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Abstract: This paper focused on the environmental performance of a nearly zero-energy wood-based
educational building (NZEB-W) via the life cycle impact assessment (LCIA). It identifies the envi-
ronmental impacts of construction materials and operational energy demands of the NZEB-W and
compares them using the SimaPro 8 software with the IMPACT 2002+ method. The LCIA results
from NZEB-W show that the overall environmental impact of construction materials (98.9 Pt) and
45 years operational energy demands (98.6 Pt) will be at the same level. Its overall environmental
impact 197.75 Pt for 45 years is relatively small. NZEB-W has the greatest impact on the environment
in the category of damage respiratory inorganics (34.5%), 419 kg PM2.5 eq from construction mate-
rials, and 271 kg PM2.5 eq from operational energy for 45 years; follows global warming (31.7%),
1.98 × 105 kg CO2 eq from construction materials, and 4.23 × 105 kg CO2 eq from operational energy
for 45 years; and non-renewable energy (21.8%), 2.82 × 106 MJ primary from construction materials,
and 3.73 × 106 MJ primary from operational energy for 45 years. As this environmental assessment
shows, the material composition of construction materials compared to the energy consumption in
the use phase is an essential element for understanding the life cycle impact of buildings.

Keywords: environmental impact; construction materials; operational energy; wooden building; LCA

1. Introduction

Collectively, buildings in the EU are responsible for 40% of our energy consumption
and 36% of greenhouse gas emissions, which mainly stem from construction, usage, ren-
ovation, and demolition. Therefore, improving energy efficiency in buildings has a key
role to play in achieving the ambitious goal of carbon-neutrality by 2050, set out in the
European Green Deal [1]. In Directive 2010/31/EU [2] are NZEBs, defined as buildings
with a very high energy performance, where energy requirements should mostly be covered
by renewable energy sources. There is a mandatory introduction in all member states of
NZEB for all new buildings or those receiving a significant retrofit from 2020 (from 2018 for
public buildings).

One of the methods evaluating the environmental impacts of human activities and
identifying potential areas for improvement is the life cycle assessment—LCA [3,4]. This
methodology is broadly applied in practice and provides a sound assessment to the under-
standing of environmental issues and buildings [5–11]. LCA provides a holistic approach
that is based on studying the whole industrial system involved in the production, use, and
waste management of a product or service [12].

Adalberth [12] proved conformity between energy use and environmental impact
during the life cycle of buildings. In both aspects, the use stage constitutes a majority of the
life cycle (approximately 85% of the total estimated energy use) and 70–90% of the total
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environmental impact arises in this stage. Since the distribution of energy use and the
environmental impact over the life cycle have a similar pattern, the energy use of a building
can be used as one indicator of a building’s environmental status. Moreover, the energy
requirement of buildings is directly related to the technology of their construction and the
type and amount of used construction materials [13,14]. Building operations worldwide
account for 28% of energy-related greenhouse gas (GHG) emissions, which mainly come
from the energy used for heating and/or cooling, hot water supply, ventilation and air
conditioning, lighting, and process-related climate-relevant GHG emissions (i.e., the release
of refrigerants and blowing agents) [15,16].

Reduction in environmental demands of the electricity production and the influence
of climate change and the electricity mix are being increasingly studied [17–20].

Amongst a number of strategies to reduce energy consumption in buildings, nearly
zero energy buildings (NZEB) have the potential to significantly reduce the energy they use
while increasing the share of renewable resources [21,22]. Due to the findings of Hernandez
and Kenny [23], the main energy consumption in a building is the energy for operation
(heating, cooling, lighting, etc.), and they suggest that the amount of consumption can
be regulated by technical innovations. However, it has not always been proven that the
selected design choices are the most suitable from both an environmental and economic
perspective [22,24].

Several studies have shown construction materials to be major contributors to envi-
ronmental impacts for low energy buildings [25,26]. Each building has a unique structural
composition consisting of individual elements forming a separate unit. Of course, all
types of building materials have many specific technical [27–29] and environmental proper-
ties [7,30,31]. The life cycle impact assessment (LCIA) of buildings is therefore significantly
influenced by the specific construction materials used for the construction. Takano et al. [32]
showed that a building with a wood envelope has a better score on embodied GHG emis-
sions and on carbon storage than an envelope made with concrete, steel, or brick. Hence,
the life cycle of buildings is a complex system, since it involves the aggregate effects of a
host of life cycles of their constituent materials, components, and assemblies [25,33–35].
Therefore, analysis of the environmental impact of particular structures may be helpful in
selecting construction materials, with regard to the environmental performance of buildings
in the early project phase [36].

In light of the above, the aim of this contribution is to evaluate the environmental
performance of a nearly zero energy wood-based educational building (NZEB-W) via
the LCIA, identify the environmental impacts of construction materials as well as the
operational energy demands of the NZEB-W and compare them.

2. Materials and Methods

The system boundaries for LCIA [3,4] of the NZEB-W (Figure 1) are defined from
cradle to the end of use with options [7], and activities included in the assessment were
divided into construction materials (stage A1–A3), the energy required to operate the
NZEB-W for 45 years (stage B6), and construction stage. Stages B1 to B5 and B7 were
excluded from the assessment (Table 1).
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Table 1. NZEB-W life cycle system boundaries.

Product stage Raw material supply A1 included
Transport to manufacturer A2 included

Manufacturing A3 included

Construction stage Transport to construction site and
transport on site A4 excluded

Construction and installation
process A5 excluded

Use stage Use B1 excluded
Maintenance B2 excluded

Repair B3 excluded
Replacement B4 excluded

Refurbishment B5 excluded
Operational energy use B6 included
Operational water use B7 excluded

End of life stage Deconstruction and demolition C1 excluded
Transport C2 excluded

Waste processing for reuse, recovery
or recycling C3 excluded

Waste disposal C4 excluded

Benefits and loads
beyond the system

boundaries
Reuse, Recovery, Recycling potential D excluded

NZEB-W is a two-story structure with a countertop roof, standing on a flat terrain
without a basement, located in Zvolen, Slovakia (Central Europe). Actual location factors,
solar radiation, and climatic elements that have a direct impact on the energy performance
of the structure were taken into account in all calculations (technical, thermotechnical, and
environmental). The ground plan is rectangular with a total area of 19.2 × 29.8 m and a
572.16 m2 built-up area. The supporting structure consists of wooden (OSB + solid wood
column of spruce) box beams 400 × 80 mm, together with straw bale insulation with a
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bulk density ρ = 90 kg/m3. The foundations are on reinforced concrete feet. The floor
above the terrain is formed by a beam construction with a double beam 150 × 300 mm
in the 2000 mm module. Above this construction, the construction of a peripheral wall is
also created with straw bale insulation (400 mm thick) and additional mineral insulation
(50 mm thick). The construction of windows was designed to be made of A+ triple glazed
windows. The proposed NZEB-W complies with the normalized value of the specific heat
demand according to EN 73 0540 − 2 + Z1 + Z2 [37] and meets the assumption of achieving
energy efficiency QN, EP < 40.7 kWh/(m2/year) [38]. Base building characteristics and
operational energy needs of NZEB-W are listed in Table 2. Construction materials used
and their distribution within the NZEB-W components are listed in Table 3.

Table 2. Characteristics of the NZEB-W.

Built-up area 572.16 m2

Heated area 528.72 m2

Heated volume 1679.05 m3

Floor area 550.23 m2

Load-bearing walls 122.5 m2

Partitions 267.4 m2

Window area 121.15 m2

Door area 23 m2

Lightning area 544.4 m2

Electricity consumption for lightning 9.05 kWh /m2/year
Lightning * 4926.82 kWh/year *

Electricity consumption for technical equipment 1478.05 kWh/year
Energy consumption for hot water preparation 8.60 kWh/m2/year

Energy consumption for heating 21.59 kWh/m2/year
* 114 × LED tube 16 W, 38 × LED tube 8 W.

The construction and thermal characteristics of the NZEB-W (Figure 1) were analyzed
in detail by Mitterpach et al. [39] and use ultra-low energy building technologies with an
intelligent operational management system.

Operational energy demands of NZEB-W (22,366.93 kWh/year) are linked to electricity
consumption by the lighting (4926.82 kWh/year) and technical equipment (1478.05 kWh/year)
of the building together with heating (11,415.07 kWh/year) and domestic hot water
(4546.99 kWh/year). For lighting, the requirement of ≤9 kWh/m2 per year for the energy
efficiency of buildings is met. This dataset uses electricity available on the low-voltage
public network in the Slovak Republic. For technical equipment, the calculations included
electricity consumed by the technical equipment of buildings (computers, vending ma-
chines, portable personal equipment, etc.). These values represent 30% of the need for
electricity for lighting. The dataset used was the same as for lighting. For the calculation
of the specific heat demand for heating, natural ventilation with heat recovery with a
normative air exchange number of 0.5/h was considered. As a residential heating system,
a detailed model of a wall-mounted natural gas condensing boiler was used with a max-
imum heat output of 14.9 kW. To produce domestic hot water, wood chips are used in a
co-generation plant with a capacity of 6667 kW (referring to fuel input).

The SimaPro 9.0 database software [40] and the IMPACT 2002+ method [41] are used
for LCIA. The dataset covers all relevant process steps and technologies over the supply
chain of the represented cradle to gate inventory with good overall data quality [42].

For uncertainty analysis, we used a Monte Carlo simulation. Monte Carlo analysis was
chosen because it offers fast capability and simplicity to produce probabilistic results and is
the most common method. LCA software SimaPro has a built-in Monte Carlo simulation
capability [38]. Parameter uncertainty was evaluated for 10,000 simulation runs and 95%
confidence intervals of whole NZEB-W.
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Table 3. List of construction materials and their distribution into structural units of NZEB-W,
OSB—oriented strand board, HDF—high-density fiberboard, CLT—cross-laminated timber, GLT—
glued-laminated timber, PU—polyurethane.

Structural Units Subtitle m3 kg/m3 kg

Foundation Concrete C 20/25 30 2250 67,500
Rolled steel 4 mm thick 0.192 7850 1507.2
Solid wood Spruce C24 15.174 420 6373.08

Flooring—1st floor HDF fiberboard 7.77 600 4662
Box beam Spruce short 1.55 420 650.64

Box beam OSB short 1.15 550 631.14
Box beam Spruce long 2.09 420 876.19

Box beam OSB long 1.55 550 849.92
Straw insulation 108.98 90 9808.56

Grate Spruce 0.84 420 354.06
Isover DOMO 28.98 120 3477.60

Flex glue 4.64 1600 7418.88
Ceramic paving 6.96 2000 13,910.40
Exterior stairs 0.35 420 145.15

Flooring—2nd floor CLT board 104.33 470 49,034.16
Epoxy resin 1.16 1750 2028.60

Ceramic paving 0.34 2000 686.88
Paving BK 2.16 380 821.94

Peripheral walls—1st floor Facade cladding Larch 3.06 550 1684.38
Grate Spruce 1.18 420 493.92

HDF fiberboard 1.84 600 1102.50
Box beam Spruce 2.57 420 1079.57

Box beam OSB 1.90 420 799.68
Straw insulation 49 90 4410

CLT board 12.25 470 5757.50
PU lacquer 0.06 950 58.19

Inner walls—1st floor CLT board 14.42 470 6777.40
Glazed walls 0.34 2600 891.80
GLT columns 7.87 420 3306.24

Ceiling beams GLT 5.03 420 2112.08

Inner walls—2nd floor CLT board 12.32 470 5790.45
Glazed walls 0.78 2600 2022.12
GLT columns 6.74 420 2830.46

Roof Roof beams GLT 15.98 420 6713.28
Cement board 4.12 1300 5359.58

Isover plus 19.24 130 2501.14
Box beam Spruce 5.24 420 2199.96

Box beam OSB 3.88 550 2134
Straw insulation 109.94 90 9894.60
HDF fiberboard 8.96 600 5374.56

Grate Spruce 4.59 420 1923.37
OSB III board 14.28 550 7856.4

Folded sheet metal roofing 0.32 7140 2308.53

3. Results

A comparison of LCIA between the environmental damage of the construction ma-
terials and operational energy demands of NZEB-W (Figure 2) shows that the overall
environmental impact of construction materials (98.9 Pt) and 45 years operational energy
demands (98.6 Pt) will be at the same level.
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indicator point).

Figure 3 presents the environmental impact comparison of construction materials
and operational energy demands for 45 years of the NZEB-W; IMPACT2002+ method;
midpoints single score Pt (Eco-indicator point). This comparison shows a different amount
of influence on the individual impact categories (Figure 3, Tables 4 and 5). The total
negative impact of NZEB-W had the greatest impact on the environment in the category
of damage respiratory inorganics (34.5%), 419 kg PM2.5 eq from construction materials
and 271 kg PM2.5 eq from operational energy for 45 years; followed by global warming
(31.7%), 1.98 × 105 kg CO2 eq from construction materials and 4.23 × 105 kg CO2 eq
from operational energy for 45 years; and non-renewable energy (21.8%), 2.82 × 106 MJ
primary from construction materials and 3.73 × 106 MJ primary from operational energy
for 45 years. These first three impacts on the environment accounted for 88% of the total
environmental impact.

Table 4. Environmental impact comparison of the construction materials and operational energy
demands for 45 years of the NZEB-W; IMPACT2002+ method; midpoints characterization.

Impact Category Unit Total Construction
Materials

Operational Energy
45 Years

Respiratory inorganics kg PM2.5 eq 6.90 × 102 4.19 × 102 2.71 × 102

Global warming kg CO2 eq 6.21 × 105 1.98 × 105 4.23 × 105

Non-renewable energy MJ primary 6.55 × 106 2.82 × 106 3.73 × 106

Land occupation m2org.arable 1.06 × 105 9.78 × 104 8.03 × 103

Terrestrial ecotoxicity kg TEG soil 1.26 × 107 9.75 × 106 2.89 × 106

Non-carcinogens kg C2H3Cl eq 9.05 × 103 6.94 × 103 2.11 × 103

Carcinogens kg C2H3Cl eq 6.59 × 103 5.07 × 103 1.52 × 103

Terrestrial acid/nutri kg SO2 eq 9.67 × 103 5.35 × 103 4.32 × 103

Mineral extraction MJ surplus 3.97 × 104 3.38 × 104 5.97 × 103

Aquatic ecotoxicity kg TEG water 3.93 × 107 2.97 × 107 9.63 × 106

Ionizing radiation Bq C-14 eq 1.67 × 107 1.94 × 106 1.48 × 107

Respiratory organics kg C2H4 eq 1.75 × 102 1.13 × 102 6.23 × 101

Ozone layer depletion kg CFC-11 eq 4.16 × 10−2 1.52 × 10−2 2.64 × 10−2

Aquatic eutrophication kg PO4 P-lim 1.04 × 102 4.00 × 101 6.43 × 101

Aquatic acidification kg SO2 eq 2.62 × 103 1.37 × 103 1.26 × 103
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Table 5. Environmental impact comparison of the construction materials and operational energy demands for 45 years of the NZEB-W; IMPACT2002+ method;
midpoints characterization.

Impact
Category Unit Domestic

Hot Water Flooring 1st Flooring
2nd Foundations Heat

Energy
Inner Walls

1st
Inner Walls

2nd Lightning Peripheral
Walls Roof Technical

Equipment
Windows
and Doors

Carcinogens kg C2H3Cl
eq 6.7 × 101 7.8 × 102 5.6 × 102 2.6 × 102 6.0 × 102 4.3 × 102 8.1 × 102 6.5 × 102 4.0 × 102 6.9 × 102 2.0 × 102 1.1 × 103

Non-
carcinogens

kg C2H3Cl
eq 1.4 × 102 6.5 × 102 7.6 × 102 3.1 × 102 9.4 × 102 6.7 × 102 1.2 × 103 8.0 × 102 5.2 × 102 1.7 × 103 2.4 × 102 1.1 × 103

Respiratory
inorganics kg PM2.5 eq 8.3 1.4 × 102 64 15 78 31 53 1.4 × 102 26 42 43 43

Ionizing
radiation Bq C-14 eq 9.3 × 103 1.8 × 105 2.3 × 105 8.5 × 104 2.9 × 105 2.1 × 105 3.8 × 105 1.1 × 107 2.5 × 105 3.5 × 105 3.3 × 106 2.6 × 105

Ozone layer
depletion

kg CFC-11
eq 2.7 × 10−3 1.6 × 10−3 2.1 × 10−3 9.4 × 10−4 2.7 × 10−3 1.5 × 10−3 2.6 × 10−3 1.6 × 10−2 1.7 × 10−3 3.0 × 10−3 4.8 × 10−3 1.8 × 10−3

Respiratory
organics kg C2H4 eq 3.6 9.4 20 6.5 41 7.4 12 14 7.8 17 4.1 34

Aquatic
ecotoxicity

kg TEG
water 1.2 × 105 2.5 × 106 4.8 × 106 1.1 × 106 1.3 × 105 3.9 × 106 6.3 × 106 7.2 × 106 2.2 × 106 5.8 × 106 2.2 × 106 3.0 × 106

Terrestrial
ecotoxicity kg TEG soil 1.7 × 105 7.6 × 105 1.8 × 106 4.4 × 105 5.2 × 105 9.6 × 105 1.3 × 106 1.7 × 106 6.0 × 105 2.4 × 106 5.1 × 105 1.5 × 106

Terrestrial
acid/nutri kg SO2 eq 3.1 × 102 4.3 × 102 1.0 × 103 2.6 × 102 1.8 × 103 4.5 × 102 7.8 × 102 1.7 × 103 4.5 × 102 8.3 × 102 5.2 × 102 1.1 × 103

Land
occupation m2org.arable 6.2 × 103 4.7 × 103 3.4 × 104 4.8 × 103 0.0 1.1 × 104 1.4 × 104 1.4 × 103 1.4 × 104 1.4 × 104 4.2 × 102 1.2 × 103

Aquatic
acidifica-

tion
kg SO2 eq 42 1.3 × 102 2.1 × 102 59 2.8 × 102 1.3 × 102 2.5 × 102 7.2 × 102 1.3 × 102 1.9 × 102 2.2 × 102 2.6 × 102

Aquatic
eutrophica-

tion

kg PO4
P-lim 5.3 × 10−1 4.0 6.4 1.6 1.2 3.9 7.1 48 3.6 4.7 14 8.7

Global
warming kg CO2 eq 1.2 × 103 1.9 × 104 2.8 × 104 1.3 × 104 2.8 × 105 1.7 × 104 3.2 × 104 1.1 × 105 1.8 × 104 3.5 × 104 3.3 × 104 3.6 × 104

Non-
renewable

energy
MJ primary 1.6 × 104 2.5 × 105 5.1 × 105 1.2 × 105 4.4 × 105 2.3 × 105 4.2 × 105 2.5 × 106 2.5 × 105 3.3 × 105 7.6 × 105 7.1 × 105

Mineral
extraction MJ surplus 1.3 × 102 2.6 × 103 1.0 × 103 7.1 × 102 2.4 × 102 2.8 × 103 5.9 × 103 4.3 × 103 2.3 × 103 7.1 × 103 1.3 × 103 1.1 × 104
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3.1. LCIA Construction Materials

The major negative impact of construction materials is presented by respiratory in-
organics (41.40 Pt), followed by global warming (20.02 Pt), and non-renewable energy
(18.54 Pt). The course of environmental damage from construction materials incorpo-
rated into structural units (Table 2) as well as damage from the composition of energy
requirements (type of energy consumption) NZEB-W are shown in Figure 4 and Table 5.
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The greatest damage of construction materials is caused by the first floor materials,
second floor, and infill structures (windows and doors). For example, ceramic paving
caused first floor flooring had the highest impact (15.8 Pt) among the construction elements
mainly affecting respiratory inorganics (133 kg PM2.5 eq), global warming (1.00 × 104 kg
CO2 eq), and non-renewable energy (1.51 × 105 MJ primary). The contribution of wood as
a construction material is displayed in second floor flooring where 93.3% of weight came
from CLT panel, which was also the second-highest value within the whole construction,
representing 20.8% of the total weight. The total impact of CLT (9.76 Pt) was mainly in
respiratory inorganics (33.2 kg PM2.5 eq), global warming (1.32 × 104 kg CO2 eq), and non-
renewable energy (2.01 × 105 MJ primary). The third-largest contributors of the structural
unit were windows (13.4 Pt) and doors (1.16 Pt), which had a relatively high impact due
to the large glass filling area (non-renewable energy 7.08 × 105 MJ primary; respiratory
inorganics 43.4 kg PM2.5 eq; and global warming 3.58 × 104 kg CO2 eq). For example, the
influence of inner walls 2nd (13.9 Pt) is largely due to the most filling structures of glazed
walls (80.3%). The roof also had a relatively high impact (13.4 Pt) caused by sheet metal
roofing, which contained only 6.3% of the weight of the roof and 1% of the total weight of
the building.

A whole building assessment was conducted by Tushar et al. [27] and research was
conducted to find the contribution to environmental impacts for different building com-
ponents (e.g., ceiling, wall, and floor) and to compare design options to find the most
suitable materials for building components. For example, the most adverse effects of the
four paving materials used were ceramic tiles, with an effect on global warming potential
of 15,227 CO2 eq and the primary energy consumption of 255,896 MJ. As in our study
(although the buildings were structured differently), floors and walls had the total great-
est impact on both global warming potential and primary energy demand. However, a
complete and conclusive comparison was not possible because the research used different
evaluation methods and the buildings did not have completely comparable characteristics
in common.
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Najjar et al. [43] suggested a new proposal for a building and compared the potential
reduction in energy consumption and environmental impacts. After calculating the quanti-
ties of construction materials, a simulation was made to measure the impact categories such
as global warming potential. Global warming potential was from 4,537,449 kg CO2 equiva-
lent to 2,934,501 kg CO2 equivalent, which corresponds to a decrease of 35.33%. Insights
into the results show that all components of building envelopes affect the consumption
of energy in buildings, however, exterior walls and windows account the most in these
values. For example, Estokova et al. [44] showed that the overall environmental impacts of
a residential house, on average, were represented by 220 kg CO2eq emissions for global
warming and 1.03 kg SO2eq emissions for acidification potential. Related to 1 m2 of floor
area, our NZEB-W reached higher values of 359.9 kg CO2eq and 12.216 kg SO2eq. These
values should also not be simply compared with each other as the individual studies have
different inventory bases and were compared with different evaluation methods.

Generally, embodied emissions of wood-based construction are generally less than
conventional masonry constructions [45–47]. According to Vilčeková et al. [48], wooden
log houses have a significantly lower negative impact on the environment compared to a
wooden house, which is a combination of a wooden frame and other conventional materials.
As is shown, the impact of wood constructions can also be influenced by other types of
used construction materials.

3.2. LCIA Operational Energy

For the highest impact values of operational energy for 45 years, the global warming
(42.68 Pt), followed by respiratory inorganics (26.73 Pt) and non-renewable energy (24.54 Pt)
impact categories were responsible.

According to Fouquet et al. [25], NZEB introduces highly energy-efficient systems
through renewable energy sources, reducing the energy demand together with adequate
regulation of thermal insulation thickness. The results of our study proved the use stage
environmental impact of energy-efficient buildings reached a balance in the 45th year of
use. In this respect, construction materials are major contributors to environmental impact
for low-energy buildings. It was also confirmed that the effects of electricity produced
from renewable sources (production domestic hot water, wood chips in a cogeneration
plant) had less environmental impacts (1.77%) than the energy used from the public grid
(44.5% lighting and 13.4% technical equipment; the energy mix for Slovakia uses electricity
mostly from brown coal, lignite combustion, and nuclear energy) and the production of
heat from natural gas (40.3%; is the second non-renewable resource). The overall results
showed that the highest negative impact connected with operational energy needs came
from global warming (4.23 × 105 kg CO2 eq), respiratory inorganics (271 kg PM2.5 eq),
and non-renewable energy (3.73 × 106 MJ primary). The main contributor to global
warming remained heat from natural gas. Ionizing radiation is connected to the electricity
consumption mix of Slovakia, which widely uses nuclear energy, and the impact on non-
renewable energy is from brown coal combustion.

Rodrigues and Freire [49] confirmed that the use phase impacts are highly correlated
with electricity use, so changes in the electricity mix may have a significant influence on the
results. Pajchrowski et al. [14] stated that the main source of negative environmental impact
in the life cycle of buildings is the energy consumption at the stage of long-term building use
and the impact categories that are mainly influenced by the negative impact are as follows:
respiratory inorganics, global warming, and non-renewable energy. Our study confirmed
the substantial impact of these impact categories, but the magnitude of the impact was
different. The sequences of construction materials were the same, unlike the 45th year of
energy consumption where the order was altered to non-renewable energy, global warming,
and respiratory inorganics, respectively (Tables 4 and 5 and Figures 3 and 4). From Luo
and Chen’s [50] analysis, it can be seen that the total carbon emissions during the building
use phase is the highest, and is the focus of reducing carbon emissions. The comparison
in our study confirms this finding and specifies that for NZEB-W after the 45th year of
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using the building, the environmental impact of electricity consumption is higher than the
environmental impact of the building materials. Röck et al. [51] showed a clear reduction
trend in life cycle GHG emissions due to improved operational energy performance. The
analysis revealed an increase in relative and absolute contributions of so-called ‘embodied’
GHG emissions. Due to the study, the average share of embodied GHG emissions from
buildings, following the current energy performance regulations, was approximately 20–
25% of life cycle GHG emissions, followed by 45–50% for highly energy-efficient buildings,
and surpassed 90% in extreme cases. At the same time, the contribution of embodied
GHG emissions increased up to and beyond a ratio of 1:1 (embodied:operational) when
we considered a 50-year period. Our study confirmed the validity of these statements.
Reduction in environmental demands of the electricity production and the influence of
climate change and the electricity mix are being increasingly studied [17–20]. It is expected
that electricity mixed with lower GHG intensity leads to a change in the most influential
variables due to a reduction in use phase impacts [49,52].

Therefore, given the type of building, its overall environmental impact of 197.75 Pt
(Respiratory inorganics 690 kg PM2.5 eq; Global warming 6.21 × 105 kg CO2 eq; non-
renewable energy 6.55 × 106 MJ primary) is relatively small, and when comparing the
environmental impacts of construction materials and up to 45 years of energy consumption,
the environmental suitability of the construction materials as well as the energy efficiency of
NZEB-W is indicated. If public policies requiring decreased energy demands in buildings
are to be implemented, one can expect embodied loads in most buildings to become as
relevant as (if not more than) operational loads [53].

3.3. Lifespan of Building

According to Mequignon et al. [54], the lifespan of buildings has a significant impact
on the environment. Safari and AzariJafari [55] state that most studies have shown that by
focusing on the operational phase, which is the longest phase of a building’s life cycle, the
greatest environmental impact reduction can be achieved and the lifetime of case studies in
the literature ranges from 30 to 100 years. Our study further agrees with studies that declare
that building materials contribute significantly to the environmental impacts of low-energy
buildings [25,26], and a clear definition of the lifetime of buildings and materials should be
an important upcoming topic for LCA in the field of buildings [56]. In relation to the above-
mentioned information and in order to balance the environmental damage of construction
materials and the energy performance of buildings, we propose that the building lifetime
(BL) should be limited by the number of years “n” when the environmental damage of the
construction materials (EDM) is approximately equal to the environmental damage of the
energy needs of the building (EDE) for “n” years: BL = EDM ≈ n × EDE

3.4. Uncertainty Analysis

Uncertainty analysis with a Monte Carlo simulation of the NZEB-W is presented in
Figure 5 and Table 6. The results (10,000 simulation runs and 95% confidence intervals)
show the details of all the interval variations including the mean, median values, standard
error of mean (SEM), standard deviation (SD), and the coefficient of variability (CV).
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Table 6. Uncertainty analysis of NZEB-W, method IMPACT 2002+, characterization, confidence inter-
val: 95%, standard deviation (SD), coefficient of variability (CV), and standard error of mean (SEM).

Impact Category Unit Mean Median SD CV 2.5% 97.5% SEM

Global warming kg CO2 eq 6.21 × 105 6.20 × 105 1.27 × 104 2.05 5.99 × 105 6.49 × 105 1.27 × 102

Aquatic
acidification kg SO2 eq 2.62 × 103 2.61 × 103 1.39 × 102 5.31 2.37 × 103 2.92 × 103 1.39

Respiratory
inorganics kg PM2.5 eq 6.89 × 102 6.86 × 102 4.54 × 101 6.59 6.11 × 102 7.88 × 102 4.54 × 10−1

Terrestrial
acid/nutri kg SO2 eq 9.66 × 103 9.62 × 103 6.84 × 102 7.08 8.42 × 103 1.11 × 104 6.84

Mineral extraction MJ surplus 3.94 × 104 3.90 × 104 4.42 × 103 1.12 × 101 3.19 × 104 4.91 × 104 4.42 × 101

Respiratory
organics kg C2H4 eq 1.75 × 102 1.72 × 102 2.00 × 101 1.14 × 101 1.50 × 102 2.25 × 102 2.00 × 10−1

Non-renewable
energy MJ primary 6.55 × 106 6.43 × 106 8.02 × 105 1.22 × 101 5.32 × 106 8.48 × 106 8.02 × 103

Carcinogens kg C2H3Cl eq 6.61 × 103 6.41 × 103 1.17 × 103 1.77 × 101 4.94 × 103 9.42 × 103 1.17 × 101

Ozone layer
depletion kg CFC-11 eq 4.16 × 10−2 4.12 × 10−2 1.58 × 10−2 3.79 × 101 1.16 × 10−2 7.41 × 10−2 1.58 × 10−4

Land occupation m2org.arable 1.07 × 105 9.40 × 104 5.03 × 104 4.72 × 101 4.79 × 104 2.36 × 105 5.03 × 102

Aquatic
eutrophication kg PO4 P-lim 1.05 × 102 8.58 × 101 7.10 × 101 6.77 × 101 3.76 × 101 2.86 × 102 7.10 × 10−1

Ionizing radiation Bq C-14 eq 1.67 × 107 1.06 × 107 2.21 × 107 1.33 × 102 4.51 × 106 6.50 × 107 2.21 × 105

Non-carcinogens kg C2H3Cl eq 8.32 × 103 8.44 × 103 7.56 × 104 9.09 × 102 1.44 × 105 1.58 × 105 7.56 × 102

Aquatic ecotoxicity kg TEG water 3.90 × 107 3.58 × 107 4.97 × 108 1.27 × 103 −9.54 × 108 1.03 × 109 4.97 × 106

Terrestrial
ecotoxicity kg TEG soil 1.10 × 107 8.71 × 106 2.24 × 108 2.04 × 103 −4.43 × 108 4.68 × 108 2.24 × 106

A Monte Carlo simulation on a single score of whole NZEB-W showed a mean of
196.22, median of 193.70, SEM of 1.52, and CV of 77.66%. The major negative impacts
were presented in a small CV by respiratory inorganics (CV 6.59%), followed by global
warming (CV 2.05%), and non-renewable energy (CV 12.2%). These first three impacts on
the environment accounted for 88% of the total environmental impact. Less significant
impact categories with a high CV were caused by the uncertainties in the database for
the energy country mix, or in the case of materials due to their uncertainty by acting
primarily on aquatic ecotoxicity, terrestrial ecotoxicity, non-carcinogens, and ionizing
radiation. Similar results were found, for example, by de Souza et al. [57], Robati et al. [58],
and Hasan et al. [59].

3.5. Research Limitations

To compare the results of this work with others, it is important to be aware of the
parameters that affect the results of the study, in particular, the different types of buildings
and their location, functional units, system boundaries, depth of inventory analysis, type
of databases used, chosen LCIA test method, and software used. There are many works,
however, for example, Safari and AzariJafari [43] also reached these findings after a thor-
ough study of the articles, where 50 articles were included for a comprehensive analysis
and classification of the BIM-LCA integration methodology. Owsianiak et al. [60] and
Stavropoulos et al. [61] showed that the single score resulting from each LCIA method
cannot be directly compared with the other due to differences in characterization, normal-
ization, and weighting factors used in each method. Alyaseri and Zhou [62] preferred to
evaluate outcomes from different methods, where the impact or damage categories were
used for comparison instead of a comparison based on single scores. From the article by
Mitterpach et al. [63], there were also clearly different values of the results in the different
methods used for LICA, although the trends of environmental damage were similar. Con-
cerning the databases, the material sensitivity originated from the background data [56].
Sensitivity results found due to database variation are very much in line with the findings
from Modahl et al. [64], which showed that using two datasets with different degrees of
specificity implies substantial differences. The importance of sensitivity depending on the
evaluation method was also confirmed by Röder et al. [65].

The results of this study are bound to a specific structure and region (central Slovakia).
Hence, comparison with other buildings should be carried out with care, especially when
comparing operational energy needs vastly bound to the energy consumption mix of a
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specific country. The system boundaries of this LCIA study considered only some phases of
the life cycle according to Table 1. It is therefore necessary to take this fact into consideration
when comparing the results with other works, with a recommendation to take into account
the lifetime of buildings in future works in order to also point out reliable results within
extended system boundaries.

4. Conclusions

The paper focused on and compared the environmental performance of an almost zero
energy wood-based educational building (NZEB-W) through a life cycle impact assessment
(LCIA). It identifies the environmental impacts of building materials and the operational
energy intensity of NZEB-W.

Based on this analysis and the deeply studied research cited in this study, it was
confirmed that each LCA study is unique in terms of functional unit, system boundaries,
inventory analysis, and the content of the impact assessment method. The results of
this LCA study assessing the environmental impacts of building materials and the energy
performance of a building for wood-based teaching show that it is important to compare the
environmental properties of the building materials used and the energy mix consumption.
A comparison of the environmental damage of building materials with the energy intensity
needs of the NZEB-W operation showed a different impact on individual categories of
impacts, depending on the material composition and energy mix. The biggest negative
impacts of this NZEB-W were respiratory inorganics, global warming, and non-renewable
energy of the building materials and energy consumption. Environmental damage by
building materials as well as “n” annual energy consumption represents a significant part
of NZEB’s environmental impact and therefore the minimum lifetime of a building should
be limited to a number of years when the environmental damage to building materials is
approximately equal to the environmental damage caused by operational energy needs.
Particular attention should be paid to the amount of cement, ceramic, and glass materials,
the type of insulation and wood materials, and the amount and type of energy.

A comparison of the environmental damage of building materials with the energy
intensity needs also indicated the environmental suitability of building materials as well as
the energy efficiency of NZEB-W.

Regarding environmental damage and the above information, the material composi-
tion of building materials compared to energy consumption in the use phase is an essential
element for understanding the complex life cycle impact of buildings.
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