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Abstract: The process of land degradation needs to be understood at various spatial and temporal
scales in order to protect ecosystem services and communities directly dependent on it. This is
especially true for regions in sub-Saharan Africa, where socio economic and political factors exacerbate
ecological degradation. This study identifies spatially explicit land change dynamics in the Copperbelt
province of Zambia in a local context using satellite vegetation index time series derived from the
MODIS sensor. Three sets of parameters, namely, monthly series, annual peaking magnitude, and
annual mean growing season were developed for the period 2000 to 2019. Trend was estimated
by applying harmonic regression on monthly series and linear least square regression on annually
aggregated series. Estimated spatial trends were further used as a basis to map endemic land change
processes. Our observations were as follows: (a) 15% of the study area dominant in the east showed

heck f positive trends, (b) 3% of the study area dominant in the west showed negative trends, (c) natural
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regeneration in mosaic landscapes (post shifting cultivation) and land management in forest reserves
were chiefly responsible for positive trends, and (d) degradation over intact miombo woodland and
cultivation areas contributed to negative trends. Additionally, lower productivity over areas with
semi-permanent agriculture and shift of new encroachment into woodlands from east to west of
Copperbelt was observed. Pivot agriculture was not a main driver in land change. Although overall
greening trends prevailed across the study site, the risk of intact woodlands being exposed to various
disturbances remains high. The outcome of this study can provide insights about natural and assisted
landscape restoration specifically addressing the miombo ecoregion.

Keywords: MODIS; degradation; regeneration; miombo woodland; shifting cultivation; sub-Saharan
Africa

1. Introduction

Understanding human-induced land degradation has become essential in order to
identify drivers of loss of ecosystem services and reduced land productivity [1]. Land
degradation can manifest itself in the form of reduced forest cover, colonization by invasive
species, grassland degradation, declined crop yields, soil erosion, and salinization. In
addition, some of the far-reaching impacts can include threatened food security, impov-
erishment of indigenous communities, unemployment, and unstable local and national
economy [2]. Globally, 24% of the land area has been reported to be degraded [3], and in
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Licensee MDPL, Basel, Switzerland,  the case of drylands, the Millennium Ecosystem Assessment [4] reports a degradation of

10% to 20%. This can result in serious implications for the 1.5 billion people who depend
on these lands for their survival and sustenance [3]. The issue of land degradation and
its remediation has also been targeted in the 15th SDGs (Sustainable Development Goals)
adopted at the United Nation Sustainable Development Summit in 2015.

Drivers of land degradation [5] have been categorized as follows: increased aridity
40/). (prolonged dry periods, high temperature), agricultural intensification and expansion
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(including over grazing), urbanization and infrastructure (including roads, settlements,
irrigation, and industries such as mining) and wood extraction. Climatic factors, especially
droughts, can exacerbate existing degradation and even slow down recovery [6]. There
are numerous other indirect variables controlling land change processes, such as global
economic policies, market trends (mineral prices), land management schemes, natural
resource policies, and poverty and/or land ownership conflicts [7].

This scenario is typically reflected in sub-Saharan African countries like Zambia. Sub-
Saharan Africa is highly susceptible to land degradation [8]. The limited studies [9-13] on
land cover changes in sub-Saharan Africa are either confined in their spatial scale or in the
assessment period. In order to integrate land degradation in the national environmental
policy and management programs, it is essential to address drivers of land change and
their spatial and temporal dynamics. It is noteworthy here to mention that Zambia was one
of the pilot countries to be considered for REDD+ (Reducing Emissions from Deforestation
and Forest Degradation) program in 2010. One of the earliest vegetation monitoring studies
in Zambia covered the Copperbelt province [14].

Study Area

This paper focuses on the Copperbelt province of Zambia, located in the central
north (Figure 1) on the Central African plateau, and covering an area of 31,328 km?.
Geographically, Zambia falls in the tropical region, between 8° S and 18° S, however
the climatic conditions are driven more by altitude; where Copperbelt lies between the
elevation 900 m to 1500 m above sea level (asl). There are three distinct seasons controlled
by north and south movement of the intertropical convergence zone (ITCZ). The warm
and wet period is between November and April, cool and dry between May and August
with July being the coolest month, and hot and dry between September and October,
with October as the hottest time of the year [15]. Based on rainfall patterns and edaphic
conditions, Zambia is divided into three agro-ecological zones; of which the Copperbelt
belongs to zone III that is characterized by high precipitation (annual average of 1200 mm),
low fertility, and acidic and leached soils [16].

Copperbelt is part of the central wet miombo woodland zone, where Brachystegia
spiciformis, Isoberlinia angolensis, and Julbernadia paniculata are the dominating tree species,
found interspersed with patches of flooded grasslands. Maize, cassava, wheat, soybeans,
sweet potatoes, and groundnuts are the main crops produced mainly in the rainy season
at subsistence level across the Copperbelt. There are ongoing land use/changes such as
end of dry season fires, shifting cultivation, charcoal production, logging, industrialization,
urbanization, and increasing settlements. A significant part of the population, rural and
urban, depend on woodland harvest for around 70% of their energy needs [17]. Mining,
which serves as a major contributor to the national economy, is one of the prominent
activities in this region as well [18]. In general, the Zambian Forestry sector has a 5.4% [19]
share in gross domestic product (GDP) and provides 1.4 million jobs [20]. Such economic
dependence has led to high deforestation rates of 1.5% per year. It is one of the highest in the
sub-Saharan African region, leading to massive exploitation of the miombo woodlands [21]
and contributing 3% to the global greenhouse gas (GHG) emissions [22].

The Copperbelt province has experienced substantial degradation and exploitation
of miombo woodlands [23]. This has been compounded by limited land restoration pro-
grams that target drivers specific to the Copperbelt region. Monitoring land change on
continental or global scale, using coarse spatial resolution (~1 km) data, can lead to bias
by underestimating local scale land change drivers and overestimating dominant patterns.
Land use change is highly region specific, requiring spatially explicit information. Subse-
quently, during land management implementation at the national and sub-national level,
higher resolution data are needed to connect it with real land use change processes that
match environmental protection targets defined at various strata of policymaking. Even
multi-temporal static land cover maps are not sufficient to monitor land changes in terms of
capturing subtle processes. In addition, no differentiation is highlighted between: natural
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undisturbed forests/recovered forests and managed plantations, shifting cultivation and
pivot irrigation, fallow land from bare land, and, lastly, mosaic or fragmented landscape
are mostly classified as a single land use type. A practice that is classic and a major driver
of deforestation in this region is shifting cultivation (chitemene), which is highly driven
by endemic circumstances (tribal ownership and informal economy) and might even need
district level monitoring [24]. For instance, block ‘chitemene’ cultivation plots are more
common in Copperbelt as compared to circular ‘chitemene’, which are prevalent in the
Northern province.
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Figure 1. Study area of the Copperbelt (top image) along with its land cover classification for the
year 2014 taken from ILUA (Integrated Land Use Assessment [13]). It borders Democratic Republic of
Congo in the north and east (bottom image). According to the scale in the map, 1 cm equals 10 km.
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Satellite-based earth observation data, such as surface reflectance and derived data
products, have been shown to be capable of tracing the development of terrestrial surfaces.
It is a well-established practice to integrate surface reflectance derived vegetation index time
series in environmental monitoring strategies [25]. They provide objective, repetitive, and
synoptic observation data that are required for capturing long-term trends and short-term
disturbances across large areas [26,27]. The two most prominent and suitable long-term
archives that exist are coarse spatial-high temporal resolution MODIS and medium spatial-
low temporal resolution Landsat. For monitoring studies covering a long temporal period,
trade-offs always have to be made in terms of dense temporal resolution and coarse spatial
resolution. The MODIS time series was used in our study as opposed to the Landsat time
series, mainly due to (1) high cloud cover in Landsat imagery over subtropical regions
during the wet season; and (2) irregular Landsat scenes that do not account for seasonality,
in which case the fitting of Fourier polynomials would still not be enough because the
series is not dense enough.

Trend assessments of time series data of numerous biophysical indicators have been
developed to assess long-term land use trajectories [28]. For instance, refs. [29,30] used
MODIS to monitor long term changes in tree cover of semi-arid biomes of South Africa and
changes in vegetation in the Sahel respectively. The authors in [31,32] used the Landsat
archive to assess cultivation patterns over the Angolan Miombo belt and long-term land
cover changes in Zambia respectively. The authors in [33] used MODIS and Landsat both
to analyze degradation processes in South West Niger. The authors in [34] identified shifts
in vegetation productivity in African savannahs by applying BFAST on GIMMS NDVL
The authors in [6] used BFAST on the Landsat-derived moisture index to detect vegeta-
tion degradation in the Kavango—Zambezi Transfrontier Conservation Area (KAZA). The
authors in [35] monitored Barotse floodplain in upper Zambezi River Basin for trend as-
sessment in inundation extent, and [36] mapped land change syndromes in the Himalayan
region using BFAST algorithm on MODIS EVI.

Our study proposes a semi-automatic methodology for using remotely sensed times
series to map land degradation, regeneration, and productivity patterns at provincial
(sub-national) level.

Covering the full Copperbelt province, we seek to characterize and quantify land
degradation in a local context, by addressing the following objectives: (1) calculate long-
term trends over Copperbelt using hyper-temporal data, (2) use calculated trend patterns
to map endemic land change dynamics, and (3) evaluate mapped dynamics in the context
of underlying change drivers.

Our methodology relies on MODIS EVI time series to identify spatio-temporal trends,
while open-source data sets are utilized for interpretation. This ensures easy transferability
and adaption to regions with comparable geographical and ecological characteristics.

2. Materials and Methods
2.1. Time Series Data and Indicators

MODIS satellite instrument (described below) was used to derive three vegetation
indicators over a period of twenty years. Other types of data were also incorporated to be
used as an additional layer for analysis and interpretation for the detected changes. These
data sets include land cover type, Global Forest Cover Change, road and river shapefile, na-
tional park inventory, managed forest reserves, restorative plantations, and socio-economic
data (population, national growth indicators, fertilizer/pesticide use, mining production,
and agricultural yield).

2.1.1. MODIS (MODerate Resolution Imaging Spectroradiometer)

This study used the MODIS vegetation index product (Collection 6 level 3, MOD13Q1),
developed using red (0.62 um to 0.67 pm) and (near infrared) NIR (0.84 pm to 0.88 pum)
bands with 250 m spatial resolution. MOD13Q1 products are constrained view maximum
value 16-day composites made from 8-day bidirectional surface reflectance granules. The
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8-day product has been corrected for molecular scattering, aerosol, and ozone absorption.
The 16-day composites use the criteria of low clouds, low viewing angle, and highest index
values to select the best available pixel. There is a standardized algorithm to generate
spatially and temporally consistent MODIS data products, which are constantly assessed
for their accuracy and long-term integrity [37]. EVI (Enhanced Vegetation Index) was
extracted to be used in the study; in addition to the red and NIR channels, EVI uses the
blue band with wavelength 0.46 pm to 0.48 um and 500 m spatial resolution.

EVI data covering the period from 2000 and 2019 were downloaded in GeoTIFF format
using the AppEEars (Application for Extracting and Exploring Analysis Ready Samples)
online tool [38]. Downloaded data were pre-processed using the Whittaker smoother [39]
with lambda as 500 to convert 16-day data to monthly composites and to fit the data to the
upper envelope for correcting any undetected clouds. The function ‘whittaker.raster” in
R-3.6.2 was applied [40].

2.1.2. Parameter Derivation and Trend Estimation

The wavelength of NIR is sensitive to vegetation-related processes, such as changes
in greenness of the vegetated surface over time. The ratio of reflected NIR by spongy
mesophyll and absorption of red wavelength by chlorophyll in leaves is correlated to
different parameters such as biomass, forest cover, and vegetation health. Higher reflection
of NIR will lead to higher EVI values, which signifies high biomass and productivity [25,41].
This information collectively can be used as a proxy for direct drivers of land degradation
and changes in forested landscapes. Table 1 shows the parameters derived using MODIS
EVI time series data and their application in land change mapping.

Table 1. Original data set and its derivation for time series analysis.

Original Time Series Parameters Derivation
Monthly composites Harmonic model
Bi monthly Peaking magnitude Annual maximum EVI
1 MGS Average EVI between 2 SOS and ? EOS

! Mean growing season, 2 Start and end of season.

Trend on monthly time series was calculated using the BFAST (Breaks for Additive
Seasonal and Trend) algorithm developed by [42]. It is an additive decomposition model
using piecewise linear trend and fitting of harmonic terms. Thus, for every EVI value at a
particular time, the regression algorithm has the following components: intercept, slope,
amplitude, phase, and residuals. Ordinary least squares regression was applied to estimate
slope values (trend).

To derive phenological metrics, annual peaking magnitude and mean growing season
(MGS), monthly series were fitted with a cubic smoothing spline and interpolated to daily
values. Then, the start and end of season (SOS and EOS) were estimated using the derivative
of the seasonal curve [43]. This approach assumes SOS and EOS as mid points for spring
greenup and autumn senescence. Following this, MGS was calculated as average EVI value
of the days between SOS and EOS and peak was calculated as maximum EVI value between
S0S and EOS, respectively. Trend for MGS and peak was calculated through estimation
of linear least square regression. Trend estimation of all three parameters was carried out
against a significance level of 5% or p < 0.05 [44]. This was justified by an average of 19%
change in EVI values during the evaluation period, which was considered as a significant
change. The aforementioned analysis was carried out in R-3.6.2 [45] using the ‘greenbrown’
library [46]. The output of all slope estimations were raster layers showing either positive
(greening) or negative (browning) trends. Calculated slope values were categorized into
strong (>%0.01) and weak (<£0.01). In order to compensate for Type I error (false positive),
referred to here as pixels with only one significant trend, an additional map was derived
to show positive and negative trend in relation to the three parameters combined. Only
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pixels with two or more significant trends were selected based on the assumption that they
are depicting real land changes. This trend map was used as a basis to map land change
processes.

2.2. Additional Data

To link calculated trend patterns with land change processes, various additional data
sets were used. Information on land cover type, especially forest area and cultivation
fields, was retrieved from 30 m resolution land cover maps produced by the ILUA [13]
project in Zambia for 2000, 2010, and 2014. Additionally, EVI and NDMI (Normalized
Difference Moisture Index), for Landsat 7 and 8 images, was calculated on Google Earth
Engine using the code editor for the years 2000 and 2019. Deforestation and tree canopy
cover data, at 30 m resolution, were provided by Global Forest Change data set [47]. Some
features like pivot irrigation and mines were easily visible and therefore hand digitized on
Google earth. Shapefiles for road, rail, and rivers were acquired from open street maps [48].
Plantation sites were digitized on google earth using the open spatial information provided
by the organization “WeForest’ (https://www.weforest.org/project/copperbelt-forests-
farms, accessed on 15 September 2021). All socioeconomic data were downloaded from the
official website of Zambia Central Statistical Office (https://zambia.opendataforafrica.org/,
accessed on 28 October 2021). High-resolution imagery from Google Earth and Bing maps
was also visualized for interpretation.

2.3. Assigning Land Change Processes

We used a semi-automated approach that comprises automated time series analysis as
described above, followed by iterative, rule-based association of environmental context
using auxiliary data sources. The first step was to determine the land use type for start
(2000) and end (2019) of evaluation period. Figure 2 gives an overview of how land use
type was categorized using the trend map as basis. Woodland extent was determined
using land cover map from ILUA data, shifting cultivation plots were identified using
deforestation data and Landsat derived EVI and NDMI for the years 2000 and 2019; where
plots were visible as dark areas. Extent of fragmentation in forested landscape (referred to
in this paper as mosaic containing mixture of woodland, grassland, and shifting cultivation
plots) was identified using Global tree canopy cover data [47] as follows: canopy cover
below the approximate threshold of 40% was considered as mosaic. In addition, Landsat
imagery was also visualized where mixture of bright (woodland) and dark areas (shifting
plots) constituted mosaic areas.

If the trend showed a greening pattern over mosaic areas it was assumed that wood-
land was the dominant land feature. If the trend showed a browning pattern, then it
meant shifting cultivation was dominant. Furthermore, mosaic areas with more significant
greening pixels meant these areas are undergoing higher regeneration than the areas with
less significant greening pixels. If woodland to mosaic class showed a greening pattern,
then an initial conversion from woodland to shifting, and then to mosaic, was assumed.
Trends over designated forest reserves were always assumed to be driven by management
activities, regardless of it being positive or negative (see discussion for more details). The
three trend parameters (harmonic, peak, and MGS) were analyzed individually as well
as in combinations by deriving a color-coded map with only those pixels where any two
parameters exhibited the same significant trend, and also where all three parameters had
the same significant trend. The scheme in Table 2 was followed to translate the information
from pixels to zones, where zones represent groups of pixels with similar spatial properties
in terms of land use.
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[ Landsat EVI, NDMI (2000 &
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ILUA land cover map
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— Digitized Google Earth
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— Digitized Google Earth

Restorative plantations

Figure 2. Systematic scheme used to assign land use type. “Minimum two significant trend” means

the trend map with pixels having two and three significant trend patterns.

Table 2. Framework for assigning land use processes.

Land Use Type 2000

Land Use Type 2019

Land use change

b Shifting plots

Natural woodland

& Pivot

1 pivot

18 Mosaic

& Pivot

Shifting plots

& Mosaic

& Restorative plantation

Mosaic

b Shifting plots

Similar land use

b Exploitation

Natural woodland

& Natural regrowth

™ Shifting plots

M Mosaic

Managed forest reserves

b Clear cuts

& Conservation

! Intermediate conversion to shifting plots, ® Browning trend, 8 Greening trend, ™ Mixed trend.

3. Results
3.1. Trend Analysis

Table 3 shows the proportion of greening and browning trends for the three parameters
individually. Most of the slopes are positive, with MGS showing the highest number of
greening pixels, and peak showing the highest number of browning pixels. Non-significant
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pixels were assumed as stable in terms of land use. According to Table 3 the regression
model performed better (higher number of significant pixels) in assessing trends of annually
aggregated series (peak and MGS) as compared to seasonal harmonic series.

Table 3. Greening and browning distribution for the three trend parameters individually.

Trend MGS Peak Harmonic
Browning 3% 7% 4%
Non-significant (stable) 70% 77% 89%
Greening 27% 16% 7%

Figure 3 shows positive and negative trend in relation to the three parameters com-
bined. Pixels with two greening trends were the most prominent amounting to 12%, and
pixels with three greening trends summed up to 3%. The least common pattern was for
three browning trends, being only 1%. Pixels with two browning trends were 2%. More
significant trends in the form of major hotspots were observed in the east of Copperbelt
with most of them being positive. The west and southeast parts of the study site experi-
enced more negative trends, with many isolated groups of pixels scattered throughout.
Some hotspots for negative trends (central north and towards northeast) over open pit
mines were eliminated from further analysis. Although mines have a high contribution
to deforestation, they represent a static and permanent land cover change rather than a
dynamic one.

For two significant trend parameters, highest agreement was observed between MGS
and peak (annually aggregated series) for greening in approximately 10% and browning in
1.5% of the pixels. The combination of harmonic trend with other annual parameters was
as follows: in the greening category harmonic and MGS was more common (1.6%) while in
the browning category harmonic and peak were more common (0.5%) (Figure 4).

Figure 5 shows that weak positive slopes occurred more frequently compared to
weak negative slopes. On the other hand, strong negative slopes, albeit only 1%, were
more common than strong positive slopes, which were only 0.2%. This demonstrates that
most land changes in Copperbelt are subtle. This is even more profound over mosaic
(heterogeneous) pixels where mixed land dynamics give rise to complex trend patterns.
Strong trend slopes were explicitly observed in areas that were managed, for instance, pivot
irrigation plots, forest reserves, and sites that underwent restorative plantations on small
hold farms.

3.2. Land Change Dynamics

Based on the scheme defined in Table 2, a total of 12 classes were derived that showed
the classification of land types in 2000 and 2019, these classes were then summarized into
six major land change processes, referred to in this paper as land change dynamics (Table 4).
A color-coded map was then created to depict the spatial distribution of six land change
dynamics (Figure 6), excluding the sites for open pit mines.
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Figure 3. (a) Overview of major towns, railway, mines, and rivers in Copperbelt for spatial orientation.
Mines were hand digitized on Google Earth, whereas railway, rivers, and towns were taken from
open street map. (b) Spatial distribution of two and three significant trend patterns for all parameters:
MGS, Peak, Harmonic combined (b). (-): browning, (+): greening, (0): no significant trend. According
to the scale in the map, 1 cm equals 10 km.
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Figure 5. Distribution of weak and strong slopes.

Table 4. Major classification of land change dynamics along with the sub categories.

Sub Class
10 Shifting plots to Pivot

12 pivot

Main Class: Land Change Dynamic

Pivot agriculture

11 Woodland to Pivot
5 Woodland
8 Woodland to Shifting plots

Degradation (onset) productive woodland

New encroachment

9 Shifting plots
Degradation (ongoing) productive land 7 Mosaic to Shifting plots

3 Forest reserves

Managed conservation
6 Shifting plots to Plantations

1 Mosaic

Natural regeneration 4 Woodland to Mosaic

2 Shifting plots to Mosaic

1-12 The frequency of spatial occurrence of each sub class, with 1 being most common to 12 being the least

common.
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Figure 6. Distribution of land change dynamics. According to the scale in the map 1 cm equals 10 km.

The most dominant land change with high greening trends was natural regeneration
mainly driven by the mosaic subclasses. This pattern was more prominent in the east
of Copperbelt where most of agricultural activities are focused. In case of degradation,
the major land change dynamic was the onset of degradation in productive woodlands,
followed by ongoing degradation on productive land largely due to shifting plots sub
class. Both of the degradation classes contain the word “productive’ because they showed
greening trends, in addition to browning trends, which meant that the land is still able
to sustain miombo woodlands and crop cultivation with the possibility of high yields,
provided that land reclamation measures are also carried out. In addition to existing
shifting plots, few areas experienced clear cuts for new plots (new encroachment class).
Pivot agriculture was mostly present in the southern district of Mpongwe, which is the
‘grain basket’ of Copperbelt. It was not a prominent land process in the study area since
most of the crops are rainfed.

For illustration, Figure 7 shows monthly EVI time series for various land change
sub classes for selected pixels. The development of the index signal shows the following
patterns: where there are shifting plots involved; there is a pronounced seasonal cycle as
opposed to woodland. For instance, Figure 71I displays a distinct shift of seasonality after
woodland conversion. Furthermore, it is interesting to note the higher peaks attained after
conversion (post 2015 in Figure 7II) indicating the productivity of land. In the case of forest
reserves and plantations, some abrupt changes can be seen in the signal suggesting clear
cuts and rapid regrowth (also visible on Landsat imagery). For mosaic areas the season-
ality is not so well defined; nevertheless, higher peaks can be seen, which demonstrate
productivity and recovery post disturbance (see discussion for more details). This is also
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evidenced in Figure 8 where a significant increasing trend in the annual peaking magnitude

was observed.
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Figure 7. EVI Time series for various land change sub classes: I: Onset of degradation, II: New
encroachment, III: Ongoing degradation, VI: Managed conservation, V: Natural regeneration. * In-
termediate conversion to shifting plots. Each plot shows three time series.



Forests 2022, 13, 134

13 of 21

053

EW

N O N L |

047 049 051

EW
0

EM

2000 2005 2010 2015

Figure 8. Trend (blue line) of annual peaking magnitude for mosaic areas. The symbol * shows the
trend is significant, * has p value less than 0.05, ** has p value less than 0.005, and *** has p value less
than 0.000001.

4. Discussion

This section deals with each major land dynamic by dividing them into three broad
categories: (1) degradation, which includes onset of degradation on productive woodland,
ongoing degradation on productive land, and new encroachment; (2) recovery, which
includes natural regeneration; and (3) land management, which includes managed con-
servation. Pivot agriculture will not be discussed since, according to our results, it had a
negligible role in driving long-term land change processes in Copperbelt. Nevertheless,
given the changes in rainfall regimes and recurring droughts, irrigation might play a
significant role in the near future.

Before proceeding with analyzing the land change processes, providing a statistical
context to estimated trends is necessary. Remotely sensed time series hold immense
potential for monitoring studies. However, statistical models, such as the one used in our
study, applied to calculate trends, result in uncertainties, namely, Type I (false positive)
and Type Il errors (false negative). Type I errors can be easily propagated due to temporal
autocorrelation, thus giving rise to trend patterns that might not depict any real change [49].
Unless there is an independent reference data set available, which is rarely the case with
satellite time series, direct validation, and accuracy assessment of results is not possible.
In such cases, indirect validation of the statistical output has to be carried out [50]. For
instance, our study correlated the primary analyzed data with other data sets and products,
which had either higher spatial resolution (Landsat EVI and NDMI), or higher accuracy
(Global Forest Change data).

4.1. Degradation

One of the key factors in causing direct and indirect land degradation in Copperbelt
is shifting and semi-permanent cultivation. According to Figure 9, areas with shifting
cultivation showed a high pixel count with browning trend found for all three parameters.
Small-scale farming is dominant in the study region where farmers usually cultivate less
than 5 ha of land. Out of total land area of 3,132,829 ha, around 307,000 ha is arable, of
which only 130,000 ha is under cultivation [51]. Block ‘chitemene’ is a widely practiced
form of shifting cultivation in Copperbelt province. In Zambia, as a whole, agricultural land
expansion is responsible for the loss of 25,000 ha of forested land per year [18]. Expansion
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of 1.29% of cropland into forests by small-scale farmers in Copperbelt was reported by
the Rural Agricultural Livelihoods Survey [20] especially between 2010 and 2018. This
was also evidenced in our results in the form of ‘new encroachment’, where new shifting
plots appeared in intact woodlands west of the study site. Furthermore, according to the
Global Forest Change data set, deforestation accelerated after 2010. Figure 10 shows that
degradation post 2010 is responsible for major browning trends, especially in the categories
woodland to shifting, mosaic to shifting, and mosaic.

Mosaic/Shifting
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g

g
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g
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Figure 9. Browning trend for all three parameters for various land change dynamics.
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Figure 10. Land change dynamics against Global Forest Change deforestation data classified here as
before 2010, in the year 2010, and after 2010.

The survey [20] also suggested that in addition to fulfilling subsistence needs, poor
soil was a major factor for cropland expansion. Figure 11 shows negative trends of peaking
magnitude on existing shifting plots and mosaic to shifting class. Our study observed
dominant degradation on productive land in the east of Mpongwe. This could be due to
transition from long-fallow to intensive short-fallow cultivation leading to soil nutrient
exhaustion as observed in other parts of the miombo [52]. Under a likely scenario of rise
in population, especially rural (small-scale farmers) population, (Figure 12), agricultural
expansion must be expected as a strategy to compensate for declining soil fertility, which
may eventually leave new forest areas vulnerable to deforestation.

Maize is one of the major food crops in Zambia and it is grown widely in southern
Copperbelt. Maize yields have seen a rise (Figure 13) in Copperbelt. This is partly due
to consistent expansion of area under maize in the region, especially from 2000 onwards.
In addition, it is also due agricultural intensification in the form of increased application
of synthetic nitrogen fertilizer in Zambia (Figure 13). Excessive use of fertilizers can
exacerbate soil acidity of the Agro ecological zone III, where Copperbelt is situated. Adding
to that is soil exhaustion caused by monocropping highly ‘nutrient demanding’ maize [16].
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These factors subsequently lead to long term soil infertility and severe reduction in land

productivity.
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Figure 11. Trend (blue line) of annual peaking magnitude for mosaic to shifting (top) and shifting
cultivation (bottom). The symbol * shows the trend is significant, * has p value less than 0.05 and
*** has p value less than 0.000001. EVI range for y-axis is not constant for each plot.
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Figure 12. Rural, urban, and total population in Copperbelt. Data taken from Zambia Central
Statistical Office.

Onset of degradation in productive woodland is closely associated with new encroach-
ment; however, there were additional drivers responsible for browning trends represented
in Figure 9. Copperbelt is one of the major hotspots for wood harvest (charcoal and fuel)
in Zambia, which contributes around 20% (charcoal) and 8% (fuelwood) to degradation
processes. This province is dominated by northern wet miombo species, such as high
density Brachystegia spiciformis, Isoberlinia angolensis, and Julbernadia paniculata, which are
highly suitable for charcoal [18] and other forms of energy application. The authors of [53]
attributed 18,850 ha of deforestation in Copperbelt to charcoal production for the year 1995.
Due to uncertainties in the mining sector, and drought induced poor crop harvest, most
local community members are turning to charcoal as an additional source of income.
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Figure 13. Area under maize, maize yield (Copperbelt) and fertilizer use (Zambia). Data taken from
Zambia Central Statistical Office.

About 16% of households in Copperbelt are involved with charcoal use [54]. The
authors in [55] reported that charcoal contributed 37% to household income in the Copper-
belt province and it was the main processed forest product used for subsistence and cash
income in many parts of the province [56]. It is interesting to note that some proportion
of wood being used for fuel or charcoal comes from preparing cleared chitemene fields.
However, where there is scarcity of deadwood, then live trees are selectively harvested
rather than being clear cut, leading to damaged forest canopy. This seems to be the case in
our study where browning trends for onset of degradation in productive woodland were
strongly observed in Lufwanyama and west of the Mpongwe district. An indirect driver
of forest degradation is electricity shortage in Zambia. An unreliable supply of electricity
has caused heavy dependence on fuelwood and charcoal especially in rural towns of Cop-
perbelt [57]. A study via key informant interviews in Copperbelt, Lusaka, and Southern
province revealed that load shedding and high charcoal demand had a contribution of 46%
to increased charcoal production [58].

4.2. Recovery

Natural regeneration, which primarily involved the mosaic class, was responsible
for most of the greening trends. In fact, the mosaic class showed a high pixel count with
greening trend for all three parameters (Figure 14). It has been suggested that for Miombo
woodlands, mosaic restoration can play an important role in particular for small land
holder farmers, charcoal producers, and in areas with population density between 10 and
100 km?. It is so since these areas have relatively higher population and present a classic
case of heterogeneity in land use [21]. According to our mapped land change dynamics,
natural regeneration was observed strongly in districts with population density between 10
and 100 km?; however, it was also observed in districts with more than 100 km? population
density such as Kitwe (Figure 15).

Formation of mosaic landscapes is closely associated with the chitemene cultivation
process. To prepare the fields, approximately the size of 1 ha, trees are cut at about 1 m
height (coppicing) from the ground at the beginning of the dry season. The cut branches
are placed in the inner field area, and dried and burnt. Regeneration of miombo woodland
has been widely reported, resulting from various reasons: stumps and root suckers post
coppicing aids in fast regrowth; vertical and horizontal root systems support rejuvenation;
and oblige cuts (as opposed to horizontal cuts) prevent water collection and rotting at the
cut site; and increased exposure to sunlight after canopy removal favors high germination
and recruitment of old stunted seedlings [8]. However, studies in other parts of the
Miombo have shown regeneration may not recover to the original density and floristic
composition [59] depending on the frequency and intensity of utilization or disturbance.

Our results showed strong recovery patterns due to natural regeneration in the south
east of the study site, namely, the Masaiti district, this was also observed by [8]. These areas
are in the phase of fresh regrowth, which is why they were classified as mosaic.
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Natural regeneration is a common phenomenon of the miombo woodland. This is
because miombo species are equipped with diverse regeneration modes (true seedling,
seedling sprout, root sucker, coppice, and water sprout) that provide for easy recovery on
cessation of the disturbance [60]. Opening of the canopy either through slash and burn
agriculture or charcoal production stimulates the development of these forms of regenera-
tion as the temperature and light intensity increase [61]. Exposure of stumps, seedlings,
and other regeneration modes to sunlight enhances their regeneration effectiveness for
most woodland species [62]. It is likely that regrowth stands will enter another cycle of
shifting cultivation after reaching maturity. If, in the next 20 years or so, the miombo
regenerate in the East, then it could prevent overexploitation of intact woodland in the
West of Copperbelt.
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Figure 14. Greening trend for all three parameters for various land change dynamics.
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Figure 15. Land change dynamics represented according to districts of Copperbelt.

4.3. Land Management

Of all the forest plantations in Zambia, 80% are established in Copperbelt [63]. In
the current study, managed conservation was rather pronounced in the districts in the
central north and the east of the study region (Figure 15). According to [64], pine and
eucalyptus plantations covering an area of 50,000 ha exist in the districts of Ndola, Chingola,
Lufwanyama, Kalulushi, Mufulira, and Kitwe. This could be due to the high demand of
structural timber by the mining industry. Forest revenue generated from Copperbelt has
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one of the highest contributions to national forest revenue in the form of timber and wood
fuel [65]. We observed some clear cuts in forest reserves and they showed browning patterns
for all trend parameters (Figure 9). The authors in [66] highlighted that customary lands are
prone to agricultural expansion, while state land with forest reserves are cleared to supply
charcoal and timber. Some of the clearing activities could be part of managed plantations
specifically to supply wood, such as in districts of Ndola and Kalulushi (Figure 16). Some
of these could be related to illegal harvest; however, it was difficult to differentiate that in
our study, which is why we did not categorize this as degradation.

Ndola
Luanshya -
Kitwe
Kalulushi

Chingola =

0 500 1000 1500 2000
Frequency

Figure 16. Frequency of clear cuts in forest reserve category in different districts.

Under the category managed conservation, we mapped areas with restorative plan-
tations. These sites represent assisted natural generation in small hold farms, where
sustainable harvest of miombo is promoted. Such plantations showed overall greening pat-
terns (Figure 14) predominantly in Luanshya, and additionally in Masaiti, east Mpongwe,
and Ndola. The restorative plantations, mapped in our study, have been established over an
area of 5144 ha. It could be inferred from our findings that these plantations might reverse
deforestation trends and help in establishing sustainable land management. However, it is
unclear as to whether these practices can preserve miombo woodlands to the extent that
they provide ecosystem services comparable to those of pre-disturbance levels.

5. Conclusions

Our study combines statistical analysis of remotely sensed time series and a rule-
based change type assignment. It provides an overview of land change dynamics in
the Copperbelt region of Zambia within a local context, which are directly linked with
processes of land degradation. Our place-based interpretation is based on diverse data
sources, including Landsat imagery and derived information products (e.g., Global Forest
Change Hansen deforestation data), auxiliary geospatial data, and high-resolution Bing
map and Google Earth imagery and administrative data. The discussion relied on expert
interpretation and knowledge.

We make the following inferences from our study: (a) mosaic landscapes are dominant
in the study site and therefore hold potential for ecological restoration; (b) despite greening
trends being dominant, degradation still poses huge concern since it is giving rise to
long term browning trends over intact woodlands; (c) although forests/plantations under
managed conservation showed positive trends; however, they are highly susceptible to
charcoal harvest; and (d) future intensified agriculture in the form of pivot and smallholder
irrigation due to decreased land productivity on existing agricultural areas.

It is suggested to use annually aggregated time series data in place of monthly sea-
sonal series where shifting cultivation plots with varying spatial footprint are prevalent.
Regarding the mapping procedure we conclude that mapping land change dynamics in a
local context can only be partially automated. We suggest that place-based assessments
may be conducted in two phases: an automated phase based on parameters derived from
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time series data, and a semi-automatic interpretation phase that makes use of expert knowl-
edge and auxiliary data. This results in two sets of products: one objective and purely
statistically based, and one representing a systematic interpretation to aid mitigation of
land degradation and evaluation of restoration measures.
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