annual mean value is calculated to form the station year by year
dataset, and the spatial distribution of meteorological factors is obtained by the Kriging
interpolation method of ArcGIS software. The spatial resolution was 1 km × 1 km, which
matched the spatial resolution of NDVI.

3.2.6. Partial Correlation Analysis

Partial correlation analysis refers to the process in which, when two variables are
simultaneously correlated with a third variable, the influence of the third variable is
removed and only the correlation degree between the other two variables is analyzed [63].
The calculation formula is as follows:

rxy =
∑n

i = 1[(xi − x)(yi − y)]√
∑n

i = 1(xi − x)2 ∑n
i = 1(yi − y)2

(12)

rxy·z =
rxy − rxzryz√

(1− rxz2)
(
1− ryz2

) (13)
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where rxy is the correlation coefficient between variables x and y; xi and yi are the NDVI
value and meteorological variables (annual mean temperature, annual precipitation, relative
humidity, and sunshine hours) in the ith year, respectively. x and y are the mean value of
NDVI, annual mean temperature, annual precipitation, relative humidity, and sunshine
hours, respectively. rxy, rxz, and ryz are the correlation coefficient between x and z, x and y,
and y and z, respectively. rxy·z is the partial correlation coefficient of factor x and y after
fixing factor z. The significance test of the correlation coefficient is completed by consulting
the correlation coefficient boundary table.

Considering that the influence of climate factors on vegetation growth often has a
certain lag [5], this paper not only analyzes the relationship between climate and NDVI in
the corresponding month, but also analyzes the influence of climate in the previous month,
two months, and three months on vegetation NDVI in this month. The flow chart is shown
in Figure 2.
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4. Results
4.1. Spatiotemporal Change Characteristics of Land Use/Cover Types

From 1999 to 2015, the order of land use types in the MRYR from large to small is
as follows: plantations (36.78%–40.51%) > cropland (28.60%–32.94%) > natural forests
(12.77%–14.14%) > waterbodies (2.84%–5.08%) > grassland (0.99%–1.67%) > built-up land
(7.53%–13.97%) > wasteland (0.32%–1.86%). The overall accuracy of classification results
is 74.89% and the kappa coefficient is 0.72. The proportion of forestland (plantations and
natural forests) is always more than half (Figure 3 and Table 2). In 2015, the area of cropland
is 161,497 km2, accounting for 28.60% of the study area, and the area of forestland (the sum
of plantations and natural forests) is 300,829.37 km2, accounting for 67.34% of the study area.
The proportion of plantations in forestland is more than two-thirds. During the periods
1999–2005, 2005–2010, and 2010–2015, the built-up land increased by 25,015.67 km2 (58.87%),
2825.00 km2 (4.18%), and 8529 km2 (12.13%), respectively, and the plantations increased by
11,290.31 km2 (5.44%), 4029.99 km2 (1.84%), and 5771.52 km2 (2.59%). The cropland and
natural forests decreased by 24,485.33 km2 (13.17%) and 7733.11 km2 (9.69%), respectively,
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in the past 17 years. Grassland, waterbodies, and wasteland showed a decreasing trend
(Tables 2 and A1).
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Table 2. Area and proportion of land use types in the MRYR from 1990 to 2015.

Land Use
Types

1999 2005 2010 2015

Area
(km2)

Percentage
(%) Area (km2) Percentage

(%) Area (km2) Percentage
(%) Area (km2) Percentage

(%)

Cropland 185,982.33 32.94 165,989.00 29.40 163,947.00 29.04 161,497.00 28.60
Forestland 287,470.66 50.92 296,451.44 52.51 297,064.38 52.62 300,829.37 53.28
Plantations 207,636.22 36.78 218,926.51 38.78 222,956.50 39.49 228,728.02 40.51

Nature forests 79,834.46 14.14 77,524.93 13.73 74,107.88 13.13 72,101.35 12.77
Grassland 9423.12 1.67 7142.23 1.27 8541.63 1.51 5569.63 0.99

Waterbodies 28,705.32 5.08 24,711.00 4.38 22,811.00 4.04 16,029.00 2.84
Built-up land 42,495.33 7.53 67,511.00 11.96 70,336.00 12.46 78,865.00 13.97

Wasteland 10,523.22 1.86 2795.33 0.50 1900.00 0.34 1810.00 0.32

Note: The percentages in the table are the ratios of different land use/cover types to the total area of the study area.

4.2. Spatiotemporal Variation Characteristics and Evolution Trend of NDVI
4.2.1. Interannual and Seasonal Variations of NDVI in Different Vegetation Types

The mean value of NDVI of each grid in the MRYR from 1999 to 2015 was calculated
by grid calculator in ArcGIS (Figure 4). NDVI greater than 0.7 accounted for more than 80%.
On the whole, the annual mean NDVI of all vegetation types in the MRYR increased from
1999 to 2015 (p < 0.01). Among the forestland, the growth rates of NDVI of natural forest
and plantations were 0.57% and 0.52%, respectively. As a whole, the vegetation ecology
in the study area is developing in a positive direction. In different land use/cover types,
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the NDVI of natural forests is the highest, the cropland is the lowest, and the fluctuation
of cropland is the largest. From the perspective of trend development, NDVI showed a
downward trend from 1999 to 2001, and increased from 2001 to 2003, especially in natural
forests, which increased from 0.77 to 0.81. From 2003 to 2009, there was little change in
vegetation. In 2011, except for natural forests, other vegetation types had an obvious
inflection point, which may be related to the extreme climate in this year, and then NDVI
continued to increase until 2015 (Figure 5a).
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The NDVI of the four seasons of vegetation in the study area were analyzed, which
were spring (March to May, R2 = 0.50, p < 0.05), summer (June to August, R2 = 0.24, p < 0.05),
autumn (September to November, R2 = 0.82, p < 0.05), and winter (December to February,
R2 = 0.46, p < 0.05). In the past 17 years, the NDVI of vegetation in the MRYR showed an
upward trend in the four seasons. From the seasonal variation trend, NDVI is the highest
in summer, followed by autumn and spring, and the lowest in winter. The decline of NDVI
was more intense in winter from 2004 to 2005, and more intense in summer from 2010 to
2011 (Figure 5b).

4.2.2. Analysis of NDVI Dynamic Persistence of Different Vegetation Types
Temporal Variation Trend of Mean NDVI in Different Vegetation Types from 1999 to 2015

The mean NDVI of forestland was 0.7847, which was lower than that of natural forests
(0.8142) and higher than that of plantations (0.7739). The mean NDVI of plantations was
even lower than that of grassland (0.7758). The mean NDVI of two-thirds of the natural
forests was more than 0.8 (Table 3). The mean NDVI of plantations and cropland was
mainly distributed in the range of 0.6 to 0.8. The mean NDVI of grassland was above



Forests 2022, 13, 1224 11 of 20

0.6. The coefficient of variation of NDVI of each vegetation type was small, less than 0.1,
indicating that the regional vegetation is relatively stable as a whole.

Table 3. Statistical variation of NDVI of different vegetation types and its variation coefficient of
interannual variation in the MRYR from 1999 to 2015.

Land Use Types Mean NDVI CV
Percentage (%)

<0.2 0.2–0.4 0.4–0.6 0.6–0.8 >0.8

Cropland 0.7451 0.0592 0.00 0.14 2.25 83.29 14.32
Forestland 0.7848 0.0514 0.00 0.02 0.43 55.41 44.14
Grassland 0.7758 0.0550 0.00 0.08 1.54 51.90 46.48

Natural forests 0.8142 0.0469 0.00 0.00 0.00 25.18 74.81
Plantations 0.7739 0.0526 0.00 0.01 0.39 68.90 30.7

Note: The percentages in the table refer to the ratio of the number of NDVI in each interval to the total number.

Spatial Variation Trend of NDVI in Different Vegetation Types

The high NDVI values of natural forests are mainly distributed in the west and
southeast of the region (Figure 6a). The change trend of natural forests vegetation showed
that the improved area accounted for 99.29%, and the degraded area accounted for 0.36%
(Figure 6b). The order of the area proportion of different vegetation types in the study area
from large to small is: natural forests (89.21%) > grassland (79.94%) > forestland (79.81%) >
plantations (76.36%) > cropland (79.81%) (Table 3). From large to small, the proportions
of slight degradation and serious degradation areas are cropland (10.32%) > plantations
(3.34%) > grassland (2.89%) > forestland (2.70%) > natural forests (0.36%) (Table 4).
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the MRYR.

In the past 17 years, the stability of natural forest change was mainly low fluctuation,
and some high fluctuation areas were close to urban area (Figure 6c). The future change
trend was that the proportion of anti-sustainability was greater than sustainability, and
the proportion of continuous improvement was 45.39%, and the proportion of continuous
degradation was 0.21% (Figure 6d and Table 5). Plantations were mainly distributed in
the central and eastern regions, and the stability was mainly low fluctuation. The change
trend was that the area of continuous improvement accounts for 35.52%, and the area of
continuous degradation accounts for 1.72% (Figure 6e,f and Table 5). More than half of the
regions with a Hurst index less than 0.5 of all vegetation types in the study area could not
be predicted in the future.
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Table 4. Types of NDVI changes in different vegetation types in the MRYR from 1999 to 2015.

Types of NDVI Changes Slope Z
Percentage (%)

Cropland Forestland Natural Forests Plantations Grassland

SI >0.0005 >1.96 53.04 79.81 89.21 76.36 79.94
SIS >0.0005 −1.96–1.96 32.03 15.97 10.08 18.32 15.80
ST −0.0005–0.0005 −1.96–1.96 4.62 1.52 0.35 1.98 1.37
SD <−0.0005 −1.96–1.96 8.30 2.23 0.31 2.80 2.43

SED <−0.0005 <−1.96 2.02 0.47 0.05 0.54 0.46

Notes: SI means the trend is significant improvement; SIS means the trend is slight improvement/stable; ST
means the trend is stable; SD means the trend is slight degradation; SED means the trend is serious degradation.
The Slope positive value indicates that the NDVI trend is positive, while negative value indicates that the NDVI
trend is negative. Z value represents whether changes are significant; |Z| > 1.96 indicates that the change is
significant, while other values indicate that the change is insignificant.

Table 5. Future NDVI trends of different vegetation types in the MRYR from 1999 to 2015.

Future Trend of
NDVI Changes

Slope Z Hurst
Percentage (%)

Cropland Forestland Natural forests Plantations Grassland

CI >0.0005 >1.96 >0.5 22.79 28.96 40.18 27.71 36.54
CSI >0.0005 −1.96–1.96 >0.5 15.24 6.82 5.21 7.81 4.98
CS −0.0005–0.0005 −1.96–1.96 >0.5 2.30 0.68 0.20 0.87 0.22

PSD <−0.0005 −1.96–1.96 >0.5 4.59 1.15 0.18 1.45 2.43
PSED <−0.0005 <−1.96 >0.5 1.09 0.25 0.03 0.27 0.46
UN - - <0.5 53.99 62.13 54.21 61.89 55.37

Notes: CI means the trend is continuous improvement; CSI means the trend is continuous/slight improvement;
CS means the trend is continuity stable; PSD means the trend is persistent/slight degradation; PSED means the
trend is persistent/severe degradation; UN means the trend is uncertain; The Slope positive value indicates that
the NDVI trend is positive, while a negative value indicates that the NDVI trend is negative. Z value represents
whether changes are significant; |Z| > 1.96 indicates that the change is significant, while other values indicate that
the change is insignificant; If 0 < Hurst < 0.5, it indicates that the NDVI time series has anti-persistence. If 0.5 <
Hurst < 0.1, it shows that the NDVI time series changes have positive persistence.

4.3. Relationship between NDVI and Climate Change
4.3.1. Interannual Correlation between NDVI of Vegetation Types and Climatic Factors

On the interannual scale, correlation analysis showed that cropland was negatively
correlated with relative humidity (p < 0.001, R = −0.189) and positively correlated with
precipitation (p < 0.05, R = 0.149). The results of partial correlation analysis showed that all
vegetation types were significantly negatively correlated with relative humidity (p < 0.05),
and the correlation of cultivated land was the highest (p < 0.001, R = −0.247) (Table 6).

Table 6. Correlation coefficient between different vegetation types NDVI and climatic factors.

Vegetation Type
NDVI-Tem NDVI-Per NDVI-Hum NDVI-Sun

RNDVI−T RNDVI−T/PHS RNDVI−P RNDVI−P/THS RNDVI−H RNDVI−H/TPS RNDVI−S RNDVI−S/TPH

Cropland 0.012 −0.007 0.044 0.149 * −0.189 ** −0.247 ** 0.033 −0.069
Forestland 0.008 0.031 0.033 0.077 −0.092 −0.151 * −0.015 −0.086
Grassland 0.008 0.037 0.021 0.071 −0.112 −0.166 * −0.009 −0.090

Natural forests 0.008 0.055 0.018 0.049 −0.083 −0.143 * −0.028 −0.105
Plantations 0.009 0.014 0.042 0.092 −0.092 −0.148 * −0.006 −0.070

Notes: * means that p is less than 0.05; ** means that p is less than 0.01. Tem, Per, Hum, and Sun are temperature,
precipitation, relative humidity, and sunshine hours, respectively.

4.3.2. Monthly Correlation Analysis of Natural Forests and Climatic Factors

On the inter-monthly scale for the relationship between NDVI and climate from 1999
to 2015, the results showed that NDVI in January was affected by temperature (R = 0.525,
p < 0.05), precipitation (R = −0.737, p < 0.01), and sunshine hours (R = −0.769, p < 0.01).
The NDVI in February was affected by the lag of precipitation (negative), relative humidity
(negative), and sunshine hours (positive) in January. The NDVI in March was affected by
the relative humidity in January (R = 0.543, p < 0.05), but also by the relative humidity
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(negative) and sunshine hours (positive) in December. The NDVI in April was affected
by sunshine hours (negative) in March. The NDVI in May was affected by precipitation
(R =−0.513, p < 0.05), relative humidity (R =−0.512, p < 0.05), and sunshine hours (negative)
in March. The NDVI of August and September was affected by the relative humidity of that
month. December was affected by the relative humidity and sunshine hours of that month.
The monthly sunshine hours in January, August, and December had significant positive
effects on the vegetation growth of natural forests, while the monthly rainfall and relative
humidity in January, May, August, and December had negative effects on the vegetation
growth. Each meteorological factor had a certain lag effect on natural forests (Table 7).

4.3.3. Monthly Correlation Analysis of Plantations and Climatic Factors

On the monthly scale, for the relationship between NDVI and climate from 1999 to
2015, the results showed that NDVI in January was affected by the precipitation of the
month (R = −0.746, p < 0.01), sunshine hours (R = 0.736, p < 0.01), and relative humidity
(R = −0.502, p < 0.05) in October. NDVI in February, March, and April were affected by the
lag of precipitation (negative) in January. NDVI in July was positively correlated with the
precipitation in May (R = 0.525, p < 0.05). Precipitation and relative humidity in September
promoted the growth of plantations in September and October. NDVI in October was
positively affected by precipitation and relative humidity in September, and the negative
influence of sunshine hours. The NDVI in December was positively correlated with the
sunshine hours in the month. The results showed that NDVI was positively correlated with
summer and autumn precipitation and negative correlated with spring precipitation and
sunshine hours. The temperature in summer is high, and the transpiration of vegetation is
strong. Suitable precipitation promotes the growth of vegetation. Sufficient light in spring
ensures the normal growth of vegetation (Table 8).
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Table 7. Pearson correlation coefficients between natural forests vegetation NDVI in each month and climatic factors in current and previous one, two, and three
months, respectively.

Climatic Factors
Correlation Coefficient with NDVI

January February March April May June July August September October November December

T 0.525 * 0.184 0.344 0.395 0.046 −0.055 −0.147 0.467 −0.067 0.129 −0.185 0.143
P −0.737 ** −0.116 0.323 −0.357 −0.513 * 0.012 −0.047 −0.288 0.495 −0.026 −0.01 −0.159
H −0.440 0.179 −0.071 −0.402 −0.512 * −0.193 0.031 −0.652 ** 0.578 * −0.299 −0.082 −0.507 *
S 0.769 ** −0.027 0.124 0.238 0.170 0.081 −0.202 0.652 ** −0.467 0.439 −0.128 0.669 **
TI 0.170 0.407 −0.113 −0.202 0.395 −0.026 0.124 −0.262 0.075 0.155 0.497 0.235
PI −0.126 −0.679 ** 0.005 0.217 −0.537 0.306 −0.385 0.105 −0.098 0.434 −0.215 0.368
HI −0.406 −0.499 * 0.309 0.256 −0.402 0.129 −0.077 −0.029 −0.186 0.475 −0.304 0.355
SI 0.386 0.655 ** −0.199 −0.690 ** 0.238 −0.196 −0.163 0.040 0.152 −0.385 0.137 −0.370
TII 0.153 0.015 −0.449 0.155 −0.202 −0.211 −0.174 −0.108 −0.335 0.016 −0.018 0.107
PII 0.081 −0.084 0.277 0.339 0.217 0.165 0.454 0.330 0.127 −0.137 0.185 −0.131
HII 0.020 −0.426 .0.543 * 0.152 0.256 −0.041 0.311 0.112 0.155 −0.223 0.324 −0.215
SII −0.137 0.458 −0.200 −0.295 −0.690 ** −0.008 −0.429 −0.001 −0.152 0.257 −0.330 0.320
TIII 0.351 0.136 −0.071 0.121 0.155 0.257 0.352 0.096 0.004 −0.374 0.311 0.126
PIII −0.320 0.027 −0.258 −0.525 * 0.339 −0.036 −0.254 0.260 0.062 0.234 −0.165 0.443
HIII −0.479 −0.013 −0.581 * −0.547 * −0.295 −0.113 0.039 0.007 0.274 0.241 −0.183 0.418
SIII 0.415 0.002 0.590 * 0.259 0.152 0.279 −0.127 −0.031 −0.272 0.008 0.276 −0.340

Notes: T, P, H, and S are temperature, precipitation, relative humidity, and sunshine hours, respectively. January, February, March, April, May, June, July, August, September, October,
November, and December are January, February, March, April, May, June, July, August, September, October, November, December. I, II, and III denote the previous 1 month, previous
2 months, and previous 3 months. * means that p is less than 0.05; ** means that p is less than 0.01.

Table 8. Pearson correlation coefficients between plantation vegetation NDVI in each month and climatic factors in current and previous one, two, and three
months, respectively.

Climatic Factors
Correlation coefficient with NDVI

January February March April May June July August September October November December

T 0.435 0.149 0.375 0.256 −0.080 0.314 −0.147 0.434 −0.035 −0.049 −0.098 −0.037
P −0.746 ** −0.127 0.379 −0.270 0.225 −0.267 0.189 −0.315 0.592 * 0.054 0.183 −0.130
H −0.472 0.177 −0.027 −0.292 0.070 −0.467 0.077 −0.639 ** 0.613 ** −0.222 0.031 −0.480
S 0.736 ** −0.065 0.131 0.105 −0.293 0.340 −0.098 0.644 ** −0.418 0.436 −0.180 0.554*
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Table 8. Cont.

Climatic Factors
Correlation coefficient with NDVI

January February March April May June July August September October November December

TI 0.120 0.432 −0.044 −0.183 −0.249 0.138 −0.019 −0.257 0.198 −0.035 0.451 0.267
PI −0.170 −0.635 ** −0.035 0.312 0.057 0.202 −0.385 0.228 0.096 0.592 * −0.035 0.487
HI −0.402 −0.451 0.321 0.350 −0.123 0.124 0.034 0.006 −0.252 0.557 * −0.213 0.480
SI 0.343 0.616 * −0.199 −0.693 ** −0.154 −0.076 −0.122 −0.081 0.211 −0.550 * 0.316 −0.474
TII 0.108 −0.007 0.310 0.236 −0.007 0.210 0.086 −0.069 −0.243 0.080 −0.057 0.156
PII 0.165 −0.002 −0.621 * 0.278 0.333 0.050 0.525 * 0.302 0.312 0.006 0.222 −0.020
HII 0.075 −0.390 −0.429 −0.250 0.005 −0.228 0.339 0.027 0.150 −0.269 0.216 −0.138
SII −0.189 0.440 0.555 * 0.106 −0.005 0.170 −0.352 −0.086 −0.073 0.358 −0.347 0.339
TIII 0.351 0.065 −0.053 0.121 0.271 0.011 0.080 −0.061 −0.055 −0.363 0.229 0.075
PIII −0.323 0.073 −0.187 −0.525 * −0.058 −0.066 −0.039 0.404 −0.115 0.168 −0.080 0.402
HIII −0.502 * 0.003 −0.527 * −0.547 * 0.051 −0.059 0.066 0.108 0.120 0.204 −0.264 0.360
SIII 0.447 −0.025 0.540 * 0.259 0.107 0.041 −0.072 −0.190 −0.176 0.086 0.328 −0.341

Notes: T, P, H, and S are temperature, precipitation, relative humidity, and sunshine hours, respectively. January, February, March, April, May, June, July, August, September, October,
November, and December are January, February, March, April, May, June, July, August, September, October, November, December. I, II, and III denote the previous 1 month, previous
2 months, and previous 3 months. * means that p is less than 0.05; ** means that p is less than 0.01.
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5. Discussion

From 1999 to 2015, the land use types in the study area changed significantly. The
landscape proportion of built-up land increased by 8.21%, the cropland decreased by 4.36%,
and the forestland increased slightly, but the proportion of natural forests decreased. Other
scholars’ research showed that the built-up land in the Yangtze River Delta had increased
by 8.68% in the past 10 years, which was similar to the research results of this study [64]. In
other urban agglomerations, such as the Pearl River Delta, the built-up land increased by
9.98% in the past 16 years, and the cropland and forestland decreased by 7.12% and 2.26%,
respectively [65]. Cropland was the first type of land use to be occupied in the process of
urbanization [66,67]. The irregular expansion of urban scale would inevitably lead to the
transformation of the agricultural landscape. In the period of rapid urbanization, every
1% economic growth will occupy about 200 km2 of cropland, which is about eight times
that of the land occupied by 1% economic growth in Japan. By the end of 2010, the total
amount of cropland in China was less than 1.22 × 106 km2, which was close to the red line
of 1.20 × 106 km2 of cropland in China [68]. The importance of basic farmland protection
should be paid attention to by relevant departments.

In the past 17 years, the NDVI of vegetation in the MRYR showed an overall upward
trend (improvement area accounted for more than 3/4) (Figure 3 and Table 4). This is
consistent with the research results of the NDVI change trend of different scales in Hubei
Province [69], Hunan Province [70], Jiangxi Province [71], and the Yangtze River Basin [72].
The annual mean NDVI values of the Yangtze River Delta, Pearl River Delta, and other
coastal urban agglomerations are mostly between 0.3 and 0.5. Compared with them, the
NDVI in the MRYR was relatively high. First, from 2004 to 2005, the climate of each province
in the study area was abnormal, which showed that the winter lasted for a long time, the
temperature was extremely low, and the phenomenon of “late spring cold” appeared in
spring, which led to the extremely poor growth of winter vegetation and the sharp decline
of NDVI. Second, from 2010 to 2011, the NDVI of vegetation decreased in all seasons, which
was due to the serious impact on vegetation growth caused by the large-scale drought in
this year. At the same time, it can be seen that the impact of drought on natural forest has a
certain lag and is smaller than other vegetation types, which also shows that the stability of
natural forest ecosystems is stronger to a certain extent [73]. The stand structure of mature
plantations in China was single and the regulation capacity of the ecosystem was low. The
average volume was only 71.55 m3, which is only 41% of mature natural forests. It can be
seen that there was still much room for improvement of plantations in the study area, and
its ecosystem service function should be improved to ensure the sustainable and healthy
growth of plantations.

In addition, different spatial resolutions of NDVI would definitely lead to different
research results. In this paper, Landsat images with a resolution of 30 m were used to obtain
the boundary of different land uses/land cover, and 1 km NDVI was used to depict the
dynamic change of land cover, which had certain limitations. In the future, open resources
with a higher resolution such as 250 m and 500 m could be considered, and Landsat images
data with a resolution of 30 m could also be used to calculate and obtain NDVI values to
further study the vegetation dynamic changes in the middle reaches of the Yangtze River.

Nemani et al. and Liu et al. considered that hydrothermal climate conditions were
the driving factors affecting the spatial pattern of land vegetation cover [20,74]. This study
showed that relative humidity was the main climatic factor affecting the growth of differ-
ent vegetation types in the study area in terms of interannual variation, and the partial
correlation analysis between relative humidity and NDVI of each vegetation type showed
a significant negative correlation. In addition, the correlation between cropland and precip-
itation was significant (R = 0.149, p < 0.05). This was consistent with the research results
regarding the response of vegetation NDVI to climate in east China and its surrounding
areas [75–77]. The reason for this might be that the precipitation in the study area was rich
enough to meet the needs of vegetation growth, and the difference of heat was the main
driving factor for the difference of NDVI. The results showed that the sunshine hours in
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January, August, and December had significant positive effects on the vegetation growth of
natural forests, while the rainfall and relative humidity in January, May, August, and De-
cember had negative effects on the vegetation growth. NDVI was positively correlated with
precipitation in summer and autumn, negatively correlated with precipitation in spring,
and positively correlated with sunshine hours. It showed that moderate precipitation could
promote the growth of crops, and high humidity would inhibit the growth of crops and
vegetation. In addition, each meteorological factor had an obvious lag effect on NDVI. This
was consistent with the results confirmed by Bao et al. from global, regional, and other
multi-scale studies, and the feedback of vegetation cover on climate change has a certain
lag effect [78].

6. Conclusions

With the urbanization process in the MRYR in the past 17 years, on the one hand, the
area was greatly disturbed by human activities, with the rapid growth of built-up land
and the sharp decline of cropland. On the other hand, the implementation of Chinese
ecological protection projects (grain to green, construction of Yangtze River shelterbelt, etc.)
and the promulgation of various management policies played a great role in the ecological
protection of the MRYR. Forestland is the main part of the land use/cover types (more than
50%), and it was increasing in the period, but it is worth noting that the area of natural
forests has decreased (about one tenth), and the proportion of plantations continues to
increase. From 1999 to 2015, the vegetation situation in the MRYR gradually improved,
especially the natural forests, accounting for 45.39%. The area with an unclear future change
trend of plantations accounted for the highest proportion (more than half). According to
the relationship between climate factors and vegetation growth, relative humidity had
significant negative effects on NDVI (p < 0.05), especially on cropland. On the inter-monthly
scale, climate factors (temperature, precipitation, relative humidity, and sunshine hours)
had significant lag effects on natural forests and plantations. Sunshine hours promoted
vegetation growth positively, while relative humidity had negative effects. Although the
overall development trend of forestland in the study area was good, natural forests and
plantations were facing problems, respectively. We should protect natural forests and
prevent the loss of those with strong ecosystem services and replace those that do not with
plantations with a single species diversity.
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Appendix A

Table A1. Remote sensing data used in the study.

Sensor Dates Cloud Amount Path/Row Resolution (m)

Landsat 4-5 TM 1999 ≤10% 121-127/37-43 30/120 × (30)
Landsat 4-5 TM 2005 ≤10% 121-127/37-43 30/120 × (30)
Landsat 4-5 TM 2010 ≤10% 121-127/37-43 30/120 × (30)
Landsat 8 OLI 2015 ≤10% 121-127/37-43 30/100 × (30)

References
1. Paruelo, J.M.; Epstein, H.E.; Burke, L. ANPP Estimates from NDVI for the Central Grassland Region of the United States. Ecology

1997, 78, 953–958.
2. Prăvălie, R. Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth-Sci. Rev. 2018,

185, 544–571. [CrossRef]
3. Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI

variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [CrossRef]
4. IPCC. Special Report on Global Warming of 1.5 ◦C; Cambridge University Press: Cambridge, UK, 2018.
5. Gao, J.B.; Jiao, K.W.; Wu, S.H. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China

during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [CrossRef]
6. Li, T.; Meng, Q. Forest dynamics in relation to meteorology and soil in the Gulf Coast of Mexico. Sci. Total Environ. 2020,

702, 134913.1–134913.11. [CrossRef]
7. Li, X.; Liu, H.; Wang, L.; Zhuo, Y. Vegetation Cover Change and Its Relationship Between Climate and Human Activities in Ordos

Plateau. Chin. J. Agrometeorol. 2014, 35, 470–476.
8. Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing vegetation response to climatic variations and human activities:

Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Theor. Appl. Climatol. 2019,
135, 1179–1193. [CrossRef]

9. Wei, R.; Liu, J.; Zhang, T.; Zhang, Q.; Peng, T.; Liu, Y.L. Spatiotemporal Variation Characteristics of Vegetation in Growing
Season and Its Response to Meteorological Factors in Yalong River Basin. J. Ecol. Environ. 2021, 1–11. Available online:
http://kns.cnki.net/kcms/detail/44.1661.X.20210201.2128.002.html (accessed on 15 April 2021). (In Chinese).

10. Zhang, Y.L.; Li, L.H.; Ding, M.J.; Zheng, D. Greening of the Tibetan Plateau and its drivers since 2000. Chin. J. Nat. 2017,
39, 173–178.

11. Yang, G.S.; Xu, X.B.; Li, P.X. Study on the construction of green ecological corridor in Yangtze River economic belt. Prog. Geogr.
Sci. 2015, 34, 1356–1367.

12. Yue, J.S. Evaluation of Wetland Ecological Engineering Based on Emergy Theory; Chongqing University: Chongqing, China, 2017.
13. Zhao, Q.Q.; Fan, J.W.; Liu, J.Y. Objective based ecological effect evaluation and policy suggestions for the first phase of ecological

protection and construction of the three river source. J. Chin. Acad. Sci. 2017, 32, 35–44. (In Chinese)
14. Tang, J.; Cao, H.Q.; Chen, J. Quantifying the impacts of ecological protection projects and climate change on vegetation change in

the source region of the Yangtze River. Acta Geogr. A Sin. 2019, 74, 76–86.
15. FAO. Global Forest Resources Assessment 2015; FAO Forestry Paper No. 1; FAO: Rome, Italy, 2016.
16. Central People’s Government of the People’s Republic of China and the State Forestry and Grassland Administration: The

Preserved Area of China’s Artificial Forests is 69.33 Million Hectares, Ranking First in the World. 24 October 2018. Available
online: http://www.gov.cn/xinwen/2018-10/24/content_5333969.htm (accessed on 15 April 2021).

17. State Forestry and Grassland Administration. Authoritative Release: Notice of the State Forestry Administration on Publishing
the Main Results of the Ninth National Forest Resources Inventory in Jilin and Other Seven Provinces (Cities). 24 October 2018.
Available online: http://www.forestry.gov.cn/main/72/content-760624.html (accessed on 15 April 2021).

18. Chung, C. Thirty Years of Ecological Engineering with Spartina Plantations in China. Ecol. Eng. 1993, 2, 261–289. [CrossRef]
19. Song, W.; Liu, Y.; Tong, X. Newly sequestrated soil organic carbon varies with soil depth and tree species in three forest plantations

from northeastern China. For. Ecol. Manag. 2017, 400, 384–395. [CrossRef]
20. Liu, M.; Tu, J. The position and role of Wuhan City in the regional economic macro-strategies of China. Chin. Geogr. Ence 1998,

8, 106–116. [CrossRef]
21. Seagren, E.G.; Schoenbohm, L.M.; Owen, L.A.; Figueiredo, P.M.; Hammer, S.J.; Rimando, J.M.; Wang, Y.; Bohon, W. Lithology,

topography, and spatial variability of vegetation moderate fluvial erosion in the south-central Andes. Earth Planet. Sci. Lett. 2020,
551, 116555. [CrossRef]

22. Jiang, S.; Chen, X.; Smettem, K.; Wang, T. Climate and land use influences on changing spatiotemporal patterns of mountain
vegetation cover in southwest China. Ecol. Indic. 2021, 121, 107193. [CrossRef]

23. Eastman, J.R.; Sangermano, F.; Machado, E.A.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference
Vegetation Index (NDVI), 1982–2011. Remote Sens. 2013, 5, 4799–4818. [CrossRef]

http://doi.org/10.1016/j.earscirev.2018.06.010
http://doi.org/10.1016/j.ecolind.2020.106545
http://doi.org/10.1007/s11442-019-1682-2
http://doi.org/10.1016/j.scitotenv.2019.134913
http://doi.org/10.1007/s00704-018-2437-1
http://kns.cnki.net/kcms/detail/44.1661.X.20210201.2128.002.html
http://www.gov.cn/xinwen/2018-10/24/content_5333969.htm
http://www.forestry.gov.cn/main/72/content-760624.html
http://doi.org/10.1016/0925-8574(93)90019-C
http://doi.org/10.1016/j.foreco.2017.06.012
http://doi.org/10.1007/s11769-997-0024-y
http://doi.org/10.1016/j.epsl.2020.116555
http://doi.org/10.1016/j.ecolind.2020.107193
http://doi.org/10.3390/rs5104799


Forests 2022, 13, 1224 19 of 20

24. Liu, Y.; Li, Y.; Li, S.; Motesharrei, S. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human
Factors. Remote Sens. 2015, 7, 13233–13250. [CrossRef]

25. Ding, Z.H.; Peng, J.; Qiu, S.J.; Zhao, Y. Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in
Terms of Greenness, Cover, and Productivity. Earth’s Future 2020, 10, 1618. [CrossRef]

26. Hill, M.J.; Donald, G.E.; Hyder, M.W.; Smith, R.C. Estimation of pasture growth rate in the south west of Western Australia from
AVHRR NDVI and climate data. Remote Sens. Environ. 2004, 93, 528–545. [CrossRef]

27. Xu, Y.F.; Yang, J.; Chen, Y.N. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol.
2016, 126, 213–222. [CrossRef]

28. Feng, S.; Fan, F. A Hierarchical Extraction Method of Impervious Surface Based on NDVI Thresholding Integrated with
Multispectral and High-Resolution Remote Sensing Imageries. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1461–1470.
[CrossRef]

29. Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al.
Greening of the earth and its drivers. Nat. Clim. Chang. 2016, 25, 791–795. [CrossRef]

30. Xu, Y.F.; Pan, W.S.; Zhang, Y.L. NDVI change in Guizhou Plateau and its response to climate change. Acta Ecol. Sin. 2020,
29, 1507–1518.
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