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Abstract: The information of the locations and numbers of failures is crucial to precise management
of new afforestation, especially during seedling replanting in young forests. In practice, foresters
are more accustomed to determining the locations of failures according to their rows than based on
their geographical coordinates. The relative locations of failures are more difficult to collect than the
absolute geographic coordinates which are available from an orthoimage. This paper develops a
novel methodology for obtaining the relative locations of failures in rows and counting the number
of failures in each row. The methodology contains two parts: (1) the interpretation of the direction
angle of seedlings rows on an unmanned aerial vehicle (UAV) orthoimage based on the probability
statistical theory (called the grid-variance (GV) method); (2) the recognition of the centerline of
each seedling rows using K-means and the approach to counting failures in each row based on the
distribution of canopy pixels near the centerline of each seedling row (called the centerline (CL)
method). The experimental results showed that the GV method can accurately interpret the direction
angle of rows (45◦) in an orthoimage and the CL method can quickly and accurately obtain the
numbers and relative locations of failures in rows. The failure detection rates in the two experimental
areas were 91.8% and 95%, respectively. These research findings can provide technical support for
the precise cultivation of planted seedling forests.

Keywords: UAV remote sensing; forest plantation; number of failures; relative location

1. Introduction
1.1. Background

Eucalyptus is one of the most important fast growing and high-yield trees in China.
In recent 30 years, the area of Eucalyptus forests in China has increased rapidly, which has
reached 5.4674 million hectares according to the ninth national forest resources inventory
data. Eucalyptus plantation plays a very important role in China’s artificial forests. The ac-
curate monitoring of Eucalyptus forest resources is a prerequisite for accurate management
of Eucalyptus forests. The most important monitoring problem of young Eucalyptus forests
is the preservation rate. If the failures can be detected as soon as possible and accurately,
then the timely and accurate replanting can be conducted to avoid the waste of forest land,
which is conducive to improving the utilization rate of the forest land, so as to improve the
productivity and management benefits of the forest land.

Remote sensing combined with digital image processing technologies has shown
great advantages in precision forestry. “Precision forestry” refers to the use of high-tech
sensors and analytical tools to support site-specific forest management [1]. It is a new trend
of forestry development in the world. According to the Mckinsey & Company research

Forests 2021, 12, 1250. https://doi.org/10.3390/f12091250 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-6042-9824
https://orcid.org/0000-0002-3772-5713
https://doi.org/10.3390/f12091250
https://doi.org/10.3390/f12091250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12091250
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12091250?type=check_update&version=2


Forests 2021, 12, 1250 2 of 14

center, precision forestry plays an important role in many aspects related to forests such
as genetics and nurseries, forest management, billeting in forestry, wood delivery, and
value chain [2]. The value of the precision forestry market will reach USD 6.1 billion [3].
New remote sensing technologies such as unmanned aerial vehicle (UAVs) [4–9] and light
detection and ranging (Lidar) [5,7,8] make precision forestry possible. They can acquire
timely and detailed forestry data and make traditional forest inventory more efficient and
economical. Most of the researches on UAV-based precision forestry focus on individual
tree identification and the extraction of forest structure parameters with different sources
of data, such as UAV visible-light images [4,6,8,9] and three-dimensional (3D) laser point
clouds [5,7,8,10,11]. The 3D laser point cloud obtained by UAV–Lidar has high accuracy in
forest structure parameters acquisition, but it also has disadvantages, such as relatively high
cost of data acquisition and processing [12] and the complex operation of data acquisition
with certain risks [13]. High-resolution UAV image and 3D reconstruction point cloud data
are more and more widely applied [14]. These data can be used for forest monitoring and
tree attribute assessment [15].

In new afforestation activities, in practice, seedling replanting is one of the most
important measures of increasing the preservation rate of planting. The information about
the failure locations and the number of the failures is crucial to decision-making during
seedling replanting and to evaluate the afforestation. Traditionally, information on failures
in Eucalyptus forests is obtained through field visits, which are time-consuming and
laborious. For a large area of Eucalyptus forests, identifying failures in an orthoimage is a
great tool for monitoring the survival rate and preservation rate of Eucalyptus. Foresters are
more accustomed to determining the locations of the failures according to their row number
(i.e., the relative locations) than based on their geographical coordinates. The geographical
coordinates can be easily acquired by UAV remote sensing with global positioning system
(GPS), while it is not easy to get the relative locations directly.

1.2. Aim

The aim of this research focuses on the acquisition of the relative locations and the
numbers of failures in each row using aerial RGB images collected by a UAV with a low
flying altitude. The main contributions of this work are as follows.

An algorithm for row detection which consists of the interpretation of the direction
angle of the seedling rows in a UAV orthoimage based on the probability statistical theory
(called the grid-variance (GV) method) and the recognition of the centerline of each seedling
row using K-means was developed;

An approach to detecting the locations of failures and counting the number of failures
in each row based on the distribution of canopy pixels near the centerline of each seedling
row (called the centerline (CL) method) was proposed;

A technical reference on precision replanting based on UAV RGB images for Eucalyp-
tus plantation and some other kinds of plantations where seedlings rows are straight and
parallel were provided.

1.3. Related Work

This section describes and discusses scientific work on the literature that uses similar
technical approaches.

Research on methods for row detection is common in precision agriculture and auto-
matic navigation. The methods commonly used by researchers include Hough transform
methods [16], vanishing point [17], linear regression [18–20], binary large object (Blob)
analysis [21,22], clustering [23,24], Multi-regions of interest (Multi-ROIs) [20], global energy
minimization [25], and Fourier transform [26].

After reviewing the predecessors’ studies on row detection, we found the following
points: (1) they are mainly focusing on crops in precision agriculture, not trees in preci-
sion forestry, e.g., maize [24,25,27], cereal [26], rice [19], wheat [17], celery, potato, onion,
sunflower, and soybean crops [25]. Moreover, only Tenhunen et al. [26] calculated the
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direction angle of crop rows; (2) the images used by above researchers for row detection
were mainly taken from a maximal altitude of two meters and showed only a local area
of the field, focusing on guiding a tractor or an agricultural robot along the crop rows. To
the best of the authors’ knowledge, only Tenhunen et al. [26] and Oliveira et al. [28] used
aerial photographs.

There have been lots of researches devoted to studies on seedling information acquisi-
tion; many of them focus on counting the numbers of crops or trees using UAV images,
satellite images, and Lidar point cloud. Some of the studies are listed in Table 1.

Table 1. Studies on seedling information.

Data Eesources Experimental Subjects Information Obtained Method

Unmanned aerial
vehicle (UAV)

images

Potato plants Number Random Forest [29]

cotton
Emergence rate, canopy
coverage, and growth

uniformity

Support Vector Machine
(SVM) [30]

Wheat Number SVM [31]

maize
Number, coordinates, plant

density, and within-row
plant distances

“Bwlabel” ”regionprops”
function in Matlab [32]

Banana plants, mango
trees, and coconut trees Number

Extreme learning
machine (ELM),

Watershed algorithm
[33]

Citrus trees Number Convolutional Neural
Networks (CNN) [34,35]

Satellite image

Young Eucalyptus
plantations Local density Marked point process

[36]

oil palm tree Number CNN [37]

palm tree Number
Multi-level Attention
Domain Adaptation

Network [38]

Lidar point cloud corn plant Number Clustering algorithm
[39]

In above studies, crops or plantations are distributed in rows. To the best of the
authors’ knowledge, although the number of failures in the whole forest farm can be
inferred from the number of plants detected by the above methods, the acquisition of the
specific number of failures in each row and their relative locations was less studied.

Tai et al. designed a machine vision system to identify and locate the empty positions
in the transplanted seedling trays by counting leaf-like pixels existing in an area which
is around the cube center; the success rate is 95% [40]. Ryu et al. developed a robotic
transplanter for bedding plants which includes a vision system to identify the location of
empty cells by counting and comparing the number of white pixels (seedling leaves) with
a pre-defined value [41]. Wang et al. used a camera mounted on a tractor to capture local
images of corns and determined whether there is a shortage of corn by obtaining the center
of the corn seedling and calculating the distance between the adjacent corn seedlings [42].
Oliveira et al. detected the locations and total length of failures in coffee plantations with
morphological operators on orthoimages: first, an RGB image was converted to a binary
image; second, row crops were identified by Hough line transform, and then the crop rows
were displayed by straight and thick lines [28]; third, the Hough lines and the binary image
of crops were compared, and the result was refined by an opening operator. Molin and
Veiga used a photoelectric sensor installed on a tractor to scan a sugarcane field to detect
gaps [43]. These several studies have similar goals with this paper, but their study objects,
methodologies, or data resources are different from those of this paper.
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2. Materials and Methods
2.1. Study Area and Datasets

This study area is located in a Eucalyptus forestry site of Leizhou Peninsula, Guang-
dong Province, Southern China (20◦16′38.5” N, 109◦56′44.7” E). The Eucalyptus forestry
site is located at the northern edge of tropics, which has a maritime monsoon climate with
annual temperatures of 21–26 ◦C and annual precipitations of 1300–2500 mm. The study
area is a pure forest of Eucalyptus, with sparse understory vegetation and trees distributed
in rows with a 3 m spacing between rows and a 1.5 m spacing between plants within rows.

A light UAV, DJI Genie 4, was used to acquire high-resolution visible-light images of
the study area. The UAV was equipped with a visible-light camera with 20 megapixels and
an equivalent focal length of 24 mm. Images were taken at noon on 15 November 2019,
with an 80% overlap in the heading direction and a 75% overlap in the side direction. The
weather was sunny with no wind, the terrain was flat, the flight altitude was 100 m, and
the photo resolution was 5472 × 3648 pixels. A total of 316 images were acquired. The
Pix4D mapper software was used to stitch adjacent images to generate orthoimages with a
ground resolution of 1 cm. The acquired orthoimage and the locations of the two test areas
intercepted in this study are shown in Figure 1.

Figure 1. The orthoimages and the locations of two test areas.

2.2. Methodology

The outline of the proposed methodology is shown in Figure 2. It involves two key
technical methods: the GV method to interpret the direction angle of seedling rows and
the CL method to find the relative locations and the number of failures in each row.

All analyses about the two intercepted images were implemented in MATLAB includ-
ing vegetation index calculation, threshold segmentation, morphological processing, and
GV method and CL method calculations.
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Figure 2. Outline of the methodology.

2.2.1. Seedling Recognition

Firstly, in order to distinguish the green canopy from other backgrounds, such as
shadows, soil, and stones, the vegetation index (Equation (1)) proposed by Søgaard and
Olsen was used to extract green pixels [44]:

EXG = 2G − R − B, (1)

where R, G, and B, are the pixel values in red, green, and blue light bands, respectively.
There is a small amount of grass of which the spectral characteristics are very similar

to those of canopy in the study area, and distinguishing them from canopy is beyond the
discussion of this paper.

Secondly, Otsu’s method [44] was applied to obtain the binary images of the test areas.
Ostu’s method is one of the best methods to determine threshold [20].

Finally, morphological processing was performed on the image: close operations
and hole filling were used to obtain continuous and smooth crown, and small areas were
removed as their area was too small to be treated as crown.

The result is shown in Figure 3.

Figure 3. Binary image (canopy image). The tree crowns are indicated in white, and the background
is indicated in black.
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2.2.2. Interpretation of the Direction Angle of Seedling Rows in the Orthoimage by the
GV Method

In order to subsequently determine the relative positions of the failures in rows, we
needed to determine the orientation of the seedling row which is not always parallel
with the horizontal axis or vertical axis (in this study, we chose the horizontal axis as the
reference line) and then rotate them to a horizontal position.

Given that in the orthoimage, the seedlings were orderly distributed in rows rather
than evenly throughout the whole area, there was a set of horizontal grids (the number of
grids was denoted as Num) was assumed parallel to each other covering the whole image.
If the binary image was rotated to different angles, the canopy pixels were distributed
differently within the grids. When the direction of seedling rows was parallel to the
horizontal grid lines (Y-axis), if the width of each grid was smaller than the width of the
gap between rows, then an extreme distribution occurred, that is, there were many canopy
pixels in some of the grids while a little or even none canopy pixels were in other grids.
In other words, the distribution of canopy pixels within the grids was extremely uneven
throughout the orthoimage. Based on the distribution of canopy pixels in the horizontal
grid, we can use the sample variance of the sequence of the number of canopy pixels in
each grid (the number of canopy pixels in each grid was denoted as Ni, and the average
number of canopy pixels in each grid was represented by N) to measure the degree of
uniformity of the canopy pixels distribution. The sample variance (S2) was calculated as:

S2 =
∑Num

1
(
Ni −N

)2

Num− 1
. (2)

It was assumed that the original image was rotated clockwise from 0◦ to 180◦ (e.g.,
in steps of ∆ = 5◦), and the sample variance Sj

(
βj

)
of the canopy pixels distribution was

recorded corresponding to each rotation angle βj. The rotation angle βk corresponding

to the maximum sample variance max
(

Sj

(
βj

))
was direction angle β0 of seedling rows,

which can be written as:

β0 = βk if Sk(βk) = max
(

Sj

(
βj

)) {
j = 1, 2, 3 . . .

180
◦

∆

}
, (3)

where j denotes the jth rotation.
A diagram of the principle of the GV method is shown in Figure 4.
The algorithm of the GV method is presented as follows.
Step 1: Rotate the image clockwise by angle θ.
Step 2: Gridding: the maximum X-coordinate and the minimum X-coordinate (the

unit is pixel) of the canopy are calculated, and then, the interval [Xmin, Xmax] is divided
into a horizontal grid with interval L. The number of subintervals is Num, i.e., [Xmin,
Xmin + L), [Xmin + L, Xmin + 2L] . . . , [Xmin + (Num − 1) × L, Xmax].

Step 3: Count the number of canopy pixels falling into each horizontal grid in step 2,
Ni, and calculate the sample variance S2

j, with subscript j indicating the jth rotation of
the image.

Step 4: Repeat steps 1 to 3 until the image is rotated 180◦ to obtain the sample
variance S2 of the canopy pixels distribution in different directions, and the rotation angle
corresponding to the maximum variance is the direction angle of the seedling rows.
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Figure 4. The diagram of the grid-variance (GV) method: (a) distribution of canopy pixels in grids before rotation;
(b) distribution of canopy pixels in grids after rotation. Note: the figure in red is the number of canopy pixels in each grid.

2.2.3. Detection of Failures and Interpretation of Their Relative Locations in Rows

Direction angle β0 was calculated by the GV method, and the original canopy image
was rotated clockwise by angle β0 so that the seedling rows were in a horizontal position.

When seedlings were distributed horizontally in rows, we obtained the centerlines
of all seedling rows. The presence or absence of canopy pixels near the centerline of each
row was directly related to the failures in that row. Combining the information about the
spacing between rows and spacing within rows, we proposed a method (CL method) to
detect failures and collect their relative locations and numbers in each row.

The algorithm of the CL method is presented as follows:
Step 1: Rotate an original image to the horizontal position, as shown in Figure 5. As

the seedling rows are all horizontal, if canopy pixels in each row are projected onto the
X-axis, we will see that the projected pixel points are clustered and spaced on the X-axis
because of the large gap between two adjacent seedling rows.

Figure 5. Diagram of the centerlines (in blue) of the seedling rows.
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Step 2: Use K-means clustering to obtain the respective center point of each cluster
of the projected points on the X-axis [45]. Obviously, the number of clusters is the total
number of seedlings rows in the image.

Step 3: Find the relative locations and number of the failures along each centerline
using the CL method.

The detailed process of the CL method is shown as following: Firstly, horizontal and
parallel centerlines are drawn through each center point, as shown in Figure 5. Secondly,
for each pixel on the centerline (denoted as point p), the number of non-vegetated pixels
among pixels is found, which is above or below p and less than D (i.e., half the average
diameter) pixels away from p. If none of the pixels are vegetated, point p is considered to
be non-vegetated, otherwise it is considered to be vegetated. If the length of successive
non-vegetated pixels S (shown in Figure 6a) reaches a certain threshold value S0 (shown in
Figure 6b and Equation (5)), i.e., S > S0, failure occurs, and we define the starting location
of the successive failures (successive non-vegetated pixels of which the length is longer
than S0) as the relative location. The relative location was denoted as (Rn, Dn), where Rn
is the number of the row and Dn represents the departure from the starting. Thirdly, the
number of failures Ni in this row was counted as:

Ni = ∑n
j=1

[
Sj + δ

R

]
, (4)

S0 = 2R− d, (5)

δ = R− S0, (6)

where Si, R, and d are the length of the jth successive failures in this line, the spacing within
rows, and the maximum diameter of trees, respectively.

Figure 6. Schematic diagrams for the detection of failures: (a) detection of failures; (b) threshold S0.

In Equation (4), the numerator is Sj + δ instead of Sj, this is because we treated S,
which reaches S0 but does not reach R, as a failure.

3. Results and Discussion

The parameters involved in the experiment were shown as following: R = 1.5 m, i.e.,
145 pixels on an image, and the maximum canopy diameter d = 1.8 m, i.e., 174 pixels by the
statistics of the canopy size. S0 = 116 pixels in size. The size of L was a figure smaller than
the width of the gap between rows (denoted as G). Here, we set L to be 0.6G, i.e., 168 pixels.

The RGB image and the binary image of canopy of test area 1 (Test_1) are shown in
Figure 7. The result (Figure 8) showed the distribution of the variance of the GV method,
and there was a distinct peak in variance curve at the rotation angle of 45◦ that was the
direction angle of Test_1. During the calculation, in order to avoid the variance to be too big,
the weight of each pixel was set to 0.01. The relative locations on the map of the detected
successive failures in Test_1 are shown in Figure 9. The failure information of Test_1 is
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shown in Table 2, which included the row number (denoted as Rn), the total number of
failures in this row (denoted as N), each successive failures’ departure from the starting
point of this row (denoted as Dn), and the number of failures the successive failures contain
(denoted as PN). The overall detection rate of failures was 91.8% (Table 4).

Figure 7. RGB image and canopy image of Test_1: (a) RGB image; (b) binary image of canopy.

Figure 8. Distribution of S2 with L = 0.6 G.

Figure 9. Relative locations (green dots) of the successive failures in Test_1 (Blue lines: centerlines of
seedling rows).
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Table 2. Failure information of Test_1.

Rn 1 (N 2) Dn 3/m (PN 4)

1(0) No failure
2(3) 4.8(3)
3(1) 11.4(1)
4(2) 3.5(2)
5(1) 3.8(1)
6(3) 4.6(1) 17.6(1) 28(1)
7(5) 12.1(4) 30.6(1)
8(8) 10.6(7) 23.3(1)
9(4) 4.6(1) 7.6(1) 26.4(2)
10(5) 2.4(1) 6.7(1) 16.8(2) 23.7(1)
11(3) 3.2(1) 20.0(2)
12(5) 1.0(1) 4.1(1) 10.5(2) 14.6(1)
13(3) 2.0(2) 7.5(1)
14(2) 1.0(2)

1 Row number. 2 Number of failures in row Rn. 3 Each successive failures’ departure from the starting point of
row Rn. 4 Number of failures each successive failures contain.

The relative locations of the successive failures in test area 2 (Test_2) are shown in
Figure 10. The failure information of Test_2 is shown in Table 3. The overall detection rate
of Test_2 was 95% (Table 4).

Figure 10. The relative locations (green dots) of the successive failures in Test_2 (Blue lines: centerlines
of seedling rows).

Although the detection rates of failures were above 90% for the two sample areas, the
detection rate of failures was underestimated. The reason is as following: to a great extent,
it depends on the accuracy of the distinction between the canopy and the background. In
the study areas randomly selected from Eucalyptus forests, some failures were not detected,
because there were many weeds growing there of which the spectral characteristics were
similar to the canopy. The weeds can easily be misclassified as canopy. In this study,
we cared more about the relative failures positions than their detection rates. Thus, the
distinction between Eucalyptus canopy from weeds was not studied here.

For the researches on the detection rate of failures, to the best of the author’s knowl-
edge, most researchers concentrated on extracting individual trees and counting the number.
If the trees are distributed regularly, then number of failures can be inferred by the number
of trees detected. In our study, we compared the experimental results from the proposed
method with that with the watershed method, which is widely used by researchers to
derive the individual trees [46,47]. Based on the same test data (the binary images of Test_1
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and Test_2 obtained in Section 2.2.1), watershed image segmentation was conducted in the
ImageJ software.

Table 3. Failure information of Test_2.

Rn 1 (N 2) Dn 3/m (PN 4)

1(0) No failure
2(3) 1.0(2) 5.3(1)
3(1) 5.4(1)
4(3) 8.1(1) 17.8(2)
5(1) 1.7(1)
6(4) 1.0(1) 3.4(1) 10.0(1) 18.9(1)
7(12) 1.0(4) 12.6(1) 16.7(1) 26.0(2) 32.0(4)
8(7) 5.1(4) 16.8(1) 29.6(1) 42.3(1)
9(3) 13.8(1) 31.3(1) 40.7(1)
10(2) 11.8(1) 15.9(1)

11(13) 5.9(6) 19.0(7)
12(0) No failure
13(4) 8.8(1) 12.3(3)
14(2) 1.8(1) 7.0(1)
15(2) 1.0(2)

1 Row number. 2 Number of failures in row Rn. 3 Each successive failures’ departure from the starting point of
row Rn. 4 Number of failures each successive failures contain.

Table 4. Overall detection rates of Test_1 and Test_2.

Test Area Number of Failures
(Proposed Method)

Number of Failures
(Visual Interpretation)

Overall Detection
Rate

Test_1 45 49 91.8%
Test_2 57 60 95%

Most of the linked canopies in the images were segmented, and the number of the
detected crown was denoted as Nreal. As the Eucalyptus in the study area were planted
at a basic fixed row spacing and intra-row spacing, the theoretical number of plants that
could be accommodated by Test_1 and Test_2 can be obtained from Equation (7):

Ntree−total =
S

R×K
, (7)

where Ntree−total is the number of trees the test area can hold; S is the area of Test_1 or
Test_2; R is the intra-row spacing; K is the row spacing.

Thus, the number of failures can be obtained by subtracting Nreal form Ntree−total. The
overall detection rates of failures in Test_1 and Test_2 were 55% and 63%, respectively,
which were both lower than those using CL method. This is because the CL method is
dependent on how well the canopy is separated from the background and does not rely on
the results of the canopy-to-canopy segmentation. The number of failures obtained using
the watershed method depends not only on the degree of separation between canopy and
background, but also on the effectiveness of the canopy-to-canopy segmentation, while
the watershed method has the phenomenon of over-segmentation (Figure 11a) and under-
segmentation (Figure 11b), resulting in inaccurate segmentation numbers. In addition, the
distribution of Eucalypts is not absolutely uniform, so there are some errors in calculating
the total number of plants based on the row spacing, intra-row spacing, and total area.
Another very important factor affecting the accuracy of the watershed method in obtaining
failures is that the study area is a Eucalyptus sprouting forest and it is common to have
two seedlings growing from one stump (Figure 11c), which is commonly identified by
the watershed method as two or more trees but only occupies the space of one tree. In
addition, even though watershed segmentation allows for an accurate number of failures to
be obtained, the exact locations and the corresponding number of failures are not available.
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Figure 11. The results of incorrect segmentation obtained with the watershed method: (a) over-segmentation; (b) under-
segmentation; (c) two seedlings from one stump.

Compared with the geographic coordinates provided by the images, the advantage of
the relative locations of the failures expressed by row numbers proposed in this paper is
as following: The row spacing in Eucalyptus plantations is usually much wider than the
intra-row spacing in order to facilitate mechanical inter-row operations. For example, the
row spacing in the test area is 3 m, and the intra-row spacing is 1.5 m. When looking for
the corresponding location according to geographical coordinates, it is necessary to shuttle
through the forest, and this shuttle may exist in any direction, perhaps along a certain row
or between rows, which is not convenient for foresters to find or for mechanical equipment
to operate. However, if the row position of the failure location is known, it is easier for the
mechanical equipment to find the failure location along a certain row direction according
to the row number.

4. Conclusions

In this paper, a method of failure detection in young Eucalyptus forests was proposed.
Based on tests, we can see that the proposed methodology is feasible and can be used
for the automatic calculation of the failure rate and the efficient guidance of replanting.
The proposed GV method can be used to calculate the direction angle of seedling rows
correctly, where trees are arranged in regular rows. The CL method can correctly obtain
the locations and the number of failures in each row. From the experimental results, results
with an acceptable accuracy were obtained with the proposed methodology (detection rate
of failures: >90%), which can be improved by a more intensive study to distinguish weeds
from tree canopy. Thus, as a future work, the authors will focus more on image feature
analysis and aim to distinguish tree canopy from other vegetation in order to better extract
tree canopy and detect failures more accurately.
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