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and Miroslav Blaženec 2

����������
�������
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Abstract: Machine learning algorithms (MLAs) are used to solve complex non-linear and high-
dimensional problems. The objective of this study was to identify the MLA that generates an
accurate spatial distribution model of bark beetle (Ips typographus L.) infestation spots. We first
evaluated the performance of 2 linear (logistic regression, linear discriminant analysis), 4 non-linear
(quadratic discriminant analysis, k-nearest neighbors classifier, Gaussian naive Bayes, support vector
classification), and 4 decision trees-based MLAs (decision tree classifier, random forest classifier, extra
trees classifier, gradient boosting classifier) for the study area (the Horní Planá region, Czech Republic)
for the period 2003–2012. Each MLA was trained and tested on all subsets of the 8 explanatory
variables (distance to forest damage spots from previous year, distance to spruce forest edge, potential
global solar radiation, normalized difference vegetation index, spruce forest age, percentage of spruce,
volume of spruce wood per hectare, stocking). The mean phi coefficient of the model generated
by extra trees classifier (ETC) MLA with five explanatory variables for the period was significantly
greater than that of most forest damage models generated by the other MLAs. The mean true
positive rate of the best ETC-based model was 80.4%, and the mean true negative rate was 80.0%.
The spatio-temporal simulations of bark beetle-infested forests based on MLAs and GIS tools will
facilitate the development and testing of novel forest management strategies for preventing forest
damage in general and bark beetle outbreaks in particular.

Keywords: machine learning; classifier; spatial distribution model; geographical information system;
forest damage; bark beetle

1. Introduction

Wind damage to forests and subsequent spruce bark beetle (Ips typographus L.) out-
breaks have increased in Central Europe in recent decades [1]. Bark beetle outbreaks
are closely related to wind-caused forest damage, and the two factors interact to create
wind–bark beetle disturbance systems [2]. There are also connections between bark beetle
outbreaks and other forest disturbances related to climate change [3,4]. Rising mean annual
temperatures, increases in drought duration and intensity, and shifts in growing seasons
increase the risk of forest infestation by bark beetles [5]. To respond to this problem, forest
managers require adequate forest management strategies based on knowledge of the forest
damage spatial distribution and factors influencing the risk of wind damage and bark
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beetle dispersal [6]. The understanding of bark beetle dispersal processes and spatial
patterns is important for the effective management of infested forests [7]. Forestry decision
support systems profit from the integration of high-resolution remote sensing data, forest
mapping and field inventories, advances in silviculture and forest ecology, and the use of
modern statistical and machine learning approaches [8–10].

Spaceborne and aerial images are used to map the spatial and temporal distributions
of forest damage caused by wind or bark beetles [11]. Damaged and infested forests
are identified, and bark beetle spots are localized by classification of medium- or high-
resolution images. Spatial and temporal changes in forest damage over large territories can
be detected in time series of satellite images. Intra-annual satellite image series improve
the detection of forest disturbance [12]. The derived multi-temporal digital maps of human
and natural forest disturbances can be used to study the dynamics of forest damage.

The spatial dispersal of bark beetle infestations is driven by various environmental
factors, including solar radiation, temperature, wind speed and direction, precipitation,
soil moisture, distance to forest damage areas, spruce age, diameter at breast height,
and stocking [13]. Bark beetle outbreaks and the spatial distribution of forest damage
are influenced by the spatial structure of bark beetle populations, forest and landscape
characteristics, and by factors at a wider, regional-scale [14]. Because the ecological and
spatial relationships are complex, the development of a reliable spatial forest damage
model (FDM) is a difficult and computationally intensive task.

Machine learning algorithms (MLAs) have been applied to solve non-linear and
high-dimensional problems in forestry and ecology. A support vector machine and a
random forest algorithm have recently been used to estimate the volume and basal area of
eucalyptus stands from satellite images [15]. Proportions of planned end products were
forecasted by Dirichlet regression and neural networks [16]. The stand volume of a rapidly
growing forest plantation was estimated by random forest, support vector machine, and
neural network regressions from aerial laser scanning data [17].

As noted earlier, forest damage by wind, insects, fire, and other factors is a complex
spatial phenomenon that is difficult to model and predict. Advanced spatial modeling
techniques are needed to develop accurate and reliable FDMs. Many MLAs are designed to
handle large volumes of multi-dimensional data, including geographical data. MLAs learn
from existing data and can adapt to hidden spatial patterns and unknown relationships
among environmental variables. Rodrigues and de la Riva [18] modeled the risk of human-
caused wildfire by random forest, boosted regression tree, and support vector machine
algorithms. Mayfield et al. [19] calculated the risk of deforestation with generalized linear
mixed models, Bayesian networks, neural networks, and Gaussian processes. Evolutionary
and non-evolutionary MLAs were tested for predicting forest burned areas [20]. The
potential of modeling forest insect dynamics by cellular automata was demonstrated
by [21]. Neural network-based regression was used by Hlásny and Turčáni [22] to analyze
the influence of site and stand characteristics on forest damage caused by the spruce
bark beetle.

Here, we summarize the results of numerical experiments with MLAs for modeling
the spatial distribution of forest damage. Our main objective was to select the MLA with
the highest predictive accuracy for modeling the spatial distribution of forest damage in an
open-source geographical information system (GIS).

2. Materials and Methods
2.1. Study Area

MLAs were tested for the Horní Planá region in Central Europe (Figure 1). The forests
in this region are managed by the Military Forests and Farms of the Czech Republic, State
Enterprise [23]. The Military Forests and Farms of the Czech Republic, State Enterprise, is
a special-purpose organization that manages 19,960 ha of land in military training areas.
Forests represent 16,569 ha of this area, and water reservoirs cover 203 ha; the remaining
area is represented by grassland that is used for intensive military training.
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The region is characterized by hills that differ in elevation by 100–150 m. Most of the
study area is located at 600 to 800 m a.s.l., and the highest point (Lysá Mt) is at 1228 m a.s.l.
Part of the area belongs to the Bohemian Forest (the Šumava Mts.), and part belongs to the
Šumavské podhůři Mts. The annual mean temperature ranges from 5 to 7 ◦C, and annual
precipitation ranges from 700 to 800 mm [24].

The dominant tree species in forests is Norway spruce (Picea abies L. Karst) (69%).
Less common are Scotch pine (Pinus sylvestris L.) (12%), Silver fir (Abies alba Mill.) (6%),
and European beech (Fagus sylvatica L.) (5%). Among the forest stands, 23.5% are younger
than 40 years, and 32.0% are older than 100 years. At higher altitudes, forests are parts of
complexes that include meadows and pastures.
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drought that occurred throughout Central Europe. This outbreak was partly extended by 
the winter storm “Kyrill” (January 2007), which destroyed more wood than any other fac-
tor over the last 30 years. At the beginning of 2014, the volume of wood infested by bark 
beetles decreased to under 0.5 m3·ha−1 [25]. The cyclic nature of forest damage in the study 
region is depicted in Figure 2. The bark beetle is a prevailing cause of forest damage in the 
study region. 

Figure 1. Location of the study area in the Czech Republic.

Spruce forests in the Horní Planá region are disturbed mainly by snow, bark beetles,
and especially wind. In recent years, incidental felling caused by forest damage has
represented about 50% of total felling. Bark beetle outbreaks in the region follow the
trends exhibited over the whole of the Czech Republic, with peaks in the mid-1980s and
mid-1990s. The last long-term outbreak of I. typographus began in 2003 as a result of a severe
drought that occurred throughout Central Europe. This outbreak was partly extended
by the winter storm “Kyrill” (January 2007), which destroyed more wood than any other
factor over the last 30 years. At the beginning of 2014, the volume of wood infested by
bark beetles decreased to under 0.5 m3·ha−1 [25]. The cyclic nature of forest damage in the
study region is depicted in Figure 2. The bark beetle is a prevailing cause of forest damage
in the study region.
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2.2. Input Data

In our study, spatial distribution models of spruce forest damage were developed for
the period 2003–2012. The period was limited by years for which raster layers representing
explanatory variables were available (Table 1). The spatial resolution of the raster layers
was 30 m, which corresponds to the spatial resolution of LANDSAT images.

Table 1. List of the explanatory variables used in forest damage models (FDMs).

Code Explanatory Variable

DAS distance to forest damage spots from previous year
DFE distance to spruce forest edge
PSR potential global solar radiation
NDVI normalized difference vegetation index
AGE spruce forest age
PCT percentage of spruce
VOL volume of spruce wood per hectare
STO stocking

A time series of LANDSAT images were used to identify damaged forest locations
in the study area. Raster maps of forest health status were used to delineate the damaged
forest locations. These forest health maps are based on LANDSAT images and have been
prepared by standardized methods since 1984 by the Forest Management Institute, Brandýs
nad Labem, Czech Republic [26]. Forest damage locations were not classified by forest
damage factors. Only classes of strong and very strong damage of spruce forest stands [27]
were considered for this study. A similar approach was used by [28,29].

Normalized difference vegetation index (NDVI) values were derived from LANDSAT
scenes (Table 2). Cloud-free scenes from the growing season were preferred. Processing
included manual removal of clouds and shadows and the mosaicking of two scenes based
on linear regression using corresponding pixels that represented forest.

Information on spruce age (AGE), percentage of spruce in forest stands (PCT), volume
of spruce per hectare (VOL), and stocking (STO) was imported from forest management
plans. There are four management units within the study area, each with its own manage-
ment plan. The forest management plans are prepared for 10-y periods. The age of a forest
stand was specified in 5-year increments, and the percentage of spruce was based on basal
area. Volume was derived from the stand mean diameter at breast height and the stand
mean tree height for each species. Stocking was calculated as the relative density using
yield tables. The raster layer representing spruce forest stands included only spruce stands
with age >49 years and stocking >49%.

Distance to forest damage areas was calculated from the layer of actual forest damage.
The actual forest damage layer was subtracted from the spruce forest stand layer to derive
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a layer of actual spruce forest. The raster layer of the actual spruce forest was used to
calculate the distance to the spruce forest edge layer. Potential global solar radiation (PSR)
was computed from a digital elevation model (DEM) by the GRASS GIS module r.sun [30]
with a 1-h step.

Table 2. LANDSAT scenes used for NDVI calculation.

Date Scene

16.07.2003 LT05_L1TP_191026_20030716_20161205_01_T1
10.08.2004 LT05_L1TP_192026_20040810_20161130_01_T1
28.07.2005
29.08.2005

LT05_L1TP_192026_20050728_20161125_01_T1
LT05_L1TP_192026_20050829_20161125_01_T1

15.07.2006
24.07.2006

LT05_L1TP_192026_20060715_20161120_01_T1
LT05_L1TP_191026_20060724_20161120_01_T1

25.06.2007
19.07.2007

LT05_L1TP_191026_20070625_20161112_01_T1
LE07_L1TP_191026_20070719_20170102_01_T1

29.06.2008
21.08.2008

LT05_L1TP_191026_20070625_20161112_01_T1
LT05_L1TP_192026_20080821_20180116_01_T1

24.08.2009 LT05_L1TP_192026_20090824_20161021_01_T1
10.07.2010 LT05_L1TP_192026_20100710_20161014_01_T1
23.08.2011 LT05_L1TP_191026_20110823_20161007_01_T1
23.07.2012
01.08.2012

LE07_L1TP_192026_20120723_20161130_01_T1
LE07_L1TP_191026_20120801_20161130_01_T1

EU-DEM 25 [31] was used as an input to compute PSR. Its original spatial resolution of
25 m is close to the resolution of LANDSAT scenes. The DEM was projected to the national
spatial reference system (EPSG 5514, epsg.io/5514/) and resampled at a resolution of 30 m.

Samples representing damaged and undamaged forest were generated for each year
of the period. All grid cells representing damaged forest were used as samples. An equal
number of cells representing undamaged forest was randomly generated. Among the
samples, 75% were used for model training, and 25% were used as controls. All FDMs
were trained and validated using the same sample sets.

2.3. Computer Simulations and Data Processing

The FDM consists of a forest damage probability function and a classification function.
The FDM F can be expressed in the following form:

F(x, y, t) = C
(

P
(→

u (x, y, t)
))

(1)

where C is a classification function; P is a forest damage probability function;
→
u is an

environment vector function; x, y are point (grid cell) coordinates; and t is a time.
The probability function P calculates the risk of forest damage at a given location (x, y)

and time t. Environmental factors, e.g., distance to existing forest damage areas, drought
stress, forest stand openness, and solar radiation, are described by independent variables
of the forest damage probability function P. Each component ui(x, y, t) of the environment
vector function

→
u corresponds to an independent variable that varies over space and time.

In GIS, the independent variable is represented by a time series of raster layers.
The open source-software GRASS GIS [32] was used for computer simulations. All

suitable MLAs from the GRASS GIS add-on r.learn.ml were tested for modeling the spatial
distribution of forest damage (Table 3). r.learn.ml is a front-end to the scikit-learn toolkit [33]
for the Python programming language. A set of scripts in Python programming language
was developed to automate the processing of forest damage layers, the processing of
training and control samples, model training, and the analysis of FDM performance.

In the study, the spatial distribution of forest damage was modeled by linear MLAs
(LR and LDA), non-linear MLAs (QDA, KNC, GNB, and SVC), and classification trees
(DTC, RFC, ETC, and GBC).
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Table 3. List of the tested machine learning algorithms (MLAs).

Code Algorithm

LR logistic regression
LDA linear discriminant analysis
QDA quadratic discriminant analysis
KNC k-nearest neighbors classifier
GNB Gaussian naive Bayes
DTC decision tree classifier
RFC random forest classifier
ETC extra trees classifier
GBC gradient boosting classifier
SVC support vector classification

Each MLA was trained and tested on all subsets of the explanatory variables (Table 1).
All combinations of explanatory variables were used as inputs of FDMs because the most
suitable combinations of explanatory variables for different MLAs were unknown. The
total number of FDMs tested was a product of the number of MLAs (10) × the number of
combinations of exploratory variables (255). Each of the 2550 models was calculated for
each year of the period 2003–2012. The probability of forest damage was calculated by each
MLA. The internal classifier of each MLA was applied to identify locations (grid cells) of
forest damage.

In a computer environment, a spatial forest damage model is defined by MLA m and
a non-empty subset S of the explanatory variables. The forest damage spatial distribution
model f dm(m, S, y) was calculated for every year y of the period. The confusion matrix, true
positive rate TPR(m, S, y) true negative rate TNR(m, S, y), and phi coefficient φ(m, S, y)
were calculated for each f dm(m, S, y).

The true positive rate (sensitivity) describes how many locations (grid cells) of forest
damage estimated by the FDM correspond to locations of actual forest damage. Similarly,
the true negative rate (specificity) is a measure of the correspondence between estimated
and actual undamaged forest locations. A reliable spatial FDM is characterized by high
sensitivity and high specificity.

The overall performance of the spatial FDM was measured by the arithmetic mean of
the phi coefficient for the period under study Y:

Φ(m, S) =
1
l ∑

y∈Y
Φ(m, S, y), (2)

where l is the length of the period Y, m is an used MLA, S is a non-empty subset of the
explanatory variables, and y is a year of the period. The mean true positive rate TPR(m,S)
and the mean true negative rate TNR(m,S) of the spatial FDM were calculated similarly.

Data were statistically processed with the R package [34]. All statistical hypotheses
were tested at a 0.05 significance level. Modules from the packages lmPerm and RVAide-
Memoire were used for permutation tests of statistical hypotheses. Permutation one-way
repeated measures ANOVA was used to compare the mean phi coefficients of the FDMs.
Significances of mean phi coefficient differences were tested by a permutation pairwise
t-test with Benjamini, Hochberg, and Yekutieli corrections [35].

The generated FDMs were sorted in descending order by φ (Equation (2)). A unique
ranking number r was assigned to each FDM. The ranking number 1 corresponded to the
FDM with the highest mean phi coefficient for the period Y. Results were evaluated in
terms of FDM performance and simplicity.

3. Results

As stated earlier, the current study evaluated the use of MLAs for modeling the spatial
distribution of forest damage. A simple spatial dispersion model was used (Equation (1)).
The locations of damaged forest areas were modeled with the machine learning classifiers.
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The top FDM (i.e., the FDM with the highest mean phi coefficient for the period 2003–
2012) was selected for each studied MLA (Table 4). As suspected, the optimal combination
of input explanatory variables differed among the top FDMs.

Table 4. Top FDMs generated by machine learning algorithms (MLAs).

r 1 nV
2 MLA 3 Variable 4

TPR 5 TNR 6 φ 7

DAS DFE PSR NDVI AGE PCT VOL STO

1 5 ETC + + + + + 0.804 0.800 0.605
5 7 RFC + + + + + + + 0.814 0.778 0.594

89 3 SVC + + + 0.724 0.818 0.546
219 3 GBC + + + 0.761 0.733 0.495
273 2 DTC + + 0.750 0.728 0.479
286 8 LDA + + + + + + + + 0.764 0.707 0.474
295 5 KNC + + + + + 0.790 0.678 0.472
388 4 LR + + + + 0.769 0.679 0.452
421 7 QDA + + + + + + + 0.815 0.618 0.444
436 5 GNB + + + + + 0.827 0.602 0.441

1 ranking number, 2 number of explanatory variables, 3 machine learning algorithm used to generate FDM, the MLA codes are given in
Table 3, 4 codes of the variables are listed in Table 1, 5 mean true positive rate, 6 mean true negative rate, 7 mean phi coefficient, “+” indicates
the presence of an explanatory variable in FDM.

The arithmetic mean and median of phi coefficients were higher for the top ETC-based
model with five explanatory variables than for the other top FDMs for the period 2003–2012
(Table 4, Figures 3 and 4). The influence of MLA on the mean phi coefficient (φ) of the
top FDMs was significant (one-way repeated measures ANOVA, p-value < 2.2×10−16).
Results of the permutation pairwise t-test of the top FDMs’ φ are presented in Table 5.
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Figure 4. Preview of the bark beetle spots generated by the top ETC-based model. Green color
represents unaffected spruce forest; blue color represents bark beetle infestation spots generated by
the top ETC-based model; red color represents damaged forest identified on LANDSAT images. The
MLA codes are given in Table 3, and the variables of the top models are listed in Table 4.

Table 5. p-values of the pairwise permutation t-test of φ of the top FDMs.

MLA 1 GNB QDA LR KNC LDA DTC GBC SVC RFC

QDA 0.827 - - - - - - - -
LR 0.338 0.687 - - - - - - -

KNC 0.338 0.406 0.348 - - - - - -
LDA 0.020 0.154 0.054 0.906 - - - - -
DTC 0.124 0.202 0.177 0.827 0.851 - - - -
GBC 0.073 0.124 0.124 0.576 0.338 0.126 - - -
SVC 0.013 0.011 0.013 0.034 0.010 0.010 0.010 - -
RFC 0.011 0.010 0.011 0.011 0.010 0.013 0.011 0.020 -
ETC 0.011 0.013 0.010 0.011 0.010 0.013 0.010 0.010 0.312

1 the MLA codes are given in Table 3.

Overall performance as indicated by the mean phi coefficient was slightly lower for
the best RFC-based model than for the best ETC-based model. However, performances
for these best models were not significantly different. Performance for the other top FDM
models was significantly different from performance for the best ETC- and RFC-based
models (Table 5). Moreover, as evident in Figure 5, most of the ETC-based FDMs out-
performed the FDMs generated by the other MLAs.

The performance of the FDMs generated by SVC was highly variable (Figure 5). SVC
generated many low-performance FDMs as well as a few models that performed better
than the models generated by the other tested MLAs except for those generated by ETC and
RFC (Table 4). The performance of the best SVC-based model was significantly different
from the performance of the other best FDMs (Table 5).

The mean TPRs were highest for the SVC-, QDA-, and GNB-based models (Figure 6).
These models were highly sensitive because they significantly overestimated the area of
damaged forest. On the other hand, SVC also generated several FDMs with low specificities
(Figure 7).
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plus upper and lower quartiles for mean phi coefficients of all FDMs generated by a given algorithm.
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range). Circles are outliers. See Table 3 for MLA codes.
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Figure 6. Box plots of mean sensitivities (TPR) of FDMs generated by MLAs. Box plots show median
plus upper and lower quartiles for mean sensitivities of all FDMs generated by a given algorithm.
Minimum and maximum values are indicated by the upper and lower whiskers (1.5 × interquartile
range). Circles are outliers. See Table 3 for MLA codes.

We then compared the performance of the FDMs when the number of explanatory vari-
ables was constant in a range from one to eight. Regardless of the number of explanatory
variables, performance was always best for the models generated by the ETC, RDC, and
SVC MLAs (Table 6). Performance of FDMs generated by most of the MLAs increased with
the number of variables, except in the case of SVC- and KNC-based models (Appendix A).
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Figure 7. Box plots of mean specificities (TNR) of FDMs generated by MLAs. Box plots show median
plus upper and lower quartiles for mean specificities of all FDMs generated by a given algorithm.
Minimum and maximum values are indicated by the upper and lower whiskers (1.5 × interquartile
range). Circles are outliers. See Table 3 for MLA codes.

Table 6. Top FDMs among models with equivalent numbers of explanatory variables.

r 1 nV
2 MLA 3 Variable 4

TPR 5 TNR 6 φ 7

DAS DFE PSR NDVI AGE PCT VOL STO

1055 1 SVC + 0.691 0.685 0.376
116 2 SVC + + 0.719 0.811 0.534
43 3 RFC + + + 0.794 0.773 0.568
16 4 ETC + + + + 0.800 0.784 0.585
1 5 ETC + + + + + 0.804 0.800 0.605
6 6 ETC + + + + + + 0.791 0.800 0.592
2 7 ETC + + + + + + + 0.793 0.806 0.600
3 8 ETC + + + + + + + + 0.804 0.790 0.596

1 ranking number, 2 number of explanatory variables, 3 machine learning algorithm used to generate FDM, the MLA codes are given
in Table 3, 4 codes of the variables are listed in Table 1, 5 mean true positive rate, 6 mean true negative rate, 7 mean phi coefficient, “+”
indicates the presence of an explanatory variable in FDM.

The Φ of ETC-based models generally increased as the number of explanatory vari-
ables increased (Figure A1). The computer simulations showed that the ETC-based model
that included distance to actual forest damage, potential solar radiation, spruce forest
age, percentage of spruce in forest stands, and volume per hectare had the highest mean
accuracy and phi coefficient. Nearly the same performance, however, was achieved by
ETC-based models that included different explanatory variables (Table A1).

4. Discussion

Given climate change and the increased emphasis on ecological and cultural services
rather than on the economic services provided by forest ecosystems, new forest management
strategies are needed. Forest damage by abiotic and biotic factors not only causes timber loss,
but also has negative effects in terms of forest diversity, soil erosion, landslides, recreation,
and landscape aesthetics. The spatial pattern of forest damage is driven by complex spatio-
temporal environmental processes. Rammer and Seidl [36] have shown the effectiveness of
MLAs for the spatial prediction of I. typographus infestations in unmanaged forests.
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We found that FDMs based on traditional linear and non-linear methods generally
performed less well than FDMs based on classification trees. LR and LDA are commonly
used linear classification MLAs. Hernandez et al. [37] developed a spatial logistic regression
model of the probability of bark beetle (Dendroctonus frontalis Zimmermann) attack in
coniferous forests; the overall accuracy of the model was 68.7%. LR, which is a special case
of the generalized linear model, models the log-odds as a linear function by minimizing
the sum of the squared residuals. LDA minimizes the probability of misclassification by
maximizing the separation between the classes. LR and LDA create the linear boundaries
of classes in the explanatory variables’ space. LDA is less sensitive than LR to correlations
between explanatory variables.

QDA uses class-specific covariance matrices and separates classes by quadratic sur-
faces in the predictors’ space. It is sensitive to collinearity between explanatory variables
within a class. Because of a higher complexity of the discriminant function, QDA may
perform better than linear MLAs. KNC calculates class probability as the proportion of the
class in the set of k-closest neighbors from the training data. KNC is susceptible to measure-
ment scales and local over-fitting. GNB estimates prior and conditional probabilities from
the training set and then uses Bayes’s rule to calculate the probability of outcome class.
An important assumption of GNB is the independence of explanatory variables, which is
rarely satisfied in practice.

Only the performance of the top SVC-based FDM was significantly different from
the best models generated by the other tested linear and non-linear algorithms. SVC is
considered one of the most flexible and effective MLAs and is widely used. It belongs to the
family of kernel methods, which allow the separation of classes by non-linear boundaries.

In our study, the FDMs generated by classification trees performed better than those
generated by linear and non-linear MLAs. Classification trees describe patterns in data
by complex hierarchies of simple rules. The performance of a single classification tree is
usually weak. The performances of DTC-based FDMs were inferior to those of the FDMs
generated by MLAs based on an ensemble of classification trees.

An ensemble of classification trees usually performs better than a single classification
tree, because an ensemble can detect more complex patterns in the data. The RFC MLA is
an ensemble of classification trees that are trained on bootstrap samples. The randomness
of the tree construction process reduces correlations between trees. Mi et al. [38] investi-
gated Stochastic Gradient Boosting, RFC, CART (Classification and Regression Tree), and
MaxEnt (Maximum Entropy) for the modeling distribution of three crane species. The
RFC-generated species distribution models were found more reliable and accurate than
models generated by the other algorithms under their study.

The process of GBC ensemble construction is iterative. The newly constructed classifi-
cation tree of the GBC ensemble is forced to learn unexplored data. However, the boosting
process was not effective in the case of FDMs. In our study, GBC-based FDMs performed
less well than the RFC- and ETC-based models.

The best results in our study were achieved by FDMs generated by ETC. In the ETC
ensemble, classification trees are trained on all samples. The randomly selected exploratory
variable and random value are used to split the nodes of the classification trees [39]. ETC-
based models were responsive to the spatial variance of environmental conditions, they
accurately modeled the spatial distribution of forest damage. In addition, ETC-based
models are computationally efficient.

Default settings were used for testing the MLAs in the current study. These default
settings were selected by developers based on their knowledge of algorithms. Although
these settings provide a good starting point for experiments with MLAs, optimization of
settings may improve the performance of the tested algorithms.

Input variables for FDMs vary over space and time. Field measurements and access
to historical records or remote sensing data are needed to prepare corresponding inputs for
spatial distribution models. PSR, NDVI, and distance to existing forest damage areas can
be calculated for past periods. Archives of satellite images can be used to calculate NDVI
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and to identify bark beetle infestations for past years. Thanks to the archiving of satellite
images, it should be possible to identify past and current infestations and to build spatial
distribution models that predict future forest damage.

We tested all combinations of the explanatory variables as input to the studied MLAs.
However, only eight explanatory variables were available for our study area (Table 1). As
indicated in Tables 4 and A1, some explanatory variables occurred more often than other
explanatory variables in FDMs. The most common explanatory variables in the top FDMs
were distance to damaged forest, potential solar radiation, forest age, and spruce volume
per hectare (Table A1). These variables may carry substantial information for modeling the
spatial distribution of forest damage [40–43].

5. Conclusions

In the study, we evaluated the performance of 10 MLAs and combinations of eight
input variables for the spatial modeling of spruce forest damage. Our computer simulations
confirmed the suitability of the ETC MLA for modeling the spatial distribution of spruce forest
damage. We also found that the number of input explanatory variables could be reduced
without significant spatial modeling accuracy loss. A smaller number of input explanatory
variables simplifies data preparation and processing and therefore reduces financial costs.

Various MLAs are currently ready for use in spatial decision support systems. We
evaluated the MLAs available in the open-source GRASS GIS. The identification of suitable
MLAs and key environmental variables is an essential step in the development of GIS tools
for forest damage modeling and prognosis. Our findings will facilitate the development of
the open-source spatial decision system TANABBO for modeling the spatial distribution of
forest damage related to I. typographus.

The risk of forest damage is affected by many interrelated environmental factors, forest
stand parameters, and forest management practices. MLAs are effective for modeling non-
linear, complex phenomena like the spatial distribution of forest damage. This study
provides researchers and forest managers with an accurate method of modeling spatial
forest damage. The integration of the FDM with a spatial decision support system will
facilitate novel tools for managing forests.
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and M.B.; software, M.K.; investigation, M.K., R.J., J.H., and M.B.; data curation, I.B.; writing—
original draft preparation, M.K., R.J., and M.B.; writing—review and editing, M.K., R.J., M.Z., I.B.,
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Figure A1. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by ETC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

 
Figure A2. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by RFC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

Figure A1. Box plot of mean phi coefficients (φ) of the FDMs generated by ETC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A2. Box plot of mean phi coefficients (φ) of the FDMs generated by RFC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A3. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by GBC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

 
Figure A4. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by DTC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

Figure A3. Box plot of mean phi coefficients (φ) of the FDMs generated by GBC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A4. Box plot of mean phi coefficients (φ) of the FDMs generated by DTC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A5. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by LDA as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

 
Figure A6. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by QDA as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

Figure A5. Box plot of mean phi coefficients (φ) of the FDMs generated by LDA as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A6. Box plot of mean phi coefficients (φ) of the FDMs generated by QDA as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A7. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by LR as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

 
Figure A8. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by GNB as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

Figure A7. Box plot of mean phi coefficients (φ) of the FDMs generated by LR as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A8. Box plot of mean phi coefficients (φ) of the FDMs generated by GNB as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A9. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by KNC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
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Figure A10. Box plot of mean phi coefficients (𝜙ത) of the FDMs generated by SVC as affected by the 
number of explanatory variables. Box plot shows median plus upper and lower quartiles for 𝜙ത of 
FDMs with a given number of explanatory variables. Minimum and maximum values are indi-
cated by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers. 

  

Figure A9. Box plot of mean phi coefficients (φ) of the FDMs generated by KNC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Figure A10. Box plot of mean phi coefficients (φ) of the FDMs generated by SVC as affected by the
number of explanatory variables. Box plot shows median plus upper and lower quartiles for φ of
FDMs with a given number of explanatory variables. Minimum and maximum values are indicated
by the upper and lower whiskers (1.5 × interquartile range). Circles are outliers.
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Appendix B

Table A1. Forest damage models not significantly different from the best ETC-based model.

r 1 nV
2 MLA 3 Variable 4

TPR 5 TNR 6 φ 7 p 8

DAS DFE PSR NDVI AGE PCT VOL STO

1 ETC 5 + + + + + 0.8043 0.8002 0.6052 -
2 ETC 7 + + + + + + + 0.7927 0.8058 0.5997 0.5537
3 ETC 8 + + + + + + + + 0.8038 0.7905 0.5959 0.5037
4 ETC 7 + + + + + + + 0.8045 0.7898 0.5957 0.4998
5 RFC 7 + + + + + + + 0.8140 0.7782 0.5937 0.2509
6 ETC 6 + + + + + + 0.7910 0.8001 0.5919 0.1819
7 ETC 5 + + + + + 0.8035 0.7856 0.5902 0.1029
8 ETC 6 + + + + + + 0.8103 0.7782 0.5898 0.2369
9 ETC 7 + + + + + + + 0.7989 0.7890 0.5897 0.2859

10 ETC 7 + + + + + + + 0.8004 0.7869 0.5896 0.1759
12 ETC 6 + + + + + + 0.7807 0.8069 0.5888 0.1829
13 RFC 6 + + + + + + 0.8036 0.7833 0.5882 0.0770
14 ETC 7 + + + + + + + 0.7980 0.7882 0.5877 0.1479
16 ETC 4 + + + + 0.8004 0.7844 0.5855 0.0800
18 ETC 6 + + + + + + 0.7813 0.8027 0.5851 0.0860
21 ETC 6 + + + + + + 0.7983 0.7787 0.5783 0.0820
36 ETC 7 + + + + + + + 0.7881 0.7798 0.5693 0.0510

1 ranking number, 2 number of explanatory variables, 3 machine learning algorithm used to generate FDM, the MLA codes are given
in Table 3, 4 codes of the variables are listed in Table 1, 5 mean true positive rate, 6 mean true negative rate, 7 mean phi coefficient for
the period 2003–2012, 8 p-value of pairwise permutation t-test with the best model, “+” indicates the presence of an explanatory variable
in FDM.
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4. Schurman, J.S.; Trotsiuk, V.; Bače, R.; Čada, V.; Fraver, S.; Janda, P.; Kulakowski, D.; Labusova, J.; Mikoláš, M.; Nagel, T.A.;
et al. Large-Scale Disturbance Legacies and the Climate Sensitivity of Primary Picea Abies Forests. Glob. Chang. Biol. 2018, 24,
2169–2181. [CrossRef] [PubMed]

5. Mezei, P.; Jakuš, R.; Pennerstorfer, J.; Havašová, M.; Škvarenina, J.; Ferenčík, J.; Slivinský, J.; Bičárová, S.; Bilčík, D.; Blaženec, M.;
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28. Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between Windthrow, Bark Beetles and Forest Management in the Tatra National

Parks. For. Ecol. Manag. 2017, 391, 349–361. [CrossRef]
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