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Abstract: The economics of the forestry enterprise are largely measured by their performance in road
construction and management. The construction of forest roads requires tremendous capital outlays
and usually constitutes a major component of the construction industry. The availability of cost
estimation models assisting in the early stages of a project would therefore be of great help for timely
costing of alternatives and more economical solutions. This study describes the development and
application of such cost estimation models. First, the main cost elements and variables affecting total
construction costs were determined for which the real-world data were derived from the project bids
and an analysis of 300 segments of a three kilometer road constructed in the Hyrcanian Forests of Iran.
Then, five state-of-the-art machine learning methods, i.e., linear regression (LR), K-Star, multilayer
perceptron neural network (MLP), support vector machine (SVM), and Instance-based learning (IBL)
were applied to develop models that would estimate construction costs from the real-world data.
The performance of the models was measured using the correlation coefficient (R), root mean square
error (RMSE), and percent of relative error index (PREI). The results showed that the IBL model had
the highest training performance (R = 0.998, RMSE = 1.4%), whereas the SVM model had the highest
estimation capability (R = 0.993, RMSE = 2.44%). PREI indicated that all models but IBL (mean PREI
= 0.0021%) slightly underestimated the construction costs. Despite these few differences, the results
demonstrated that the cost estimations developed here were consistent with the project bids, and our
models thus can serve as a guideline for better allocating financial resources in the early stages of the
bidding process.

Keywords: forest roads; road construction industry; cost estimation; machine learning; Hyrca-
nian forests

1. Introduction

Ensuring the sustainable management of forest resources and the economic efficiency
of the forestry enterprise requires a quality transport network [1]. However, the construc-
tion and further expansion of forest road networks are associated with large costs [2,3] that
should be evaluated and properly allocated to adopt management strategies such as (i)
alternative selection of route locations, (ii) selection of reasonable bids on road projects,
(iii) selection of road standards, (iv) tradeoffs between roading costs and harvesting costs,
(v) selection of transport methods, and (vi) spatiotemporally planning of harvesting opera-
tions [4]. An estimation of costs for various components of a roading project is a challenging
task and is further complicated by environmental constraints such as variable topography,
soils, and rock outcrops [1,5].

Over the last few decades, the development and application of methodologies for cost
estimation of road projects have been an active research area for forest engineers. Many soft-
ware packages, such as PLANS [6], PLANEX [7], NETWORK 2001 [8], and computer-aided
engineering programs [9–13] have been developed for the generation of road alternatives
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with economic considerations. These methodologies can be broadly viewed as coming
from one of the following three main groups [14]: (i) estimating relationships among
engineering principles of road design and construction, (ii) direct rule-of-thumb estimating,
and (iii) bottom-up parametric modeling. The first methodology is based on cost-driving
technical parameters that calculate the cost of either individual components or the entire
system using estimating relationships and formulae. Examples of practical applications
of this methodology appear in Markow and Aw [15] and Anderson and Nelson [16]. The
second methodology is based on expert knowledge and readily available data from previ-
ous projects. This methodology has been traditionally used in preliminary road network
planning, serving as the basis for the PLANEX and NETWORK 2001 software packages.
The third methodology divides a project into several smaller components and calculates
the cost of each component. Then, the total cost of the construction project is calculated
by summation of each component′s cost. Examples of the practical applications of this
methodology can be found in Ghajar et al. [1], Stückelberger et al. [14], and Heinimann [17].

Due to several economic and environmental requirements and their interactions in-
volved in forest road construction, there is a continuing need to find proficient computation
methods in this application field. In recent years, machine learning methods derived from
artificial intelligence have successfully proven their primacy over the traditional methods
for yielding such predictions in different infrastructure construction projects. Machine
learning methods, which focus on prediction, explanation, and discovery of relationships
and patterns among variables [18], have led to a renaissance in the extremely dynamic
construction industry. These methods have enabled the automation of many tasks that
were deemed impossible a decade ago. Recent progress in the field of machine learning
has incited managers to seek intelligent prospective solutions and predictions, and today,
infrastructure construction and civil engineering companies are utilizing intelligent ma-
chine learning algorithms from design to implementation of diverse projects [19]. While
over 140,000 papers on machine learning have been published since the late 1950s [20],
over 20,000 papers on machine learning have been published in 2020 alone, according to
a search of the Web of Science [21]. However, embarking on machine learning modeling
without the knowledge of the strengths and limitations of each machine learning method
may lead to failures. In the case of construction costs, the adverse implications of biased
cost modeling are enormous as one such modeling can underestimate or overestimate
the costs and greatly decrease the project. Therefore, this knowledge is crucial to enable
managers and engineers to assess the profitability, performance, and feasibility of different
project alternatives in a timely manner.

In this study, we investigated the potential application of linear regression, K-Star, mul-
tilayer perceptron neural network, support vector machine, and instance-based learning
methods for machine learning-based cost estimation modeling of forest road construction
that are new to the engineering literature. We developed models for estimating the total
construction cost of an existing road in the Hyrcanian forests of Iran for which the engi-
neering documentation of cost items was available. We employed these machine learning
methods and used visualizations and metrics to assess each model′s goodness of fit and
estimation ability with respect to road construction costs.

The rest of this paper is organized as follows: Section 2 describes the case study.
Section 3 details the modeling methodology that consisted of data collection, model devel-
opment, and model training and validation. Section 4 gives the experimental results of the
adopted methodology and provides further discussion about the results. Lastly, Section 5
closes the paper with concluding remarks and suggestions for future work.

2. Case Study

A proposed low-volume road in the Hyrcanian forests in northern Iran was selected
for modeling and estimating the total construction costs. The slope range in the region
is 8–70% and the elevation range varies between 450 and 700 m above sea level. All of
the trees in the roadway corridor were cut and removed after logging. The average road
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width was 5.5 m while the tree clearing width of the road was 15 m on average, varying
between 12 and 18 m depending on slope and soil conditions. According to data obtained
from weather stations, the climate in the area is humid, and mean precipitation levels are
800 mm. Excavator and bulldozer machines were used in this project for road construction.
Based on the road construction history of the area, the rock portion is significantly high and
leads to more earthwork costs [22]. Further, field surveying revealed severe environmental
damage, such as erosion and landslides, due to significant terrain modifications associated
with road construction.

3. Modeling Methodology

In this section, we describe the methodology proposed to cost estimate road con-
struction. In general, our methodology consisted of three main steps: (1) data collection,
(2) model development, and (3) model training and validation (Figure 1).
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3.1. Data Collection
3.1.1. Cost Elements

Generally, there are six cost items that are considered as important in affecting forest
road construction costs. They are construction staking, clearing and piling, earthwork,
finish grading, surfacing, and drainage and stream crossing structures [4]. In this study,
we used the available engineering documentation and project bids to derive the cost
corresponding to each cost element. In the following, a brief description of these cost
elements is presented.

The construction staking cost depends on the terrain condition, accessibility, and the
number of staking sections per kilometer. Heavy vegetation cover, steep terrain, areas
with large amounts of brush, long walk-in times, and any other conditions that shorten the
workday will increase the staking costs.

The clearing and piling cost is calculated by estimating the number of hectares per
kilometer of the trees along the project (i.e., right of way), which must be cleared and the
stumps removed. Depending on the conditions, the clearing operations are accomplished
by heavy equipment such as tractors and bulldozers or men with axes and power saws.
Important variables affecting the clearing and piling cost are tractor size, number of trees,
and tree size.

The earthwork cost is calculated by estimating the volume of common material and
rock (in cubic meters per kilometer) to be excavated and/or embankment to construct the
road alignment. The earthwork quantity is usually calculated as the bank volume using
the local formulas or tables derived from the sideslope, road width, and cut and fill slope



Forests 2021, 12, 1169 4 of 15

ratios. The most important variable is the excavation rate of rock which varies with the
size, share, and hardness of the rock, and other local conditions.

The finish grading operations consist of the adjustment of the angles of the cut slope
and the width slope of the subgrade. The finish grading cost depends on the area of cut
slope and road surface along the road project and is calculated by determining the number
of passes a grader must make for a certain width subgrade and the speed of the grader.
This number can be converted to the number of hours per hectare of subgrade.

The surfacing cost depends on the type and quantity of surfacing material, the length
of the haul, and the equipment used. In many forested areas, roadbed surfacing materials
are scarce and expensive. In our study area, the surface layer is often made up of unsorted
natural gravel extracted from streams and rock. While gravel requires only loading by
front-end loaders and may be compacted, rock needs to be blasted, transported to the
crusher, reloaded, loaded to the area, spread, and compacted. The costs for each of these
operations are assumed to be a function of the equipment production rates and machine
rates that in total compose the surfacing cost.

The drainage cost is a function of the type of the drainage structures installed. These
costs are often expressed as a cost per lineal meter, which can then be easily used in road
estimating. In this study, the values for cost per lineal meter for culverts were obtained
from the project documentation.

3.1.2. Explanatory Variables

The second component of the database used in this study was a set of variables describ-
ing local conditions and road characteristics that are thought directly or indirectly to affect
the total cost of road construction. Following an analysis of the literature [1,4,10–14,22] and
based on available data, we used eight variables: road width, earth slope, cut slope, fill
slope, number of trees, size of trees, rock proportion of subsoil, and number of culverts. The
data related to these variables were initially obtained from the engineering documentation
of a three kilometer road. The data were then checked and verified via observation of
300 segments across the selected road. This resulted in collecting 4811 samples.

3.2. Model Development

For the development of the cost estimation models, we linked the total construction
cost of the road in the study area to the set of explanatory variables using the five machine
learning methods that were selected in this study for modeling cost estimation of road
construction. In the following, we concisely describe the methods and refer the interested
reader to the corresponding literature for a full description of each method. The models
were developed using the open-source Weka software on an HP Laptop with an Intel®

Core™ i3-3110M CPU @ 2.40GHz, 4 GB of RAM, an x64-based processor, and the Microsoft
Windows 8.1 operating system.

3.2.1. Linear Regression (LR)

Developed in the early 1950s, LR is a supervised machine learning algorithm proven
efficient for solving a variety of linear problems. LR models the relationships between
a dependent variable and one or more independent explanatory variables using linear
predictor functions whose unknown model parameters are estimated from the data. Unlike
logistic regression which transforms its output using the logistic sigmoid function to return
a probability value which can then be mapped to two or more discrete classes, LR assigns
continuous numerical values to each independent variable.

3.2.2. K-Star

K-Star, developed by Cleary and Trigg [23], is an instance-based learner that classifies
an instance by comparing it to a database of preclassified examples. K-Star is a lazy
algorithm and belongs to the family of nearest neighbor methods. In contrast to other
nearest neighbor methods, K-Star uses entropy as a separation function, which enables
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the method to deal with many problems associated with a classification task. In K-Star,
the calculation is based on two main parameters, namely missing mode and global blend.
The Weka software uses a default value of 20 for the global blend. The missing mode
parameter that decides how missing property valuations are dealt with the classifier utilizes
four methods for treating missing attributes, including ignoring the cases with missing
attributes, normalizing the attributes, treating missing qualities as maximally distinctive,
and averaging column entropy curves.

3.2.3. Multilayer Perceptron Neural Network (MLP)

An MLP is an elective system for learning discriminants for classes from a group
of examples with the generalized delta rule for learning by a back-propagation learning
algorithm. Generally, such a network is created from a set of neurons (nodes) arranged in
several layers that consist of an input layer, an output layer, and one or several intermediate
layers know as a hidden layer(s). MLP obtains knowledge about classes by learning from
the training data set directly, therefore, it is unnecessary to make any assumptions regarding
the underlying possibility density functions. Information about a priori probability can
be adjusted after training [24,25] or by increasing the number of training patterns. After
training (learning), the MLP classifier is specified by a set of processing elements, which
are arranged in a certain topological structure and interconnected with fixed connections
(weights). There is no extensive computation involved in the classification of unknown
patterns and no need for retaining the training data.

3.2.4. Support Vector Machine (SVM)

SVM is a nonparametric supervised statistical learning technique that was introduced
by Cortes and Vapnik [26] and has expanded as one of the solutions in machine learning
and pattern recognition. SVM makes its predictions using a linear combination of the
Kernel function that operates on a set of training data with backing vectors. The method
offered by SVM differs from other models derived from comparable machine learning
methods such as MLP, as SVM training always finds the minimum universal. The main
idea behind SVM is to construct a hyperplane in an N-dimensional space for separating the
dataset into distinct classes. In SVM, support vectors refer to the training samples that are
close to the hyperplane that determines the position and orientation of the hyperplane. The
hyperplane maps the input data into a high dimensional feature space using the Kernel
function [27], and SVM tries to maximize the distance between the hyperplane and the
training samples. SVM has recently found numerous applications in many fields of science.

3.2.5. Instance-Based Learning (IBL)

IBL is a nonparametric method used for classifying a dataset based on the similarity
of a query to the nearest training samples in the feature space. IBL is an extension of the
K-nearest neighbors (KNN) classifier and is one of the subsets of lazy algorithms in which
the classifier does not sum up the training samples and postpones the generalization until
a query is made to the system, rather than the concerned learning technique that sums
up the training dataset initially. In IBL, the KNN parameter gives the number of NNs
to utilize when classifying a test instance, and the result is specified through a majority
vote. The IBL algorithm is effective in reducing storage requirements, in determining the
associations between learning attributes, and in tolerating noise [28]. Other advantages
of the IBL algorithm include its ability to simultaneously learn mixed and overlapping
concept descriptions, accelerated learning (i.e., training) rate, the integration of theory-
based reasoning of real-world scenarios, and application of voting approaches to break tie
votes [29].

3.3. Model Training and Testing

For model training and validation, we randomly divided the data collected from field
measurements into two sets. Out of 4811 samples, 3368 samples (70%) were used as the
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training dataset and the remaining 1443 (30% of samples) were set aside for model testing.
Although there is no universal guideline, the 70/30 ratio is the most common strategy for
data dividing [22,30–32].

Given the different ranges of the variables, the datasets were normalized in the range
of 0 and 1 using the following formula [30]:

Xn =
X− Xmin

Xmax − Xmin
(1)

where Xn is the normalized value, X is the value that should be normalized, Xmin is the
minimum value of X, and Xmax is the maximum value of X. Data normalization helps to
avoid the circumstance in which a variable with a large domain dominates the other with a
small domain.

Over the training phase, the optimum value for each model parameter was determined
via a trial and error procedure. To do so, different values were entered arbitrarily until the
best model performance was achieved. Table 1 details the optimum parameter setting of
each model.

Table 1. Optimum parameter setting of the models.

Parameter
Model

LR K-Star MLP SVM IBL

Debug True True True True True
Error on probabilities False - - - -

Heuristic stop 50 - - - -
Maximum boosting iteration 500 - - - -
Number of boosting iteration 30 - - -

Use cross validation True True True True True
Learning rate - - 0.3 - -

Number of hidden layer - - 1–50 - -
Number of iteration - - 400 - -
Validation threshold - - 20 - -

Seed - - 0 1 -
Kernel - - - 4 types -
Fold - - - 1 -

Tolerance parameter - - - 0.001 -
Entropic blend - False - - -
Global blend - 20 - - -

Missing mode - Average - -
KNN - - - - 1

Distance weighting - - - - No
Mean squared - - - - True

Nearest neighbor search
algorithm - - - - Linear

Window size - - - - 0

An important step in the application of MLP and SVM is the proper selection of the
numbers of neurons in the hidden layer and the type of the kernel function, respectively.
This step has a direct effect on the successful generalization and classification precision
of these two models. In this study, we tested the performance of the ANN model by
changing the number of neurons of the hidden layer in a range of 1–50 to achieve the best
performance (i.e., highest R and lowest RMSE and computing time). For the SVM model,
we tested the efficiency of Poly Kernel (PK), Normalized Poly Kernel (NPK), Radial Basis
Function Kernel (RBFK), and Pearson Universal Kernel (PUK).

We used the correlation coefficient (R), Root Mean Square Error (RMSE), and percent
of relative error index (PREI) as the performance metrics for measuring the goodness of fit
(i.e., training performance) and estimation ability (i.e., testing performance) of the models.
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The metrics that are the most common performance metrics used for different modeling
studies [33–35] are calculated as follows:

R =

n
∑

i=1
(Cpredicted − Cpredicted)(Cactual − Cactual)√

n
∑

i=1
(Cpredicted − Cpredicted)

2
√

n
∑

i=1
(Cactual − Cactual)

2
(2)

RMSE =

√
1
n

n

∑
i=1

(Cpredicted−Cactual)2 (3)

PREI = (
Cactual − Cpredicted

Cactual
)× 100 (4)

where n is the number of samples, Cactual and Cpredicted are the actual and predicted costs,
and Cactual and Cpredicted are the mean value of actual and predicted costs.

Model performance was evaluated in part using R, which measures the degree of
association between the actual and predicted objects. R ranges from 0 to 1; higher R
values indicate better model performance. Model performance was evaluated in part using
RMSE, which measures the average magnitude of the error. RMSE should be as close as
possible to zero (i.e., no error between actual and predicted costs) to indicate excellent
model performance [33,36]. Model performance was evaluated in part using PREI, which
measures the model′s tendency to underestimate or overestimate the cost. PREI should be
as close as possible to zero (i.e., no over- or underestimation) to indicate excellent model
performance [29,37,38].

4. Results and Discussion

For all five models developed in this study, the magnitude of the modeling error was
computed and comparative plots of target vs. output (i.e., actual cost vs. predicted cost)
were prepared. Over the training phase (Figure 2), using the IBL model, the predicted costs
were much closer to the actual values, indicating the greatest goodness of fit (RMSE = 1.4%
and R = 0.998) to the training samples and to the linear regression equation: Y = T + 9.9e+03,
in which Y is the model output (i.e., predicted total construction cost) and T is the cost
reported in the project bids. In contrast, the LR model showed much farther predicted
costs from the actual costs, yielding the highest training error (RMSE = 11.8%), the lowest
R (0.834), and an equation of Y = 0.7T + 7.5e+05. The other three models used in this study
were ranked from best to worst as, SVM (RMSE = 2.94% and R = 0.991), MLP (RMSE = 3.2%
and R = 0.9894), and K-Star (RMSE = 3.4% and R = 0.988). The possible explanation for
the superiority of IBL over the other models is that most of the variables (in particular,
earth slope, size of trees, rock proportion of subsoil, and number of culverts) used in
this study have great value distributions that make the search for neighboring instances
easier for prediction purposes [39]. The most logical explanation for the low performance
of the LR method compared to the other models is that LR assumes a predefined linear
relationship between total cost and the independent variables. Although this assumption
may yield promising results for other modeling studies, it seems that it does not fit the
context of cost estimation modeling that is characterized by potentially very complex,
nonlinear relationships.

The predictive power of the models could not be measured using the goodness of
fit, because this metric uses the data with which the models were developed and shows
only how well the models fit the training dataset. Conventionally, the predictive power of
a model is measured via an external testing phase, during which the model is presented
with unseen data [40]. The predictive power of our models was assessed over the testing
phase that yielded the R values of 0.841 (LR), 0.984 (MLP), 0987 (K-Star), 0.993 (SVM), and
0.99 (IBL) (Figure 3). In terms of the magnitude of prediction error, the SVM model made
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the most accurate prediction (RMSE = 2.44%), followed by IBL (RMSE = 2.86%), K-Star
(RMSE = 3.48%), MLP (RMSE = 4.9%), and LR (RMSE = 11.9%).
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The highest generalization and predictive performances and capability to model
nonlinear relationships using the SVM model can only be achieved if a suitable kernel
function is utilized [41]. The kernel functions transform the nonlinear input space into
a high dimensional feature space where nonlinear relationships and the solution to the
problem are represented in a linear form [42]. Many different kernel functions exist that
are used to create such high dimensional feature space. Since the nature of the real world
data is typically unknown a prior choice among different kernels is impossible. Therefore,
during the modeling process, different kernels are experimentally tried to find the one
which gives the best performance. In this study, we evaluated the goodness of fit and
predictive capability of the SVM model using four kernel functions based on the R, RMSE,
and computing time (Table 2). Over the training phase, R ranged from 0.825 to 0.991
(mean = 0.909), RMSE ranged from 2.9% to 13.64% (mean = 8.79%), and time ranged
from 13.14 to 50.37 s (mean = 26.74 s) that identified the PUK (R = 0.991, RMSE = 2.9%,
time = 50.37 s) as the best kernel function for building the SVM model. Over the testing
phase, R varied between 0.834 and 0.993% (mean = 0.916), RMSE varied between 2.4% and
12.48% (mean = 7.815%), and time varied between 13.17 and 49.07 s (mean = 26.63 s) that
once again demonstrated the efficacy of PUK (R = 0.993, RMSE = 2.4%, time = 49.07 s) over
the other kernel functions for the SVM model. The highest R and lowest RMSE achieved
by PUK suggest that this kernel successfully grasped the relationship between different
variables and construction cost. This efficacy stems from the flexibility of the PUK to adapt
its two parameters from a Gaussian into a Lorentzian peak shape [42]. However, the SVM
model with PUK still showed an RMSE of 2.9% and 2.4% that indicates the existence of
some noisy sequences and bias in the datasets and the inability of PUK to avoid them.
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Table 2. SVM performance with different Kernel types over the training and testing phases.

Phase Metric
Kernel

PK NPK RBFK PUK

Training
R 0.825 0.974 0.846 0.991

RMSE (%) 13.64 5.05 13.56 2.9
Time (s) 13.14 26.12 17.32 50.37

Testing
R 0.834 0.982 0.854 0.993

RMSE (%) 12.48 3.99 12.39 2.4
Time (s) 13.17 26.37 17.92 49.07

Wherein: Time: time taken to build the model in seconds, PK: Poly Kernel, NPK: Normalized Poly Kernel, RBFK:
Radial Basis Function Kernel, and PUK: Pearson Universal Kernel.

Determining the number of neurons in the hidden layer is a crucial part of deciding
the overall MLP architecture. To determine the optimum structure of the MLP model, the
number of neurons in the hidden layer was investigated in a range of 1 to 50 neurons
(Figure 4). The R, RMSE, and computing time obtained from the training dataset as
input into the MLP model ranged from 0.9464 to 0.9894, 3.205% to 7.682%, and 0.75 to
21.16 s, yielding the best performance with 24 neurons in the hidden layer (R = 0.9894,
RMSE = 3.205%, time = 10.03 s). Similarly, the model with 24 neurons performed in the
testing phase (R = 0.9914, RMSE = 2.75%, time = 9.98 s) with an R, RMSE, and computing
time that ranged from 0.9511 to 0.9914, 2.75% to 7.17%, and 0.76 to 20.5 s, respectively. The
inefficiency of the MLP model with too few neurons in the hidden layer can be attributed
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to the underfitting problem [43] that hindered the MLP from adequately capturing the
complicated relationships between the data leading to low model performance. However,
structuring the MLP with too many neurons in the hidden layers excessively increased
the computation time and may raise the overfitting problem in which the ANN model
memorizes the idiosyncrasies of particular patterns between training samples and lost the
generalization ability [43]. Our results clearly showed the increased computation time of
the model by increasing the number of neurons in the hidden layer. Obviously, the MLP
model with 24 neurons in the hidden layer offered a compromise between computation
time and quality of results. Further, since the performance of the MLP model was within
the range of other models developed in this study, we can conclude that the MLP with
24 neurons successfully overcame the overfitting problem.
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As a further performance analysis, the PREI metric was computed and enabled us
to examine the models based on their performance to underestimate or overestimate the
construction cost (Figure 5). Except for the IBL model that overestimated the construction
cost by 0.0021%, the other models underestimated the cost between −0.0062% (SVM) and
−0.0564% (LR) than the actual cost available in the project bids. From these results, the
LR model was identified as the most biased predictive model that underestimated the con-
struction cost by −0.0564%. Underestimations and overestimations both negatively affect
project management [44]. Underestimations may lead to poor quality of the deliverables
and hence a bad reputation for the company [45].
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In this case, the project managers may come to the conclusion that due to cost overruns
and wasting resources and money the project should be stopped [46]. Overestimations
can cause serious consequences, since the manager extends “the work so as to fill the
time available for its completion” according to Parkinson′s Principal [47]. Apart from the
reduced productivity rate, the overestimated budgets may lead the project manager to
overlook a new contract to undertake new projects [45]. A survey on the literature related
to infrastructure construction projects [48,49] shows a deviation towards underestima-
tion of construction costs (i.e., cost overruns), which support our findings in this study.
Ghajar et al. [1] also reported that the cost estimation models tend to underestimate the
total construction costs of road projects in the Hyrcanian forests.

5. Conclusions

The task of cost estimation of road construction is one to which forest engineers have
devoted much time and effort. In this study, we investigated the performance of different
machine learning methods for the estimation of construction cost of forest road projects.
We adopted a modeling methodology based on road project bids and field measurements
to develop predictive models that enable forest engineers to estimate the construction cost
of the next projects. Among the five models developed, the IBL model had the highest
goodness of fit with the training dataset and the SVM model had the highest estimation
capability. Except for the IBL model, which showed a cost overestimation of about 0.0021%,
the other models slightly underestimated (0.0275%) the construction cost of forest roads.
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Based on the performance metrics and the costs reported in the project documentation, we
found these machine learning models promising for estimating the total construction cost
of forest roads. This study has opened up new avenues for machine-learning analyzing
economic targets, management strategies, and system efficiencies that are undoubtedly
important objectives of forestry enterprise. Future work could extend this analysis to the
application of other machine learning methods as well as the application of metaheuristic
optimization algorithms to automatically tune the methods′ parameters to produce more
accurate cost estimation models.
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